Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Exploring prenatal outdoor air pollution, birth outcomes and neonatal health care utilization in a nationally representative sample

Abstract

The impact of air pollution on fetal growth remains controversial, in part, because studies have been limited to sub-regions of the United States with limited variability. No study has examined air pollution impacts on neonatal health care utilization. We performed descriptive, univariate and multivariable analyses on administrative hospital record data from 222,359 births in the 2000, 2003 and 2006 Kids Inpatient Database linked to air pollution data drawn from the US Environmental Protection Agency’s Aerometric Information Retrieval System. In this study, air pollution exposure during the birth month was estimated based on birth hospital address. Although air pollutants were not individually associated with mean birth weight, a three-pollutant model controlling for hospital characteristics, demographics, and birth month identified 9.3% and 7.2% increases in odds of low birth weight and very low birth weight for each μg/m3 increase in PM2.5 (both P<0.0001). PM2.5 and NO2 were associated with −3.0% odds/p.p.m. and +2.5% odds/p.p.b. of preterm birth, respectively (both P<0.0001). A four-pollutant multivariable model indicated a 0.05 days/p.p.m. NO2 decrease in length of the birth hospitalization (P=0.0061) and a 0.13 days increase/p.p.m. CO (P=0.0416). A $1166 increase in per child costs was estimated for the birth hospitalization per p.p.m. CO (P=0.0002) and $964 per unit increase in O3 (P=0.0448). A reduction from the 75th to the 25th percentile in the highest CO quartile for births predicts annual savings of $134.7 million in direct health care costs. In a national, predominantly urban, sample, air pollutant exposures during the month of birth are associated with increased low birth weight and neonatal health care utilization. Further study of this database, with enhanced control for confounding, improved exposure assessment, examination of exposures across multiple time windows in pregnancy, and in the entire national sample, is supported by these initial investigations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

Abbreviations

AIRS:

Aerometric Information Retrieval System

BRFSS:

behavioral risk factor surveillance system

CO:

carbon monoxide

ICD-9-CM:

International Classification of Diseases and Related Health Problems version 9

KID:

Kids Inpatient Database

NIS:

Nationwide Inpatient Sample

NO2:

nitrogen dioxide

LOS:

length of stay

PM2.5:

particulate matter of diameter ≤2.5 μm

PM10:

particulate matter <10 μm in diameter

SO2:

sulfur dioxide

USEPA:

US Environmental Protection Agency

References

  1. McCormick MC . The contribution of low birth weight to infant mortality and childhood morbidity. N Engl J Med 1985; 312: 82–90.

    Article  CAS  Google Scholar 

  2. Frankel S, Elwood P, Sweetnam P, Yarnell J, Smith GD . Birthweight, body-mass index in middle age, and incident coronary heart disease. Lancet 1996; 348: 1478–1480.

    Article  CAS  Google Scholar 

  3. Vos L, Oren A, Bots M, Gorissen W, Grobbee D, Uiterwaal C . Birth Size and Coronary Heart Disease Risk Score in young adulthood. The Atherosclerosis Risk in Young Adults (ARYA) Study. Eur J Epidemiol 2006; 21: 33–38.

    Article  CAS  Google Scholar 

  4. Hack M, Flannery DJ, Schluchter M, Cartar L, Borawski E, Klein N . Outcomes in young adulthood for very-low-birth-weight infants. N Engl J Med 2002; 346: 149–157.

    Article  Google Scholar 

  5. Hack M, Klein NK, Taylor HG . Long-term developmental outcomes of low birth weight infants. Future Child 1995; 5: 176–196.

    Article  CAS  Google Scholar 

  6. Martin JA, Hamilton BE, Ventura SJ, Osterman MJ, Kirmeyer S, Mathews TJ et al. Births: final data for 2009. Natl Vital Stat Rep 2011; 60: 1–70.

