Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Ambulatory blood pressure monitoring for risk stratification in obese and non-obese subjects from 10 populations

Abstract

Overweight clusters with high blood pressure (BP), but the independent contribution of both risk factors remains insufficiently documented. In a prospective population study involving 8467 participants (mean age 54.6 years; 47.0% women) randomly recruited from 10 populations, we studied the contribution of body mass index (BMI) to risk over and beyond BP, taking advantage of the superiority of ambulatory over conventional BP. Over 10.6 years (median), 1271 participants (15.0%) died and 1092 (12.9%), 637 (7.5%) and 443 (5.2%) experienced a fatal or nonfatal cardiovascular, cardiac or cerebrovascular event. Adjusted for sex and age, low BMI (<20.7 kg m−2) predicted death (hazard ratio (HR) vs average risk, 1.52; P<0.0001) and high BMI (30.9 kg m−2) predicted the cardiovascular end point (HR, 1.27; P=0.006). With adjustments including 24-h systolic BP, these HRs were 1.50 (P<0.001) and 0.98 (P=0.91), respectively. Across quartiles of the BMI distribution, 24-h and nighttime systolic BP predicted every end point (1.13standardized HR 1.67; 0.046 P<0.0001). The interaction between systolic BP and BMI was nonsignificant (P0.22). Excluding smokers removed the contribution of BMI categories to the prediction of mortality. In conclusion, BMI only adds to BP in risk stratification for mortality but not for cardiovascular outcomes. Smoking probably explains the association between increased mortality and low BMI.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Pischon T, Boeing H, Hoffmann K, Bergmann M, Schulze MB, Overvad K et al. General and abdominal adiposity and risk of death in Europe. N Engl J Med 2008; 359: 2105–2120.

    Article  CAS  Google Scholar 

  2. Prospective Studies Collaboration. Body-mass index and cause-specific mortality in 900 0000 adults: collaborative analyses of individual data from 57 prospective studies. Lancet 2009; 373: 1083–1096.

    Article  Google Scholar 

  3. Berrington de Gonzalez A, Hartge P, Cerhan JR, Flint AJ, Hannan L, MacInnis RJ et al. Body-mass index and mortality among 1.46 million white adults. N Engl J Med 2010; 363: 2211–2219.

    Article  CAS  Google Scholar 

  4. Wormser D, Kaptoge S, Di AE, Wood AM, Pennells L, Thompson A et al. Separate and combined associations of body-mass index and abdominal adiposity with cardiovascular disease: collaborative analysis of 58 prospective studies. Lancet 2011; 377: 1085–1095.

    Article  Google Scholar 

  5. Zheng W, McLerran DF, Rolland B, Zhang X, Inoue M, Matsuo K et al. Association between body-mass index and risk of death in more than 1 million Asians. N Engl J Med 2011; 364: 719–729.

    Article  CAS  Google Scholar 

  6. Flegal KM, Kit BK, Orpana H, Graubard BI . Association of all-cause mortality with overweight and obesity using standard body mass index categories. A systematic review and meta-analysis. JAMA 2013; 309: 71–82.

    Article  CAS  Google Scholar 

  7. Cambien F, Chretien JM, Ducimetiere P, Guize L, Richard JL . Is the relationship between blood pressure and cardiovascular risk dependent on body mass index? Am J Epidemiol 1985; 122: 434–442.

    Article  CAS  Google Scholar 

  8. Barrett-Connor E, Khaw KT . Is hypertension more benign when associated with obesity? Circulation 1985; 72: 53–60.

    Article  CAS  Google Scholar 

  9. Bender R, Jockel KH, Richter B, Spraul M, Berger M . Body weight, blood pressure, and mortality in a cohort of obese patients. Am J Epidemiol 2002; 156: 239–245.

    Article  Google Scholar 

  10. Silventoinen K, Magnusson PK, Neovius M, Sundstrom J, Batty GD, Tynelius P et al. Does obesity modify the effect of blood pressure on the risk of cardiovascular disease? A population-based cohort study of more than one million Swedish men. Circulation 2008; 118: 1637–1642.

