Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Is UV an etiological factor of acral melanoma?

Abstract

Ultraviolet (UV) radiation is a major environmental risk factor for melanoma, particularly among Caucasians. However, studies have generated conflicting results on the role of UV exposure in the development of acral melanoma, the most prevalent subtype of melanoma in non-Caucasians. In this review, we analyzed studies that have examined the relationship between acral melanoma and UV and show that acral melanoma has specific epidemiological and genetic characteristics, with a lower frequency or absence of UV-induced features. Therefore, we postulate that UV is probably not involved in the etiology of acral melanoma. However, further epidemiological and laboratory studies are required to fully address this controversial issue, which may lead to a better understanding of the pathogenesis and prevention of acral melanoma.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. DeSantis CE, Lin CC, Mariotto AB, Siegel RL, Stein KD, Kramer JL et al. Cancer treatment and survivorship statistics, 2014. CA Cancer J Clin 2014; 64: 252–271.

    Article  Google Scholar 

  2. Garbe C, Leiter U . Melanoma epidemiology and trends. Clin Dermatol 2009; 27: 3–9.

    Article  Google Scholar 

  3. Bradford PT . Skin cancer in skin of color. Dermatol Nurs 2009; 21: 170–177, 206, 178.

    PubMed  PubMed Central  Google Scholar 

  4. Stubblefield J, Kelly B . Melanoma in non-caucasian populations. Surg Clin North Am 2014; 94: 1115–1126.

    Article  Google Scholar 

  5. Lee HY, Chay WY, Tang MB, Chio MT, Tan SH . Melanoma: differences between Asian and Caucasian patients. Ann Acad Med Singapore 2012; 41: 17–20.

    CAS  PubMed  Google Scholar 

  6. Chang JW . Acral melanoma: a unique disease in Asia. JAMA Dermatol 2013; 149: 1272–1273.

    Article  Google Scholar 

  7. Durbec F, Martin L, Derancourt C, Grange F . Melanoma of the hand and foot: epidemiological, prognostic and genetic features. A systematic review. Br J Dermatol 2012; 166: 727–739.

    Article  CAS  Google Scholar 

  8. Haluza D, Simic S, Moshammer H . Temporal and spatial melanoma trends in Austria: an ecological study. Int J Environ Res Public Health 2014; 11: 734–748.

    Article  Google Scholar 

  9. Aceituno-Madera P, Buendia-Eisman A, Olmo FJ, Jimenez-Moleon JJ, Serrano-Ortega S . Melanoma, altitude, and UV-B radiation. Actas Dermosifiliogr 2011; 102: 199–205.

    Article  CAS  Google Scholar 

  10. Korgavkar K, Lee KC, Weinstock MA . Higher melanoma incidence in coastal versus inland counties in California. Melanoma Res 2014; 24: 280–285.

    Article  Google Scholar 

  11. Elwood JM, Jopson J . Melanoma and sun exposure: an overview of published studies. Int J Cancer 1997; 73: 198–203.

    Article  CAS  Google Scholar 

  12. Moan J, Grigalavicius M, Baturaite Z, Dahlback A, Juzeniene A . The relationship between UV exposure and incidence of skin cancer. Photodermatol Photoimmunol Photomed 2015; 31: 26–35.

    Article  Google Scholar 

  13. Vuong K, McGeechan K, Armstrong BK, Cust AE . Occupational sun exposure and risk of melanoma according to anatomical site. Int J Cancer 2014; 134: 2735–2741.

    Article  CAS  Google Scholar 

  14. Kutting B, Drexler H . UV-induced skin cancer at workplace and evidence-based prevention. Int Arch Occup Environ Health 2010; 83: 843–854.

    Article  Google Scholar 

  15. Pasquali E, Garcia-Borron JC, Fargnoli MC, Gandini S, Maisonneuve P, Bagnardi V et al. MC1R variants increased the risk of sporadic cutaneous melanoma in darker-pigmented Caucasians: a pooled-analysis from the M-SKIP project. Int J Cancer 2015; 136: 618–631.

    CAS  PubMed  Google Scholar 

  16. Morgan AM, Lo J, Fisher DE . How does pheomelanin synthesis contribute to melanomagenesis?: two distinct mechanisms could explain the carcinogenicity of pheomelanin synthesis. Bioessays 2013; 35: 672–676.

