COMMENTARY

Recommended standards for assessing blood pressure in human research where blood pressure or hypertension is a major focus

TRUE Consortium

Journal of Human Hypertension advance online publication, 13 April 2017; doi:10.1038/jhh.2017.10

Standardized and rigorous methods for blood pressure (BP) measurement are necessary to ensure the comparability and accuracy of BP assessments for individuals due to the effects of measurement error, diurnal variation and short- and long-term variability.1–10 Many studies have demonstrated substantive changes in BP related to methodological issues when the BP assessment did not satisfy the established standards.6,8,11–13 It is thought that a lack of rigor/standardization in assessing BP may reduce or mask the relationship between BP, lifestyle changes or antihypertensive medications and adverse outcomes. For example, the INTERHEART study assessed BP status solely by asking participants if they had been diagnosed with hypertension or antihypertensive medications and adverse outcomes. For example, the INTERHEART study assessed BP status solely by asking participants if they had been diagnosed with hypertension in many countries where awareness of hypertension diagnosis was low.14 Not surprisingly, the INTERHEART study found hypertension to be the sixth leading risk for acute myocardial infarction, while based on numerous studies, there is a consensus that increased BP is the leading risk for ischaemic heart disease.15 The INTERHEART findings could mislead policy makers that hypertension control is not as high a priority intervention as interventions on risks that ranked higher. Further, observations of non-BP-lowering effects of antihypertensive drugs may be attributed to inadequate assessment of BP or inadequate assessment of BP could limit the ability to detect cardiac effects of non-cardiovascular drugs or their interaction with other medications.16–18 Nevertheless, many investigators historically have not published the training and accuracy testing of those assessing BP and have not indicated the technical and methodological aspects of assessing BP in clinical research studies where BP was a major focus.19

An international consortium for quality research on dietary sodium/salt (TRUE) was formed to make recommendations to improve the quality of research on dietary salt. Lack of standardization and quality of BP measurement was viewed as a factor, creating controversy about the relationship of dietary salt to increased BP and hypertension. Initially focussed on setting recommended standards for assessing BP in human studies on dietary salt, the mandate was expanded, recognizing low-quality BP assessment as a widespread issue with the potential to adversely impact all human BP research. The recommendations below are intended to be applied to human clinical and epidemiological research where: (1) BP or hypertension is a major end point or (2) BP or hypertension is thought to be a major mediator of the research outcome (for example, a study on an antihypertensive therapy or lifestyle change with a cardiovascular outcome). The recommendations constitute a minimum standard for the conduct and report of each human clinical and epidemiological research study.

RECOMMENDATIONS

Training

(1) The number of observers and the professional background of the observer(s) are indicated (for example, physician, community health workers, nurse or research assistant).

(2) Those who directly assess BP or those who train or teach subjects in BP measurement protocols must be specifically trained for the BP measurement as part of the quality control for the research study. This applies to office, home/self and ambulatory BP assessments.

(3) For manual BP assessment, the observer(s) are specifically trained and have passed practical tests for use of technique and accuracy of assessing BP by auscultation using a double-headed stethoscope.

(4) There is semi-annual competency testing of those who directly assess BP or those who train or teach subjects in BP measurement protocols when indicated in studies of a longer duration. The observers need to be evaluated, and quality of performance needs to be periodically assessed using statistical tables to detect bias in recorded measurements. Technician retraining is necessary where deficiencies are found.

Technical aspects

(5) The measurement conditions are indicated (for example, location, position/posture, resting period or instructions provided for home/self or ambulatory measurement).

(6) All aspects of patient preparation and BP measurement must conform with the published guidelines of a national or international body recognized for its work in BP measurement.1,2,4,6–8,21,22 The specific set of technical recommendations used in the study must be referenced and all modifications to the recommended techniques and procedures disclosed.

(7) The BP measurement protocol is provided in sufficient detail so that it can be duplicated precisely by others (for example, number of readings recorded, time intervals between readings, criteria for discarding readings and the number of readings to make the estimation).

1Member organizations and their representatives in the TRUE Consortium are listed before the references. Correspondence: Dr Norm Campbell, Libin Cardiovascular Institute of Alberta, University of Calgary, 3280 Hospital Drive NW, Calgary, Alberta, Canada T2N 4Z6. E-mail: ncampbel@ucalgary.ca
BP devices

(8) All manual devices must be assessed for calibration at the start, every 6 months and at the end of the study, and the data are to be assessed and reported for terminal digit preference. References are provided for protocols verifying calibration of manual devices. Mercury devices, if used, must have been serviced before the study (for example, clean columns and mercury ‘zeroed’).

(9) All the semi-automated or automated devices used have passed accepted international or national validation standards/protocols (Medaval, http://medaval.org, Updated: 2015. Accessed 17 August 2015). References must be provided (for example, peer-reviewed publication, government organization verified validation or publically accessible data) to support the validation of the devices used.

(10) The inflatable bladder dimensions of each cuff size used and range of arm circumferences used for each cuff size are specified. Only upper arm cuffs are recommended.