    Article  Google Scholar 

  11. Wang H, Cao J, Li J, Chen J, Wu X, Duan X et al. Blood pressure, body mass index and risk of cardiovascular disease in Chinese men and women. BMC Public Health 2010; 10: 189–196.

    Article  Google Scholar 

  12. Morkedal B, Romundstad PR, Vatten LJ . Mortality from ischaemic heart disease: age-specific effects of blood pressure stratified by body-mass index: the HUNT cohort study in Norway. J Epidemiol Community Health 2010; 65: 814–819.

    Article  Google Scholar 

  13. Bloom E, Reed D, Yano K, MacLean C . Does obesity protect hypertensives against cardiovascular diseases? JAMA 1986; 256: 2972–2975.

    Article  CAS  Google Scholar 

  14. Tsukinoki R, Murakami Y, Huxley R, Ohkubo T, Fang X, Suh I et al. Does body mass index impact on the relationship between systolic blood pressure and cardiovascular disease? Meta-analysis of 419 488 individuals from the Asian Pacific Cohort Studies Collaboration. Stroke 2012; 43: 1478–1483.

    Article  Google Scholar 

  15. O'Brien E, Asmar R, Beilin L, Imai Y, Mallion JM, Mancia G et al. European Society of Hypertension recommendations for conventional, ambulatory and home blood pressure measurement. J Hypertens 2003; 21: 821–848.

    Article  CAS  Google Scholar 

  16. Thijs L, Hansen TW, Kikuya M, Björklund-Bodegård K, Li Y, Dolan E et al. The International Database of Ambulatory blood pressure in relation to Cardiovascular Outcome (IDACO): protocol and research perspectives. Blood Press Monit 2007; 12: 255–262.

    Article  Google Scholar 

  17. Hansen TW, Jeppesen J, Rasmussen F, Ibsen H, Torp-Pedersen C . Ambulatory blood pressure monitoring and mortality: a population-based study. Hypertension 2005; 45: 499–504.

    Article  CAS  Google Scholar 

  18. Ohkubo T, Hozawa A, Yamaguchi J, Kikuya M, Ohmori K, Michimata M et al. Prognostic significance of the nocturnal decline in blood pressure in individuals with and without high 24-h blood pressure: the Ohasama study. J Hypertens 2002; 20: 2183–2189.

    Article  CAS  Google Scholar 

  19. Staessen JA, Bieniaszewski L, O'Brien ET, Imai Y, Fagard R . An epidemiological approach to ambulatory blood pressure monitoring: the Belgian population study. Blood Press Monit 1996; 1: 13–26.

    CAS  PubMed  Google Scholar 

  20. Ingelsson E, Björklund K, Lind L, Ärnlöv J, Sundström J . Diurnal blood pressure pattern and risk of congestive heart failure. JAMA 2006; 295: 2859–2866.

    Article  CAS  Google Scholar 

  21. Schettini C, Bianchi M, Nieto F, Sandoya E, Senra H and Hypertension Working Group. Ambulatory blood pressure. Normality and comparison with other measurements. Hypertension 1999; 34 (part 2): 818–825.

    Article  CAS  Google Scholar 

  22. Li Y, Wang JG, Gao HF, Nawrot T, Wang GL, Qian YS et al. Are published characteristics of the ambulatory blood pressure generalizable to rural Chinese? The JingNing population study. Blood Press Monit 2005; 10: 125–134.

    Article  Google Scholar 

  23. Kuznetsova T, Malyutina S, Pello E, Thijs L, Nikitin Y, Staessen JA . Ambulatory blood pressure of adults in Novosibirsk, Russia: interim report on a population study. Blood Press Monit 2000; 5: 291–296.