    Article  CAS  Google Scholar 

  17. Dore JF, Chignol MC . Tanning salons and skin cancer. Photochem Photobiol Sci 2012; 11: 30–37.

    Article  CAS  Google Scholar 

  18. Mancebo SE, Hu JY, Wang SQ . Sunscreens: a review of health benefits, regulations, and controversies. Dermatol Clin 2014; 32: 427–438.

    Article  CAS  Google Scholar 

  19. Markovitsi D, Gustavsson T, Banyasz A . Absorption of UV radiation by DNA: spatial and temporal features. Mutat Res 2010; 704: 21–28.

    Article  CAS  Google Scholar 

  20. Mouret S, Forestier A, Douki T . The specificity of UVA-induced DNA damage in human melanocytes. Photochem Photobiol Sci 2012; 11: 155–162.

    Article  CAS  Google Scholar 

  21. Kvam E, Tyrrell RM . Induction of oxidative DNA base damage in human skin cells by UV and near visible radiation. Carcinogenesis 1997; 18: 2379–2384.

    Article  CAS  Google Scholar 

  22. Bello DM, Ariyan CE, Carvajal RD . Melanoma mutagenesis and aberrant cell signaling. Cancer Control 2013; 20: 261–281.

    Article  Google Scholar 

  23. Webb S . Xeroderma pigmentosum. BMJ 2008; 336: 444–446.

    Article  Google Scholar 

  24. Phan A, Touzet S, Dalle S, Ronger-Savle S, Balme B, Thomas L . Acral lentiginous melanoma: histopathological prognostic features of 121 cases. Br J Dermatol 2007; 157: 311–318.

    Article  CAS  Google Scholar 

  25. Bello DM, Chou JF, Panageas KS, Brady MS, Coit DG, Carvajal RD et al. Prognosis of acral melanoma: a series of 281 patients. Ann Surg Oncol 2013; 20: 3618–3625.

    Article  Google Scholar 

  26. Chang JW, Yeh KY, Wang CH, Yang TS, Chiang HF, Wei FC et al. Malignant melanoma in Taiwan: a prognostic study of 181 cases. Melanoma Res 2004; 14: 537–541.

    Article  Google Scholar 

  27. Kittler H . The order of things and the classification of melanoma. Dermatol Pract Concept 2012; 2: 201a–204a.

    Google Scholar 

  28. Ghariani N, Boussofara L, Kenani N, Ghannouchi N, Mebazaa A, Denguezli M et al. Post traumatic amelanotic subungual melanoma. Dermatol Online J 2008; 14: 13.

    PubMed  Google Scholar 

  29. Juten PG, Hinnen JW . A 71-year-old woman with a pigmented nail bed, which persisted after trauma. Acta Chir Belg 2010; 110: 475–478.

    Article  CAS  Google Scholar 

  30. Lesage C, Journet-Tollhupp J, Bernard P, Grange F . Post-traumatic acral melanoma: an underestimated reality? Ann Dermatol Venereol 2012; 139: 727–731.

    Article  CAS  Google Scholar 

  31. Zhang N, Wang L, Zhu GN, Sun DJ, He H, Luan Q et al. The association between trauma and melanoma in the Chinese population: a retrospective study. J Eur Acad Dermatol Venereol 2013.

  32. Ghadially FN . Trauma and melanoma production. Nature 1966; 211: 1199.

    Article  CAS  Google Scholar 

  33. Banfield CC, Redburn JC, Dawber RP . The incidence and prognosis of nail apparatus melanoma. A retrospective study of 105 patients in four English regions. Br J Dermatol 1998; 139: 276–279.

    Article  CAS  Google Scholar 

  34. Ohnishi S, Ma N, Thanan R, Pinlaor S, Hammam O, Murata M et al. DNA damage in inflammation-related carcinogenesis and cancer stem cells. Oxid Med Cell Longev 2013; 2013: 387014.

    Article  Google Scholar 

  35. Takata M, Murata H, Saida T . Molecular pathogenesis of malignant melanoma: a different perspective from the studies of melanocytic nevus and acral melanoma. Pigment Cell Melanoma Res 2010; 23: 64–71.

    Article  CAS  Google Scholar 

  36. Phan A, Touzet S, Dalle S, Ronger-Savle S, Balme B, Thomas L . Acral lentiginous melanoma: a clinicoprognostic study of 126 cases. Br J Dermatol 2006; 155: 561–569.

