Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Arsenic urinary concentrations in children living in a naturally arsenic contaminated area

Abstract

A cross sectional study using environmental and biological samples was undertaken to assess the association between arsenic (As) soil concentrations and urinary As levels of children living in an area where the soil is naturally As rich, during summer and winter. Twenty-nine children aged between 2 and 7 years from 21 dwellings in the summer study, and 23 of the 29 previous children from 17 dwellings in the winter study, were recruited. Housing characteristics, living conditions and individual characteristics were collected by questionnaire, and urine samples were collected for iAs+MMA+DMA measurement. Soil total As content and bioaccessibility were measured. Urinary As concentrations revealed that the children were not overexposed. Low bioaccessibility combined with moderately high levels in soil could explain this result. The concentration of arsenic in soil and soil-related factors appeared to contribute to the children's impregnation in summer but not in winter, which could be related to the children's behavior. This study highlights the need for additional studies of children to better understand their behavior, and obtain reference values in this particular population.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. U.S. Agency for Toxic Substances and Disease Registry (US ATSDR). Toxicological Profile for Arsenic. U.S. Agency for Toxic Substances and Disease Registry (US ATSDR), Atlanta, GA, 2007. Available at http://www.atsdr.cdc.gov/toxprofiles/tp2.pdf.

  2. Wang S.L., Chiou J.M., Chen C.J., Tseng C.H., Chou W.L., Wang C.C., Wu T.N., and Chang L.W. Prevalence of non-insulin-dependent diabetes mellitus and related vascular diseases in southwestern arseniasis-endemic and nonendemic areas in Taiwan. Environ Health Perspect 2003: 111: 155–159.

    Article  Google Scholar 

  3. Wang C.H., Hsiao C.K., Chen C.L., Hsu L.I., Chiou H.Y., Chen S.Y., Hsueh Y.M., Wu M.M., and Chen C.J. A review of the epidemiologic literature on the role of environmental arsenic exposure and cardiovascular diseases. Toxicol Appl Pharmacol 2007: 222: 315–326.

    Article  Google Scholar 

  4. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Some Drinking-Water Disinfectants and Contaminants, Including Arsenic: IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. IARC Press, Lyon, France, 2004: Vol. 84.

  5. Yoshida T., Yamauchi H., and Fan S.G. Chronic health effects in people exposed to arsenic via the drinking water: dose-response relationships in review. Toxicol Appl Pharmacol 2004: 198: 243–252.

    Article  CAS  Google Scholar 

  6. Smedley P.L., and Kinniburgh D.G. A review of the source behaviour and distribution of arsenic in natural waters. Appl Geochem 2002: 17: 517–568.

    Article  CAS  Google Scholar 

  7. Bhattacharya P., Welch A.H., Stollenwerk K.G., McLaughlin M.J., Bundschuh J., and Panaullah G. Arsenic in the environment: biology and chemistry. Sci Total Environ 2007: 379: 109–120.

    Article  CAS  Google Scholar 

  8. Caussy D. Case studies of the impact of understanding bioavailability: arsenic. Ecotoxicol Environ Saf 2003: 56: 164–173.

    Article  CAS  Google Scholar 

  9. Fillol C., Dor F., Clozel B., Goria S., and Seta N. Does arsenic in soil contribute to arsenic urinary concentrations in a French population living in a naturally arsenic contaminated area? Sci Total Environ 2010a: 408: 6011–6016.

    Article  CAS  Google Scholar 

  10. Weaver V.M., Buckley T.J., and Groopman J.D. Approaches to environmental exposure assessment in children. Environ Health Perspect 1998: 106 (Suppl 3): 827–832.

    Article  Google Scholar 

  11. Moya J., Bearer C.F., and Etzel R.A. Children's behavior and physiology and how it affects exposure to environmental contaminants. Pediatrics 2004: 113: 996–1006.

    Google Scholar 

  12. Thompson K.M. Changes in children's exposure as a function of age and the relevance of age definitions for exposure and health risk assessment. Med Gen Med 2004: 6: 2.

    Google Scholar 

  13. Xue J., Zartarian V., Moya J., Freeman N., Beamer P., Black K., Tulve N., and Shalat Z. A meta-analysis of children's hand-to-mouth frequency data for estimating nondietary ingestion exposure. Risk Anal 2007: 27 (2): 411–420.

    Article  Google Scholar 

  14. Stanek E.J., Calabrese E.J., and Zorn M. Biasing factors for simple soil ingestion estimates in mass balance studies of soil ingestion. Hum Ecol Risk Assessment 2001: 7: 329–355.