Adults

(11) BP is assessed using an automated, semi-automated or manual device for office BP measurement or an automated device for home/self or ambulatory BP monitoring.

a. Office BP: If BP is assessed in a research/clinical office, multiple BP readings must be taken and averaged at each assessment. Office BP evaluation on repeated occasions (visits) is preferred to establish more accurately an individual’s BP level both at baseline and during an intervention.

b. Out-of-office BP: It is further preferred that out-of-office (ambulatory or home/self) BP be assessed rather than only assessments in research/clinical offices. For out-of-office assessments, it is preferred to use an ambulatory BP over home/self-monitoring or to use both methods. For ambulatory BP monitoring, there must be repeated BP measurements over a minimum of 24 h during a person’s routine day. The ambulatory monitoring must be performed at baseline and at least once during the intervention. For home/self-BP monitoring, an average of two readings in the morning and two readings in the evening conducted on 5–7 serial days is recommended to establish a person’s BP both at baseline and during the intervention.25–26 The validity (assessment) of home/self-BP during an intervention must be assessed (conducted) at least once.

Children

(12) BP in children is preferred to be assessed using manual devices with auscultation and interpreted using BP percentiles/Z-scores based on appropriate paediatric normative data.7 27–30

a. The use of automated or semi-automated devices that have passed internationally accepted validation standards for children is also acceptable (www.medaval.org/, accessed 15 August 2015).

b. Assessment of office BP on several occasions/visits is preferred over a single assessment to establish a child’s level of BP both at baseline and during an intervention.

c. In children aged ≥5 years (or a height of ≥120 cm), out-of-office BP can be assessed as a useful addition to assessments in research/clinical offices. Out-of-office assessments for children should preferably use an ambulatory BP monitor.31 There is currently inadequate research on home/self-measurement of BP to recommend its use outside of studies that are designed to further assess the usefulness of home/self-measurement.32 For ambulatory BP monitoring, there must be repeated BP measurements over a minimum of 24 h during a child’s routine day. The ambulatory monitoring must be performed at baseline and at least once during the intervention. Appropriate pediatric normative BP data for ambulatory BP monitoring must be used for interpretation.33,34 Ambulatory BP is limited by the very small number of devices that have been tested according to international standards in children and incomplete evidence on normative data.

(13) An upper arm cuff with the length of the cuff’s bladder at least 80% of the arm circumference and the width at least 40% of the arm circumference must be used, and the criteria for selecting an appropriately sized cuff is indicated.

Comment

The TRUE recommendations for assessing BP are not intended to impede research on BP and hypertension in humans but to standardize and improve the quality and reliability of such research. The recommendations originated from a process to develop recommended standards for research on dietary salt where low-quality research was viewed as a major factor in creating controversy around lowering dietary salt. Low-quality assessment of BP was identified as having the potential to alter and reduce the association between dietary salt and BP. The TRUE steering and expert committees identified lack of standardization of BP measurement and low-quality assessment of BP in human research as an issue impacting all BP research and approved the process to set these recommendations.

The process for developing the TRUE recommendations had a potential limitation. The recommendations were based on existing national and international guidelines on how to assess BP and are mainly focussed on clinical practice.1–8 Many of these processes used extensive literature searches but did not use current methods of assessing the quality of evidence or grading of evidence. A notable exception was the Canadian Hypertension Education Program (3). The Canadian recommendations did not differ substantively from recommendations of other processes. New recommendations were not developed by this process and a literature search was not performed. Experts of the TRUE process and external experts reviewed the proposed recommendations to ensure consistency with currently accepted and published recommendations. Where there was a difference in recommendations between different guidelines and a consensus was not achieved, the TRUE process did not specify a recommendation to be followed. Hence the recommendations from this process may not be as rigorous as those in some clinical guidelines. Therefore, the TRUE recommendations can be viewed as a minimum standard for research studies. It was identified that there is a need for an international process to systematically review the literature, assess the quality of studies and to grade the evidence in setting recommended standards for assessing BP.

The process for developing the BP assessment recommendations was initiated in January 2015 and consensus among the external BP measurement experts and the sodium expert committee was completed in November and December 2015, respectively. The process of achieving support from the steering committee member organizations, several which had internal review processes, was completed in August 2016. It is recognized that these recommendations should be reviewed and updated with advancement in BP assessment research.
The introduction of the TRUE recommendations will require time to allow the research community to adapt. It is suggested that researchers immediately apply these recommendations to all research protocols where accurate BP assessment is important to the research results. For journal editors and article reviewers, it should be expected that research initiated after the release of these guidelines adhere to the TRUE recommendations. Further, based on this guidance, at this time Editors and reviewers can ensure the detailed methods used to assess BP are outlined in appendices of manuscripts. In the meantime, clinicians and scientist should utilize the TRUE recommendations in interpreting the validity of past, current and future BP research. Specifically, studies with results that are dependent on an accurate assessment of BP need to be viewed more skeptically where there is a lack of adherence to recommendations for accurate BP assessment.

It is recognized that innovative research on how to better assess BP will test methods that are not included in these recommendations. Research using new methods of assessing BP should compare the new methods to established methods that incorporate the TRUE recommendations.

