Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Effect of maternal body mass index on cord blood erthropoietin concentrations

Abstract

Objective:

To examine the hypothesis that maternal body mass index (BMI) (an index of maternal adiposity) correlates with cord blood concentrations of erythropoietin (EPO).

Study design:

Cross-sectional cohort study of consecutively born singleton term healthy infants born to mothers with various BMIs. Excluded were infants with major factors known to be associated with a potential increase in fetal erythropoiesis. Prepregnancy maternal BMI was calculated from maternal recollection.

Result:

There was a significant correlation between EPO concentrations and maternal BMI (R=0.427, P=0.007). This correlation remained significant in multiple stepwise regression analysis using the EPO concentration as the dependent variable, and maternal age, parity, gestational age and Apgar scores (1 or 5 min) as potential confounders.

Conclusion:

Cord blood concentrations of EPO correlate with maternal BMI. We speculate that increasing maternal BMI may represent a relative hypoxic burden on the fetus.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. WHO. Obesity: preventing and managing the global epidemic, WHO technical report series 894, 2000, pp 1–253. Available at: http://whqlibdoc.who.int/trs/WHO_TRS_894.pdf (last accessed 9 October 2013).

  2. Lawlor DA, Relton C, Sattar N, Nelson SM . Maternal adiposity—a determinant of perinatal and offspring outcomes? Nat Rev Endocrinol 2012; 8 (11): 679–688.

    Article  PubMed  Google Scholar 

  3. Froen JF, Arnestad M, Vege A, Irgens LM, Rognum TO, Saugstad OD et al. Comparative epidemiology of sudden infant death syndrome and sudden intrauterine unexplained death. Arch Dis Child Fetal Neonatal Ed 2002; 87: F118–F121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Castro LC, Avina RL . Maternal obesity and pregnancy outcomes. Curr Opin Ostet Gynecol 2002; 14: 601–606.

    Article  Google Scholar 

  5. Sebire NJ, Jolly M, Harris JP, Wadsworth J, Joffe M, Beard RW et al. Maternal obesity and pregnancy outcome: a study of 287,213 pregnancies in London. Int J Obes Relat Metab Disord 2001; 25: 1175–1182.

    Article  CAS  PubMed  Google Scholar 

  6. Sheffer-Mimouni G, Mimouni FB, Dollberg S, Mandel D, Deutsch V, Littner Y . Neonatal nucleated red blood cells in infants of overweight and obese mothers. J Am Coll Nutr 2007; 26 (3): 259–263.

    Article  PubMed  Google Scholar 

  7. Sheffer-Mimouni G, Mimouni FB, Lubetzky R, Kupferminc M, Deutsch V, Dollberg S . Labor does not affect the neonatal absolute nucleated red blood cell count. Am J Perinatol 2003; 20: 367–371.

    Article  PubMed  Google Scholar 

  8. Dollberg S, Haklai Z, Mimouni FB, Gorfein I, Gordon ES . Birth weight standards in the live-born population in Israel. Isr Med Assoc J 2005; 7 (5): 311–314.

    PubMed  Google Scholar 

  9. Shuper A, Mimouni F, Merlob P, Zaizov R, Reisner SH . Thrombocytopenia in small for gestational age infants. Acta Paediatr Scand 1983; 72: 139–140.

    Article  CAS  PubMed  Google Scholar 

  10. Sinha HB, Mukherjee AK, Bala D . Cord blood haemoglobin (including foetal haemoglobin), and nucleated red cells in normal and toxaemic pregnancies. Ind Pediatr 1972; 9: 5490–5493.

    Google Scholar 

  11. Littner Y, Mandel D, Sheffer-Mimouni G, Mimouni FB, Deutsch V, Dollberg S . Nucleated red blood cells in infants of mothers with asthma. Am J Obstet Gynecol 2003; 188: 409–412.

    Article  PubMed  Google Scholar 

  12. Yeruchimovich M, Dollberg S, Green DW, Mimouni FB . Nucleated red blood cells in infants of smoking mothers. Obstet Gynecol 1999; 93: 403–406.

    CAS  PubMed  Google Scholar 

  13. Dollberg S, Fainaru O, Mimouni FB, Shenhav M, Lessing JB, Kupferminc M . Effect of passive smoking in pregnancy on neonatal nucleated red blood cells. Pediatrics 2000; 106: E34.

    Article  CAS  PubMed  Google Scholar 

  14. Halmesmaki E, Teramo KA, Widness JA, Clemons GK, Ylikorkala O . Maternal alcohol abuse is associated with elevated fetal erythropoietin levels. Obstet Gynecol 1990; 76: 219–222.

    CAS  PubMed  Google Scholar 

  15. Leikin E, Garry D, Visintainer P, Verma U, Tejani N . Correlation of neonatal nucleated red blood cell counts in preterm infants with histologic chorioamnionitis. Am J Obstet Gynecol 1997; 177: 27–30.