    Article  CAS  Google Scholar 

  24. Kuznetsova T, Staessen JA, Kawecka-Jaszcz K, Babeanu S, Casiglia E, Filipovský J et al. Quality control of the blood pressure phenotype in the European Project on Genes in Hypertension. Blood Press Monit 2002; 7: 215–224.

    Article  Google Scholar 

  25. O'Brien E, Murphy J, Tyndall A, Atkins N, Mee F, McCarthy G et al. Twenty-four-hour ambulatory blood pressure in men and women aged 17 to 80 years: the Allied Irish Bank Study. J Hypertens 1991; 9: 355–360.

    Article  CAS  Google Scholar 

  26. Maestre GE, Pino-Ramírez G, Molero AE, Silva ER, Zambrano R, Falque L et al. The Maracaibo Aging Study: population and methodological issues. Neuroepidemiology 2009; 21: 194–201.

    Article  Google Scholar 

  27. Hansen TW, Jeppesen J, Rasmussen S, Ibsen H, Torp-Pedersen C . Ambulatory blood pressure monitoring and risk of cardiovascular disease: a population based study. Am J Hypertens 2006; 19: 243–250.

    Article  Google Scholar 

  28. O'Brien E, Asmar R, Beilin L, Imai Y, Mancia G, Mengden T et al. Practice guidelines of the European Society of Hypertension for clinic, ambulatory and self blood pressure measurement. J Hypertens 2005; 23: 697–701.

    Article  CAS  Google Scholar 

  29. Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL Jr. et al. Seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. Hypertension 2003; 42: 1206–1252.

    Article  CAS  Google Scholar 

  30. Expert Committee on the Diagnosis and Classification of Diabetes Mellitus. Report of the expert committee on the diagnosis and classification of diabetes mellitus. Diabetes Care 2003; 26 (suppl 1): S5–S20.

    Google Scholar 

  31. Hansen TW, Thijs L, Li Y, Boggia J, Kikuya M, Björklund-Bodegård K et al. Prognostic value of reading-to-reading blood pressure variability over 24 h in 8938 subjects from 11 populations. Hypertension 2010; 55: 1049–1057.

    Article  CAS  Google Scholar 

  32. Franklin SS, Larson MG, Khan SA, Wong ND, Leip EP, Kannel WB et al. Does the relation of blood pressure to coronary heart disease change with aging? The Framingham Heart Study. Circulation 2001; 103: 1245–1249.

    Article  CAS  Google Scholar 

  33. Doll R, Peto R, Boreham J, Sutherland I . Mortality in relation to smoking: 50 years' observations on male British doctors. Br Med J 2004; 328: 1519–1528.

    Article  Google Scholar 

  34. Cryer PE, Haymond MW, Santiago JV, Shah SD . Norepinephrine and epinephrine release and adrenergic mediation of smoking-associated hemodynamic and metabolic events. N Engl J Med 1976; 295: 573–577.

    Article  CAS  Google Scholar 

  35. Groppelli A, Giorgi DMA, Omboni S, Parati G, Mancia G . Persistent blood pressure increase induced by heavy smoking. J Hypertens 1992; 10: 495–499.

    Article  CAS  Google Scholar 

  36. St George IM, Williams S, Stanton WR, Silva PA . Smoking and blood pressure in 15 year olds in Dunedin, New Zealand. Br Med J 1991; 302: 89–90.

    Article  CAS  Google Scholar 

  37. Benowitz NL, Sharp DS . Inverse relation between serum cotinine concentration and blood pressure in cigarette smokers. Circulation 1989; 80: 1309–1312.

    Article  CAS  Google Scholar 

  38. Kizer JR, Biggs ML, Ix JH, Mukamal KJ, Zieman SJ, de Boer IH et al. Measures of adiposity and future risk of ischemic stroke and coronary heart disease in older men and women. Am J Epidemiol 2011; 173: 10–25.

    Article  Google Scholar 

  39. Canoy D, Boekholdt SM, Wareham N, Luben R, Welch A, Bingham S et al. Body fat distribution and risk of coronary heart disease in men and women in the European Prospective Investigation Into Cancer and Nutrition in Norfolk cohort: a population-based prospective study. Circulation 2007; 116: 2933–2943.