    PubMed  Google Scholar 

  7. Ritz B, Yu F, Chapa G, Fruin S . Effect of air pollution on preterm birth among children born in Southern California between 1989 and 1993. Epidemiology 2000; 11: 502–511.

    Article  CAS  Google Scholar 

  8. Sagiv SK, Mendola P, Loomis D, Herring AH, Neas LM, Savitz DA et al. A time series analysis of air pollution and preterm birth in Pennsylvania, 1997–2001. Environ Health Perspect 2005; 113: 602–606.

    Article  CAS  Google Scholar 

  9. Xu X, Ding H, Wang X . Acute effects of total suspended particles and sulfur dioxides on preterm delivery: a community-based cohort study. Arch Environ Health 1995; 50: 407–415.

    Article  CAS  Google Scholar 

  10. Huynh M, Woodruff TJ, Parker JD, Schoendorf KC . Relationships between air pollution and preterm birth in California. Paediatr Perinat Epidemiol 2006; 20: 454–461.

    Article  Google Scholar 

  11. Wu J, Ren C, Delfino RJ, Chung J, Wilhelm M, Ritz B . Association between local traffic-generated air pollution and preterm delivery in the south coast air basin of California. Environ Health Perspect 2009; 117: 1773–1779.

    Article  CAS  Google Scholar 

  12. de Bernabé V . Risk factors for low birth weight: a review. Eur J Obstet Gynecol Reprod Biol 2004; 116: 3–15.

    Article  Google Scholar 

  13. Parker JD, Rich DQ, Glinianaia SV, Leem JH, Wartenberg D, Bell ML et al. The International Collaboration on air pollution and pregnancy outcomes: initial results. Environ Health Perspect 2011; 119: 1023–1028.

    Article  Google Scholar 

  14. Woodruff TJ, Parker JD, Darrow LA, Slama R, Bell ML, Choi H et al. Methodological issues in studies of air pollution and reproductive health. Environ Res 2009; 109: 311–320.

    Article  CAS  Google Scholar 

  15. Slama R, Darrow L, Parker J, Woodruff TJ, Strickland M, Nieuwenhuijsen M et al. Meeting Report: atmospheric pollution and human reproduction. Environ Health Perspect 2008; 116: 791–798.

    Article  Google Scholar 

  16. Sram RJ, Binkova B, Dejmek J, Bobak M . Ambient air pollution and pregnancy outcomes: a review of the literature. Environ Health Perspect 2005; 113: 375–382.

    Article  CAS  Google Scholar 

  17. Maisonet M, Correa A, Misra D, Jaakkola JJK . A review of the literature on the effects of ambient air pollution on fetal growth. Environ Res 2004; 95: 106–115.

    Article  CAS  Google Scholar 

  18. Glinianaia SV, Rankin J, Bell R, Pless-Mulloli T, Howel D . Particulate air pollution and fetal health: a systematic review of the epidemiologic evidence. Epidemiology 2004; 15: 36–45.

    Article  Google Scholar 

  19. Bell ML, Ebisu K, Peng RD, Walker J, Samet JM, Zeger SL et al. Seasonal and regional short-term effects of fine particles on hospital admissions in 202 US counties, 1999-2005. Am J Epidemiol 2008; 168: 1301–1310.

    Article  Google Scholar 

  20. Dominici F, Peng RD, Bell ML, Pham L, McDermott A, Zeger SL et al. Fine particulate air pollution and hospital admission for cardiovascular and respiratory diseases. JAMA 2006; 295: 1127–1134.

    Article  CAS  Google Scholar 

  21. Woodruff TJ, Grillo J, Schoendorf KC . The relationship between selected causes of postneonatal infant mortality and particulate air pollution in the United States. Environ Health Perspect 1997; 105: 608.

    Article  CAS  Google Scholar 

  22. Woodruff TJ, Parker JD, Kyle AD, Schoendorf KC . Disparities in exposure to air pollution during pregnancy. Environ Health Perspect 2003; 111: 942.