    Article  CAS  PubMed  Google Scholar 

  16. Korst LM, Phelan JP, Ahn MO, Martin GI . Nucleated red blood cells: an update on the marker for fetal asphyxia. Am J Obstet Gynecol 1996; 175: 843–846.

    Article  CAS  PubMed  Google Scholar 

  17. Hanlon-Lundberg KM, Kirby RS . Nucleated red blood cells as a marker of acidemia in term neonates. Am J Obstet Gynecol 1999; 181: 196–201.

    Article  CAS  PubMed  Google Scholar 

  18. Dollberg S, Livny S, Mordecheyev N, Mimouni FB . Nucleated red blood cells in meconium aspiration syndrome. Obstet Gynecol 2001; 97: 593–596.

    CAS  PubMed  Google Scholar 

  19. Thomas RM, Canning CE, Cotes PM, Linch DC, Rodeck CH, Rossiter CE . Erythropoietin and cord blood haemoglobin in the regulation of human fetal erythropoiesis. Br J Obstet Gynaecol 1983; 90: 795–800.

    Article  CAS  PubMed  Google Scholar 

  20. Oski FA, Naiman JL . Hematologic Problems In The Newborn, 2nd ed. WB Saunders: Philadelphia, PA, USA, 1972, pp 15–17.

    Google Scholar 

  21. Mimouni F, Miodovnik M, Siddiqi TA, Butler JB, Holroyde J, Tsang RC . Neonatal polycythemia in infants of insulin-dependent diabetic mothers. Obstet Gynecol 1986; 68: 370–372.

    Article  CAS  PubMed  Google Scholar 

  22. Yeruchimovich M, Mimouni FB, Green DW, Dollberg S . Nucleated red blood cells in healthy infants of women with gestational diabetes. Obstet Gynecol 2000; 95 (1): 84–86.

    CAS  PubMed  Google Scholar 

  23. Haskins CN . A Geometrical Interpretation of the Generalized Law of the Mean. Annals of Mathematics, Second Series, Vol. 9 (No. 3), 1908; pp 141.

    Article  Google Scholar 

  24. Nunn R, Markers of nutritional status, nutrition and food health and social behaviour: markers of nutritional status, nutrition and food individual markers of nutritional status, Public Health Action Support Team (PHAST) 2011 Eds. Available at: http://www.healthknowledge.org.uk/public-health-textbook/disease-causation-diagnostic/2e-health-social-behaviour/nutritional-status-food (last accessed 14 October 2013).

  25. Widness JA, Teramo KA, Clemons GK, Garcia JF, Cavalieri RL, Piasecki GJ et al. Temporal response of immunoreactive erythropoietin to acute hypoxemia in fetal sheep. Pediatr Res 1986; 20 (1): 15–19.

    Article  CAS  PubMed  Google Scholar 

  26. Kim SJ, Cheung CY, Widness JA, Brace RA . Temporal response of plasma erythropoietin to hemorrhage in the ovine fetus. J Soc Gynecol Invest 2002; 9 (2): 75–79.

    Article  CAS  Google Scholar 

  27. Miodovnik M, Mimouni F, Berk M, Clark KE . Alloxan-induced diabetes mellitus in the pregnant ewe: metabolic and cardiovascular effects on the mother and her fetus. Am J Obstet Gynecol 1989; 160 (5, Part 1): 1239–1244.

    Article  CAS  PubMed  Google Scholar 

  28. Robertson DA, Singh BM, Nattrass M . Effect of obesity on circulating intermediary metabolite concentrations in the absence of impaired glucose tolerance. Int J Obes 1991; 15: 635–645.

    CAS  PubMed  Google Scholar 

  29. Maasilta P, Bachour A, Teramo K, Polo O, Laitinen LA . Sleep-related disordered breathing during pregnancy in obese women. Chest 2001; 120: 1448–1454.

    Article  CAS  PubMed  Google Scholar 

  30. Alfadda AA, Sallam RM . Reactive oxygen species in health and disease. J Biomed Biotechnol 2012; 2012: 936486.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Chandel NS, McClintock DS, Feliciano CE, Wood TM, Melendez JA, Rodriguez AM et al. Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1alpha during hypoxia: a mechanism of O2 sensing. J Biol Chem 2000; 275 (33): 25130–25138.

    Article  CAS  PubMed  Google Scholar 

  32. Liu Q, Davidoff O, Niss K, Haase VH . Hypoxia-inducible factor regulates hepcidin via erythropoietin-induced erythropoiesis. J Clin Invest 2012; 122 (12): 4635–4644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Marom.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barak, S., Mimouni, F., Stern, R. et al. Effect of maternal body mass index on cord blood erthropoietin concentrations. J Perinatol 35, 29–31 (2015). https://doi.org/10.1038/jp.2014.140

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jp.2014.140

Search

Quick links