    Article  CAS  Google Scholar 

  37. Nagore E, Pereda C, Botella-Estrada R, Requena C, Guillen C . Acral lentiginous melanoma presents distinct clinical profile with high cancer susceptibility. Cancer Causes Control 2009; 20: 115–119.

    Article  Google Scholar 

  38. Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LJ, Kinzler KW . Cancer genome landscapes. Science 2013; 339: 1546–1558.

    Article  CAS  Google Scholar 

  39. Cancer Genome Atlas Network. Genomic classification of cutaneous melanoma. Cell 2015; 161: 1681–1696.

    Article  Google Scholar 

  40. Furney SJ, Turajlic S, Stamp G, Thomas JM, Hayes A, Strauss D et al. The mutational burden of acral melanoma revealed by whole-genome sequencing and comparative analysis. Pigment Cell Melanoma Res 2014; 27: 835–838.

    Article  CAS  Google Scholar 

  41. Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S et al. Mutations of the BRAF gene in human cancer. Nature 2002; 417: 949–954.

    Article  CAS  Google Scholar 

  42. Solus JF, Kraft S . Ras, Raf, and MAP kinase in melanoma. Adv Anat Pathol 2013; 20: 217–226.

    Article  CAS  Google Scholar 

  43. Thomas NE, Edmiston SN, Alexander A, Millikan RC, Groben PA, Hao H et al. Number of nevi and early-life ambient UV exposure are associated with BRAF-mutant melanoma. Cancer Epidemiol Biomarkers Prev 2007; 16: 991–997.

    Article  CAS  Google Scholar 

  44. Karram S, Novy M, Saroufim M, Loya A, Taraif S, Houreih MA et al. Predictors of BRAF mutation in melanocytic nevi: analysis across regions with different UV radiation exposure. Am J Dermatopathol 2013; 35: 412–418.

    Article  Google Scholar 

  45. Beadling C, Jacobson-Dunlop E, Hodi FS, Le C, Warrick A, Patterson J et al. KIT gene mutations and copy number in melanoma subtypes. Clin Cancer Res 2008; 14: 6821–6828.

    Article  CAS  Google Scholar 

  46. Krauthammer M, Kong Y, Ha BH, Evans P, Bacchiocchi A, McCusker JP et al. Exome sequencing identifies recurrent somatic RAC1 mutations in melanoma. Nat Genet 2012; 44: 1006–1014.

    Article  CAS  Google Scholar 

  47. Hodis E, Watson IR, Kryukov GV, Arold ST, Imielinski M, Theurillat JP et al. A landscape of driver mutations in melanoma. Cell 2012; 150: 251–263.

    Article  CAS  Google Scholar 

  48. Huang FW, Hodis E, Xu MJ, Kryukov GV, Chin L, Garraway LA . Highly recurrent TERT promoter mutations in human melanoma. Science 2013; 339: 957–959.

    Article  CAS  Google Scholar 

  49. Liau JY, Tsai JH, Jeng YM, Chu CY, Kuo KT, Liang CW . TERT promoter mutation is uncommon in acral lentiginous melanoma. J Cutan Pathol 2014; 41: 504–508.

    Article  Google Scholar 

  50. Miettinen M, Lasota J . KIT (CD117): a review on expression in normal and neoplastic tissues, and mutations and their clinicopathologic correlation. Appl Immunohistochem Mol Morphol 2005; 13: 205–220.

    Article  CAS  Google Scholar 

  51. Carvajal RD, Antonescu CR, Wolchok JD, Chapman PB, Roman RA, Teitcher J et al. KIT as a therapeutic target in metastatic melanoma. JAMA 2011; 305: 2327–2334.

    Article  CAS  Google Scholar 

  52. Handolias D, Salemi R, Murray W, Tan A, Liu W, Viros A et al. Mutations in KIT occur at low frequency in melanomas arising from anatomical sites associated with chronic and intermittent sun exposure. Pigment Cell Melanoma Res 2010; 23: 210–215.

    Article  CAS  Google Scholar 

  53. Curtin JA, Busam K, Pinkel D, Bastian BC . Somatic activation of KIT in distinct subtypes of melanoma. J Clin Oncol 2006; 24: 4340–4346.

    Article  CAS  Google Scholar 

  54. Abu-Abed S, Pennell N, Petrella T, Wright F, Seth A, Hanna W . KIT gene mutations and patterns of protein expression in mucosal and acral melanoma. J Cutan Med Surg 2012; 16: 135–142.