    Article  Google Scholar 

  23. Steiner C, Elixhauser A, Schnaier J . The healthcare cost and utilization project: an overview. Eff Clin Pract 2002; 5: 143.

    PubMed  Google Scholar 

  24. Beeby PJ . How well do diagnosis-related groups perform in the case of extremely low birthweight neonates? J Paediatr Child Health 2003; 39: 602–605.

    Article  CAS  Google Scholar 

  25. Krawczyk-Wyrwicka I, Piotrowski A, Rydlewska-Liszkowska I, Hanke W . Calculating costs of premature infants' intensive care in the United States of America, Canada and Australia. Przegla § d epidemiologiczny 2005; 59: 781.

    Google Scholar 

  26. Ford J, Roberts C, Algert C, Bowen J, Bajuk B, Henderson-Smart D . Using hospital discharge data for determining neonatal morbidity and mortality: a validation study. BMC Health Serv Res 2007; 7: 188.

    Article  Google Scholar 

  27. Gold MR, Siegel JE, Russel LB, Weinstein MC . Cost-Effectiveness in Health and Medicine. Oxford University Press: New York, 1996.

    Google Scholar 

  28. Agency for Healthcare Quality and Research. Available at http://www.hcup-us.ahrq.gov/db/state/costtocharge.jsp#user (Accessed March 1, 2008)2006.

  29. Roy A, Sheffield P, Wong K, Trasande L . Incremental costs and charges for childhood asthma hospitalizations associated with outdoor air pollutants. Med Care 2011; 49: 810–817.

    Article  Google Scholar 

  30. Sheffield P, Roy A, Wong K, Trasande L . Fine particulate matter pollution linked to respiratory illness in infants and increased hospital costs. Health Aff 2011; 30: 871–878.

    Article  Google Scholar 

  31. Bonferroni CE . “Il calcolo delle assicurazioni su gruppi di teste”. In: Carboni SO, ed. Studi in Onore del Professore Salvatore Ortu Carboni. Rome. Italy. 1935, 13–60.

    Google Scholar 

  32. Duan N . Smearing estimate: a nonparametric retransformation method. J Am Stat Assoc 1983; 78: 605–610.

    Article  Google Scholar 

  33. Maternal Child Health Bureau. Child Health USA 2008-2009. Available at http://mchb.hrsa.gov/chusa08/pdfs/c08cd.pdf (Accessed 19 June 2012) 2009.

  34. Liu S, Krewski D, Shi Y, Chen Y, Burnett RT . Association between gaseous ambient air pollutants and adverse pregnancy outcomes in Vancouver, Canada. Environ Health Perspect 2003; 111: 1773.

    Article  CAS  Google Scholar 

  35. Bobak M . Outdoor air pollution, low birth weight, and prematurity. Environ Health Perspect 2000; 108: 173.

    Article  CAS  Google Scholar 

  36. Maisonet M, Bush TJ, Correa A, Jaakkola JJ . Relation between ambient air pollution and low birth weight in the Northeastern United States. Environ Health Perspect 2001; 109 (Suppl 3): 351.

    Article  CAS  Google Scholar 

  37. Salam MT, Millstein J, Li YF, Lurmann FW, Margolis HG, Gilliland FD . Birth outcomes and prenatal exposure to ozone, carbon monoxide, and particulate matter: results from the Children’s Health Study. Environ Health Perspect 2005; 113: 1638.

    Article  Google Scholar 

  38. Bell ML, Ebisu K, Belanger K . Ambient air pollution and low birth weight in Connecticut and Massachusetts. Environ Health Perspect 2007; 115: 1118.

    Article  CAS  Google Scholar 

  39. Liu S, Krewski D, Shi Y, Chen Y, Burnett RT . Association between maternal exposure to ambient air pollutants during pregnancy and fetal growth restriction. J Expo Sci Environ Epidemiol 2006; 17: 426–432.