CONFLICT OF INTEREST

Specific conflicts of interest of each member of the TRUE Consortium can be found in Supplementary Appendix. The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention.

ACKNOWLEDGEMENTS

The TRUE Consortium would like to acknowledge the contributions of Mark Niebylski, Kimber Redburn and Aaron Lucko in supporting the TRUE consortium. Funding was provided by the Heart and Stroke Foundation (Canada)-Canadian Institute for Health Research Chair in Hypertension Prevention and Control with in kind support from the World Hypertension League; grant number PG-11-0531.

The members of the TRUE sodium expert committee are Drs Cheryl Anderson, Larry Appel, Norm Campbell (Chair), Mary Cogswell, Nancy Cook, Antti Jula, Mary L’Abbe, Graham MacGregor, Rachael McLean, Doreen Rabi, Mark Woodward and JoAnne Arcand and were supported by Tje Khalsa, Claire Johnson, Alex Leung, Birinder Mangat and Mark Niebylski. External blood pressure assessment experts who are not part of the TRUE sodium expert committee who contributed to this specific set of recommendations include Mark Gelfer, Pedro Ordunez, Bruce Alpert, Raj Padwal, Lyne Cloutier, George Stergiou, Eoin O’Brien, Don MacKay, Martin Myers, Joseph Flynn, Janusz Feber, Michael Rakotz, Fleetwood Loustalot and Janis Dionne.

MEMBER ORGANIZATIONS AND THEIR REPRESENTATIVES IN THE TRUE CONSORTIUM

The member organizations and their representatives in the TRUE Consortium are:

- Stephen Daniels – American Heart Association, Dallas, TX, USA
- Francesco P Cappuccio – British Hypertension Society, Edinburgh, UK
- Liu Lisheng – Chinese Regional Office of the World Hypertension League, Beijing, China
- Janusz Kaczorowski – Hypertension Canada, Markham, Ontario, Canada
- Antti Jula – International Association of National Public Health Institutes, Atlanta, GA, USA
- Alison Attrey – International Council of Cardiovascular Prevention and Rehabilitation, Toronto, Canada
- Rhian Touyz, Agustín Ramirez – International Society of Hypertension, Teddington, UK
- Ricardo Correa-Rotter – International Society of Nephrology, Brussels, Belgium
- Michael Weber – Journal of Clinical Hypertension, New York, NY, USA
- Jacqui Webster – World Health Organization Collaborating Centre for Population Salt Reduction, Sydney, NSW, Australia
- Branka Legetic – Pan American Health Organization/World Health Organization Technical Advisory Group on Cardiovascular Diseases, Geneva, Switzerland
- Norm Campbell (Chair) – World Hypertension League, Corvallis, OR, USA
- Graeme Hankey – World Stroke Organization, Geneva, Switzerland
- Temo Waganivalu – World Health Organization, Geneva, Switzerland
- Cheryl Anderson – University of California, San Diego, CA, USA
- Larry Appel – Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Mary Cogswell, Fleetwood Loustalot – Center for Disease Control and Prevention, Atlanta, USA
- Nancy Cook – Brigham & Women’s Hospital Division of Preventative Medicine, Boston, MA, USA
- Mary L’Abbe – University of Toronto, Toronto, ON, Canada
- Graham MacGregor – Queen Mary University of London, London, UK
- Rachael McLean – University of Otago, Dunedin, New Zealand
- Doreen Rabi, Tje Khalsa, Alex Leung – University of Calgary, Calgary, AB, Canada
- Mark Woodward – University of Sydney, Sydney, NSW, Australia
- JoAnne Arcand – University of Ontario Institute of Technology, Oshawa, ON, Canada
- Claire Johnson – The George Institute for Global Health, New Town, NSW, Australia
- Mark Niebylski – World Hypertension League, Poplar, MT, USA
- Mark Gelfer – Copeman Healthcare Center, Vancouver, BC, Canada
- Pedro Ordunez – Pan American Health Organization, Washington, DC, USA
- Bruce Alpert – The University of Tennessee Health Science Center, Memphis, TN, USA
- Raj Padwal – University of Alberta, Edmonton, AB, Canada
- Lyne Cloutier – Montreal Heart Institute, Montreal, QC, Canada
- George Stergiou – University of Athens, Athens, Greece
- Eoin O’Brien – University College Dublin, Ublin, UK
- Don MacKay – Memorial University, St. Johns, Canada
- Martin Myers – Sunnybrook Health Sciences Center, Toronto, ON, Canada
- Joseph Flynn – Seattle Children’s Hospital, Seattle, WA, USA
- Janusz Feber – University of Ottawa, Ottawa, ON, Canada
- Michael Rakotz – Feinberg School of Medicine, Chicago, IL, USA
- Janis Dionne, Birinder Mangat – University of British Columbia, Vancouver, BC, Canada

REFERENCES

12 Myers MG. The great myth of of

Supplementary Information accompanies this paper on the Journal of Human Hypertension website (http://www.nature.com/jhh)