    Article  CAS  Google Scholar 

  55. Yun J, Lee J, Jang J, Lee EJ, Jang KT, Kim JH et al. KIT amplification and gene mutations in acral/mucosal melanoma in Korea. APMIS 2011; 119: 330–335.

    Article  CAS  Google Scholar 

  56. Curtin JA, Fridlyand J, Kageshita T, Patel HN, Busam KJ, Kutzner H et al. Distinct sets of genetic alterations in melanoma. N Engl J Med 2005; 353: 2135–2147.

    Article  CAS  Google Scholar 

  57. Rolon PA, Kramarova E, Rolon HI, Khlat M, Parkin DM . Plantar melanoma: a case-control study in Paraguay. Cancer Causes Control 1997; 8: 850–856.

    Article  CAS  Google Scholar 

  58. Turajlic S, Furney SJ, Lambros MB, Mitsopoulos C, Kozarewa I, Geyer FC et al. Whole genome sequencing of matched primary and metastatic acral melanomas. Genome Res 2012; 22: 196–207.

    Article  CAS  Google Scholar 

  59. Furney SJ, Turajlic S, Fenwick K, Lambros MB, MacKay A, Ricken G et al. Genomic characterisation of acral melanoma cell lines. Pigment Cell Melanoma Res 2012; 25: 488–492.

    Article  CAS  Google Scholar 

  60. Lee JA, Merrill JM . Sunlight and melanoma. Lancet 1971; 2: 550–551.

    Article  CAS  Google Scholar 

  61. Moodycliffe AM, Nghiem D, Clydesdale G, Ullrich SE . Immune suppression and skin cancer development: regulation by NKT cells. Nat Immunol 2000; 1: 521–525.

    Article  CAS  Google Scholar 

  62. Fisher MS, Kripke ML . Systemic alteration induced in mice by ultraviolet light irradiation and its relationship to ultraviolet carcinogenesis. 1977. Bull World Health Organ 2002; 80: 908–912.

    PubMed  PubMed Central  Google Scholar 

  63. Rana S, Byrne SN, MacDonald LJ, Chan CY, Halliday GM . Ultraviolet B suppresses immunity by inhibiting effector and memory T cells. Am J Pathol 2008; 172: 993–1004.

    Article  Google Scholar 

  64. McGlade JP, Strickland DH, Lambert MJ, Gorman S, Thomas JA, Judge MA et al. UV inhibits allergic airways disease in mice by reducing effector CD4 T cells. Clin Exp Allergy 2010; 40: 772–785.

    CAS  PubMed  Google Scholar 

  65. Toda M, Wang L, Ogura S, Torii M, Kurachi M, Kakimi K et al. UV irradiation of immunized mice induces type 1 regulatory T cells that suppress tumor antigen specific cytotoxic T lymphocyte responses. Int J Cancer 2011; 129: 1126–1136.

    Article  CAS  Google Scholar 

  66. Tuohimaa P, Tenkanen L, Ahonen M, Lumme S, Jellum E, Hallmans G et al. Both high and low levels of blood vitamin D are associated with a higher prostate cancer risk: a longitudinal, nested case-control study in the Nordic countries. Int J Cancer 2004; 108: 104–108.

    Article  CAS  Google Scholar 

  67. Stolzenberg-Solomon RZ, Vieth R, Azad A, Pietinen P, Taylor PR, Virtamo J et al. A prospective nested case-control study of vitamin D status and pancreatic cancer risk in male smokers. Cancer Res 2006; 66: 10213–10219.

    Article  CAS  Google Scholar 

  68. Newton-Bishop JA, Beswick S, Randerson-Moor J, Chang YM, Affleck P, Elliott F et al. Serum 25-hydroxyvitamin D3 levels are associated with breslow thickness at presentation and survival from melanoma. J Clin Oncol 2009; 27: 5439–5444.

    Article  CAS  Google Scholar 

  69. van der Pols JC, Russell A, Bauer U, Neale RE, Kimlin MG, Green AC . Vitamin D status and skin cancer risk independent of time outdoors: 11-year prospective study in an Australian community. J Invest Dermatol 2013; 133: 637–641.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The National Natural Science Foundation of China supported this study (Grant No. 81172749).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunying Li.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Zhang, W., Gao, T. et al. Is UV an etiological factor of acral melanoma?. J Expo Sci Environ Epidemiol 26, 539–545 (2016). https://doi.org/10.1038/jes.2015.60

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jes.2015.60

Keywords

This article is cited by

Search

Quick links