Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Relationship between inflammation and microalbuminuria in prehypertension

Abstract

Inflammation is a pathogenic factor for target-organ damage (TOD) in hypertension. This study examined the relationship between inflammatory parameters and urinary albumin excretion (UAE) in prehypertension. A total of 65 prehypertensive subjects (blood pressure (BP) 120–139/80–89 mm Hg) and 26 healthy volunteers with BP <120/80 mm Hg were included. High-sensitivity C-reactive protein (hs-CRP), and serum and urinary tumor necrosis factor-α (TNF-α) were measured as inflammatory markers. Prehypertensive individuals had higher levels of inflammatory parameters and UAE than healthy subjects. Analyses carried out in prehypertensive participants showed that BP was similar between individuals with normoalbuminuria or microalbuminuria (MAB) (UAE between 30 and 299 mg per day). However, serum hs-CRP and urinary TNF-α excretion were higher in prehypertensives with MAB. Multiple regression analysis showed that systolic blood pressure (r=0.29, P<0.01), hs-CRP (r=0.20, P<0.001), and urinary TNF-α (r=0.69, P<0.001) were independently correlated with UAE (adjusted R2=0.73, P<0.001). Finally, logistic regression analysis performed in the prehypertensive group with the absence or presence of MAB as the dependent variable demonstrated that hs-CRP (3.92 (1.45–10.58), P=0.007) and urinary TNF-α (1.69 (1.20–2.37), P=0.002) were independent risk factors for the presence of MAB. Inflammatory parameters are significantly and independently associated with UAE in prehypertensive subjects, suggesting that inflammation may be a pathogenic factor for the early vascular or TOD in these individuals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Mancia G, De Backer G, Dominiczak A, Cifkova R, Fagard R, Germano G et al. 2007 Guidelines for the management of arterial hypertension. The Task Force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). J Hypertens 2007; 25: 1105–1187.

    Article  CAS  Google Scholar 

  2. Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo Jr JL et al. and the National High Blood Pressure Education Program Coordinating Committee. Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation and Treatment of High Blood Pressure. Hypertension 2003; 42: 1206–1252.

    Article  CAS  Google Scholar 

  3. Chobanian AV . Prehypertension revisited. Hypertension 2006; 48: 812–814.

    Article  CAS  Google Scholar 

  4. Karpha M, Lip GV . The pathophysiology of target organ damage in hypertension. Minerva Cardioangiol 2006; 54: 417–429.

    CAS  PubMed  Google Scholar 

  5. Pedrinelli R, Dell’Omo G, Di Bello V, Pontremoli R, Mariani M . Microalbuminuria, an integrated marker of cardiovascular risk in essential hypertension. J Human Hypertens 2002; 16: 79–89.

    Article  CAS  Google Scholar 

  6. Pontremoli R, Leoncini G, Viazzi F, Parodi D, Vaccaro V, Falqui V et al. Role of microalbuminuria in the assessment of cardiovascular risk in essential hypertension. J Am Soc Nephrol 2005; 16 (Suppl 1): S39–S41.

    Article  Google Scholar 

  7. Lee JE, Kim Y-G, Choi Y-H, Huh W, Kim DJ, Oh HY . Serum uric acid is associated with microalbuminuria in prehypertension. Hypertension 2006; 47: 962–967.

    Article  CAS  Google Scholar 

  8. Kim BJ, Lee HJ, Sung KC, Kim BS, Kang JH, Lee MH et al. Comparison of microalbuminuria in 2 blood pressure categories of prehypertensive subjects. Circ J 2007; 71: 1283–1287.

    Article  CAS  Google Scholar 

  9. Sesso HD, Buring JE, Rifai N, Blake GJ, Gaziano JM, Ridker PM . C-reactive protein and the risk of developing hypertension. JAMA 2003; 290: 2945–2951.

    Article  CAS  Google Scholar 

  10. Bautista LE, Vera LM, Arenas IA, Gamarra G . Independent association between inflammatory markers (C-reactive protein, interleukin-6, and TNF-α) and essential hypertension. J Hum Hypertens 2005; 19: 149–154.

    Article  CAS  Google Scholar 

  11. Navarro-González JF, Mora C, Muros M, Jarque A, Herrera H, García J . Association of tumor necrosis factor-a with early target organ damage in newly diagnosed patients with essential hypertensión. J Hypertens 2008; 26: 2168–2175.

    Article  Google Scholar 

  12. Naya M, Tsukamoto T, Morita K, Katoh C, Furumoto T, Jujii S et al. Plasma interleukin-6 and tumor necrosis factor-α can predict coronary endothelial dysfunction in hypertensive patients. Hypertens Res 2007; 30: 541–548.