    Article  Google Scholar 

  40. U.S. Environmental Protection Agency. Available at http://www.epa.gov/ttnamti1/files/ambient/pm25/spec/spec997.pdf1997.

  41. Thurston GD, Spengler JD . A quantitative assessment of source contribution to inhalable particulate matter in metropolitan Boston, MA. Atmos Environ 1985; 19: 9–25.

    Article  CAS  Google Scholar 

  42. Thurston GD, Ito K, Mar T, Christensen WF, Eatough DJ, Henry RC et al. Workgroup report: workshop on source apportionment of particulate matter health effects--intercomparison of results and implications. Environ Health Perspect 2005; 113: 1768–1774.

    Article  Google Scholar 

  43. Fuller WA . Measurement error models. Wiley: New York, 1987.

    Book  Google Scholar 

  44. Nelson DE, Holtzman D, Bolen J, Stanwyck CA, Mack KA . Reliability and validity of measures from the Behavioral Risk Factor Surveillance System (BRFSS). Sozial- und Praventivmedizin 2001; 46 (Suppl 1): S3–42.

    PubMed  Google Scholar 

  45. Rubin DB . Multiple Imputation for Nonresponse in Surveys. John Wiley & Sons, Inc.: New York, 1987.

    Book  Google Scholar 

  46. Wright RJ, Cohen S, Carey V, Weiss ST, Gold DR . Parental stress as a predictor of wheezing in infancy: a Prospective Birth-Cohort Study. Am J Respir Crit Care Med 2002; 165: 358–365.

    Article  Google Scholar 

  47. Wright RJ, Cohen RT, Cohen S . The impact of stress on the development and expression of atopy. Curr Opin Allergy Clin Immunol 2005; 5: 23–29.

    Article  Google Scholar 

  48. Wright RJ . Stress and atopic disorders. J Allergy Clin Immunol 2005; 116: 1301–1306.

    Article  Google Scholar 

  49. Zhu M, Fitzgerald EF, Gelberg KH, Lin S, Druschel CM . Maternal low-level lead exposure and fetal growth. Environ Health Perspect 2010; 118: 1471–1475.

    Article  CAS  Google Scholar 

  50. Fei C, McLaughlin JK, Tarone RE, Olsen J . Perfluorinated chemicals and fetal growth: a study within the Danish National Birth Cohort. Environ Health Perspect 2007; 115: 1677–1682.

    Article  CAS  Google Scholar 

  51. Sathyanarayana S, Focareta J, Dailey T, Buchanan S . Environmental exposures: how to counsel preconception and prenatal patients in the clinical setting. Am J Obstet Gynecol 2012; 207: 463–470.

    Article  Google Scholar 

  52. Bernard SM, Samet JM, Grambsch A, Ebi KL, Romieu I . The potential impacts of climate variability and change on air pollution-related health effects in the United States. Environ Health Perspect 2001; 109 (Suppl 2): 199–209.

    Article  CAS  Google Scholar 

  53. USEPA. National Ambient Air Quality Standards (NAAQS). 2009. http://www.epa.gov/air/criteria.html Accessed 18 September 2009.

  54. Jerrett M, Burnett RT, Ma R, Pope CA, Krewski D, Newbold KB et al. Spatial analysis of air pollution and mortality in Los Angeles. Epidemiology 2005; 16: 727–736.

    Article  Google Scholar 

  55. Ross Z, Jerrett M, Ito K, Tempalski B, Thurston GD . A land use regression for predicting fine particulate matter concentrations in the New York City region. Atmos Environ 2007; 41: 2255–2269.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo Trasande.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trasande, L., Wong, K., Roy, A. et al. Exploring prenatal outdoor air pollution, birth outcomes and neonatal health care utilization in a nationally representative sample. J Expo Sci Environ Epidemiol 23, 315–321 (2013). https://doi.org/10.1038/jes.2012.124

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jes.2012.124

Keywords

This article is cited by

Search

Quick links