    Article  Google Scholar 

  40. Yusuf S, Hawken S, Ôunpuu S, Bautista L, Commerford P, Lang CC et al. Obesity and the risk of myocardial infarction in 27 000 participans from 52 countries: a case-control study. Lancet 2005; 366: 1640–1649.

    Article  Google Scholar 

  41. Weber MA, Jamerson K, Bakris GL, Weir MR, Zappe D, Zhang Y et al. Effect of body size and hypertension treatments on cardiovascular event rates: subanalysis of the ACCOMPLISH randomised controlled trial. Lancet 2013; 381: 537–545.

    Article  Google Scholar 

  42. Staessen JA, Wang JG, Thijs L . Cardiovascular prevention and blood pressure reduction: a meta-analysis [correction published in The Lancet 2002, volume 359, January 26, p 360]. Lancet 2001; 358: 1305–1315.

    Article  CAS  Google Scholar 

  43. Blood Pressure Lowering Treatment Trialists' Collaboration. Effects of different blood-pressure-lowring regimens on major cardiovascular events: results of prospectively-designed overviews of randomised trials. Lancet 2003; 362: 1527–1535.

    Article  Google Scholar 

Download references

Acknowledgements

The European Union (Grants IC15-CT98-0329-EPOGH, LSHM-CT-2006-037093 InGenious HyperCare, HEALTH-F4-2007-201550 HyperGenes, HEALTH-F7-2011-278249 EU-MASCARA, HEALTH-F7-305507 HOMAGE and the European Research Council Advanced Research Grant 294713 EPLORE) and the Fonds voor Wetenschappelijk Onderzoek Vlaanderen, Ministry of the Flemish Community, Brussels, Belgium (G.0734.09, G.0881.13 and G.088013N) supported the Studies Coordinating Centre (Leuven, Belgium). The European Union (Grants LSHM-CT-2006-037093 and HEALTH-F4-2007-201550) also supported the research groups in Shanghai, Kraków, Padova and Novosibirsk. The Danish Heart Foundation (Grant 01-2-9-9A-22914) and the Lundbeck Fonden (Grant R32-A2740) supported the studies in Copenhagen. The Ohasama study received support via Grant-in-Aid for Scientific Research (22590767, 22790556, 23249036, 23390171 and 23790242) from the Ministry of Education, Culture, Sports, Science and Technology, Japan; Health Labour Sciences Research Grant (H23-Junkankitou (Seishuu)-Ippan-005) from the Ministry of Health, Labour and Welfare, Japan; Japan Arteriosclerosis Prevention Fund; and a Grant from the Central Miso Research Institute, Tokyo, Japan. The National Natural Science Foundation of China (Grants 30871360 and 30871081), Beijing, China and the Shanghai Commissions of Science and Technology (Grant 07JC14047 and the ‘Rising Star’ program 06QA14043) and Education (Grant 07ZZ32 and the ‘Dawn’ project) supported the JingNing study in China. The Comisión Sectorial de Investigación Científica de la Universidad de la República (Grant I+D GEFA-HT-UY) and the Agencia Nacional de Innovación e Investigación supported research in Uruguay. The funding sources have no role in the design and conduct of the study; collection, management, analysis and interpretation of the data; and preparation, review or approval of the manuscript. We gratefully acknowledge the expert assistance of Mrs Sandra Covens, who is an employee of the Studies Coordinating Centre, Leuven, Belgium, and did not receive any compensation for her contribution to this study.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to J A Staessen.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Journal of Human Hypertension website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hansen, T., Thijs, L., Li, Y. et al. Ambulatory blood pressure monitoring for risk stratification in obese and non-obese subjects from 10 populations. J Hum Hypertens 28, 535–542 (2014). https://doi.org/10.1038/jhh.2013.145

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jhh.2013.145

Keywords

Search

Quick links