    Article  CAS  Google Scholar 

  13. Chrysohoou C, Pitsavos C, Panagiotakos DB, Skoumas J, Stefanadis C . Association between prehypertension status and inflammatory markers related to atherosclerotic disease. Am J Hypertens 2004; 17: 568–573.

    Article  CAS  Google Scholar 

  14. Sathiyapriya V, Selvaraj N, Nandeesha H, Bobby Z, Aparna A, Pavithran P . Association between protein bound sialic acid and high sensitivity C-reactive protein in prehypertension: a possible indication of underlying cardiovascular risk. Clin Exp Hypertens 2008; 30: 367–374.

    Article  CAS  Google Scholar 

  15. National Kidney Foundation. K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am J Kidney Dis 2002; 39 (Suppl 1): S1–S266.

    Google Scholar 

  16. Levey AS, Eckardt KU, Tsukamoto Y, Levin A, Coresh J, Rossert J et al. Definition and classification of chronic kidney disease: a position statement from Kidney Disease Improving Global Outcomes (KDIGO). Kidney Int 2005; 67: 2089–2100.

    Article  Google Scholar 

  17. Pearson TA, Mensah GA, Alexander RW, Anderson JL, Cannon III RO, Criqui M et al. Centers for Disease Control and Prevention; American Heart Association.Markers of inflammation and cardiovascular disease: application to clinic and public health practice: A statement for healthcare professionals from the Centers for Disease Control and Prevention and the American Heart Association. Circulation 2003; 107: 499–511.

    Article  Google Scholar 

  18. Pickup JC . Inflammation and activated innate immune system in the pathogenesis of type 2 diabetes. Diabetes Care 2004; 27: 813–823.

    Article  Google Scholar 

  19. Navarro-González JF, Mora-Fernández C . The role of inflammatory cytokines in diabetic nephropathy. J Am Soc Nephrol 2008; 19: 433–442.

    Article  Google Scholar 

  20. King DE, Egan BM, Mainous III AG, Geesey ME . Elevation of C-reactive protein in people with prehypertension. J Clin Hypertens (Greenwich) 2004; 6: 562–568.

    Article  CAS  Google Scholar 

  21. Lakoski SG, Cushman M, Palmas W, Blumenthal R, D’Agostino RB, Herrington DM . The relationship between blood pressure and C-reactive protein in the Multi-Ethnic Study of Atherosclerosis (MESA). J Am Coll Cardiol 2005; 46: 1869–1874.

    Article  CAS  Google Scholar 

  22. Lee JE, Kim YG, Choi YH, Huh W, Kim DJ, Oh HY . Serum uric acid is associated with microalbuminuria in prehypertension. Hypertension 2006; 47: 962–967.

    Article  CAS  Google Scholar 

  23. Ogunniyi MO, Croft JB, Greenlund KJ, Giles WH, Mensah GA . Racial/ethnic differences in microalbuminuria among adults with prehypertension and hypertension: National Health and Nutrition Examination Survey (NHANES), 1999–2006. Am J Hypertens 2010; 23: 859–864.

    Article  Google Scholar 

  24. Norton GR, Maseko M, Libhaber E, Libhaber C, Majane OHI, Dessein P et al. Is prehypertension an independent predictor of target organ changes in young-to-middle-aged persons of African descent? J Hypertens 2008; 26: 2279–2287.

    Article  CAS  Google Scholar 

  25. Kim BJ, Lee HJ, Sung KC, Kim BS, Kang JH, Lee MH et al. Comparison of microalbuminuria in 2 blood pressure categories of prehypertensive subjects. Circ J 2007; 71: 1283–1287.

    Article  CAS  Google Scholar 

  26. Palmieri V, Celentano A, Roman MJ, Simone G, Lewis MR, Best L et al. Fibrinogen and preclinical echocardiographic target organ damage: the Strong Heart study. Hypertension 2001; 38: 1068–1074.

    Article  CAS  Google Scholar 

  27. Jastrzebski M, Czarnecka D, Rajzer M, Kawecka-Jaszca K . Increased levels of inflammatory markers in hypertensives with target organ damage. Kardiol Pol 2006; 64: 802–809.

    PubMed  Google Scholar 

  28. Deckert T, Feldt-Rasmussen B, Borch-Johnsen K, Jensen T, Kofoed-Enevoldsen A . Albuminuria reflects widespread vascular damage. The Steno hypothesis. Diabetologia 1989; 32: 219–226.

    Article  CAS  Google Scholar 

  29. Ochodnicky P, Henning RH, Richard PE, van Dokkum RPE, de Zeeuw D . Microalbuminuria and endothelial dysfunction: emerging targets for primary prevention of end-organ damage. J Cardiovascular Pharmacol 2006; 47 (Suppl 2): S151–S162.

    Article  CAS  Google Scholar 

  30. Clausen P, Jensen JS, Jensen G, Borch-Johnsen K, Feldt-Rasmussen B . Elevated urinary albumin excretion is associated with impaired arterial dilatory capacity in clinically healthy subjects. Circulation 2001; 103: 1869–1874.

    Article  CAS  Google Scholar 

  31. Schlaich MP, Parnell MM, Ahlers BA, Finch S, Marshall T, Zhang WZ et al. Impaired L-arginine transport and endothelial function in hypertensive and genetically predisposed normotensive subjects. Circulation 2004; 110: 3680–3686.

    Article  CAS  Google Scholar 

  32. Erdogan D, Yildirim I, Ciftci O, Ozer I, Caliskan M, Gullu H et al. Effects of normal blood pressure, prehypertension, and hypertension on coronary microvascular function. Circulation 2007; 115: 593–599.

    Article  Google Scholar 

  33. Gianotti G, Doerries C, Mocharla PS, Mueller MF, Bahlmann FH, Horvath T et al. Impaired endothelial repair capacity of early endothelial progenitor cells in prehypertension. Relation to endothelial dysfunction. Hypertension 2010; 55: 1389–1397.

    Article  Google Scholar 

  34. Zhang H, Park Y, Wu J, Chen XP, Lee S, Yang J et al. Role of TNF-α in vascular dysfunction. Clin Sci 2009; 116: 219–230.

    Article  CAS  Google Scholar 

  35. Baud L, Ardaillou R . Tumor necrosis factor in renal injury. Miner Electrolyte Metab 1995; 21: 336–341.

    CAS  PubMed  Google Scholar 

  36. Navarro JF, Mora-Fernández C . The role of TNF-α in diabetic nephropathy: pathogenic and therapeutic implications. Cytokine Growth Factor Rev 2006; 17: 441–450.

    Article  CAS  Google Scholar 

  37. Torre-Amione G, Kapadia S, Lee J, Bies RD, Levobitz R, Mann DL . Expression and functional significance of tumor necrosis factor receptors in human myocardium. Circulation 1995; 92: 1487–1493.

    Article  CAS  Google Scholar 

  38. Navarro JF, Milena FJ, Mora C, León C, García J . Renal pro-inflammatory cytokine gene expression in diabetic nephropathy: effect of angiotensin-converting enzyme inhibition and pentoxifylline administration. Am J Nephrol 2006; 26: 562–570.

    Article  CAS  Google Scholar 

  39. Torre-Amione G, Kapadia S, Lee J, Durand JB, Bies RD, Young JB et al. Tumor necrosis factor-α and tumor necrosis factor receptors in the failing human heart. Circulation 1996; 93: 704–711.

    Article  CAS  Google Scholar 

  40. Pauletto P, Rattazzi M . Inflammation and hypertension: the search for a link. Nephrol Dial Transplant 2006; 21: 850–853.

    Article  Google Scholar 

  41. Luft FC, Mervaala E, Müller DN, Gross V, Schmidt F, Park JK et al. Hypertension-induced end-organ damage. A new transgenic approach to an old problem. Hypertension 1999; 33: 212–218.

    Article  CAS  Google Scholar 

  42. Sun M, Chen M, Dawood F, Zurawska U, Lee JY, Parker T, Kassiri Z et al. Tumor necrosis factor-α mediates cardiac remodeling and ventricular dysfunction after pressure overload state. Circulation 2007; 115: 1398–1407.

    Article  CAS  Google Scholar 

  43. El-Menyar AA . Cytokines and myocardial dysfunction: state of the art. J Card Fail 2008; 14: 61–74.

    Article  CAS  Google Scholar 

  44. Julius S . Borderline hypertension. Clin Exp Hypertens 1999; 21: 741–747.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was partially supported by Fundación Canaria de Investigación y Salud (FUNCIS), Sociedad Española de Nefrología (SEN) y Asociación Científica para la Investigación Nefrológica (ACINEF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J F Navarro-González.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Navarro-González, J., Mora, C., Muros, M. et al. Relationship between inflammation and microalbuminuria in prehypertension. J Hum Hypertens 27, 119–125 (2013). https://doi.org/10.1038/jhh.2011.118

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jhh.2011.118

Keywords

This article is cited by

Search

Quick links