    Article  CAS  Google Scholar 

  15. Fillol C., Dor F., Labat L., Boltz P., Le B.J., Mantey K., Mannschott C., Puskarczyk E., Viller F., Momas I., and Seta N. Urinary arsenic concentrations and speciation in residents living in an area with naturally contaminated soils. Sci Total Environ 2010b: 408: 1190–1194.

    Article  CAS  Google Scholar 

  16. Cave M., Wragg J., Klinck B., Gron C., Oomen T.,, van de Wiele T ., et al. Preliminary assessment of a unified bioaccessibility method for potentially harmful elements in soils. Epidemiology 2006: 17: S39.

    Article  Google Scholar 

  17. Hwang Y.H., Bornschein R.L., Grote J., Menrath W., and Roda S. Environmental arsenic exposure of children around a former copper smelter site. Environ Res 1997a: 72: 72–81.

    Article  CAS  Google Scholar 

  18. Tsuji J.S., Van K., Kaetzel R.S., Scrafford C.G., Mink P.J., Barraj L.M., Crecelius E.A., and Goodman M. Evaluation of exposure to arsenic in residential soil. Environ Health Perspect 2005: 113: 1735–1740.

    Article  CAS  Google Scholar 

  19. Link B., Gabrio T., Piechotowski I., Zollner I., and Schwenk M. Baden-Wuerttemberg Environmental Health Survey (BW-EHS) from 1996 to 2003: toxic metals in blood and urine of children. Int J Hyg Environ Health 2007: 210: 357–371.

    Article  CAS  Google Scholar 

  20. Seifert B., Becker K., Helm D., Krause C., Schulz C., and Seiwert M. The German Environmental Survey 1990/1992 (GerES II): reference concentrations of selected environmental pollutants in blood, urine, hair, house dust, drinking water and indoor air. J Expo Anal Environ Epidemiol 2000: 10: 552–565.

    Article  CAS  Google Scholar 

  21. Wilhelm M., Schulz C., and Schwenk M. Revised and new reference values for arsenic, cadmium, lead, and mercury in blood or urine of children: basis for validation of human biomonitoring data in environmental medicine. Int J Hyg Environ Health 2006: 209: 301–305.

    Article  CAS  Google Scholar 

  22. Schulz C., Conrad A., Becker K., Kolossa-Gehring M., Seiwert M., and Seifert B. Twenty years of the German Environmental Survey (GerES): human biomonitoring — temporal and spatial (West Germany/East Germany) differences in population exposure. Int J Hyg Environ Health 2007: 210: 271–297.

    Article  CAS  Google Scholar 

  23. Becker K., Müssig-Zufika M., Conrad A., Lüdecke A., Schulz C., Seiwert M., and Kolossa-Gehring M. German Environmental Survey for Children 2003/06 –GerES IV- Human biomonitoring levels of selected substances in blood and urine of children in Germany, WaBoLu-Hefte 01/08, ISSN 1862-4340 Federal Environment Agency, Dessau-Roßlau. Available at http://www.umweltbundesamt.de/uba-info-medien-e/3355.html, 2008.

    Google Scholar 

  24. Hinwood A.L., Sim M.R., Jolley D., de K.N., Bastone E.B., Gerostamoulos J., and Drummer O.H. Exposure to inorganic arsenic in soil increases urinary inorganic arsenic concentrations of residents living in old mining areas. Environ Geochem Health 2004: 26: 27–36.

    Article  CAS  Google Scholar 

  25. Hartwell T.D., Handy R.W., Harris B.S., Williams S.R., and Gehlbach S.H. Heavy metal exposure in populations living around zinc and copper smelters. Arch Environ Health 1983: 38: 284–295.

    Article  CAS  Google Scholar 

  26. Ranft U., Miskovic P., Pesch B., Jakubis P., Fabianova E., Keegan T., Hergemoller A., Jakubis M., and Nieuwenhuijsen M.J. Association between arsenic exposure from a coal-burning power plant and urinary arsenic concentrations in Prievidza District, Slovakia. Environ Health Perspect 2003: 111: 889–894.

    Article  CAS  Google Scholar 

  27. Hysong T.A., Burgess J.L., Cebrian Garcia M.E., and O’Rourke M.K. House dust and inorganic urinary arsenic in two Arizona mining towns. J Expo Anal Environ Epidemiol 2003: 13: 211–218.

    Article  CAS  Google Scholar 

  28. Hwang Y.H., Bornschein R.L., Grote J., Menrath W., and Roda S. Urinary arsenic excretion as a biomarker of arsenic exposure in children. Arch Environ Health 1997b: 52: 139–147.

    Article  CAS  Google Scholar 

  29. Clayton C.A., Pellizzari E.D., Whitmore R.W., Perritt R.L., and Quackenboss J.J. National Human Exposure Assessment Survey (NHEXAS): distributions and associations of lead, arsenic and volatile organic compounds in EPA region 5. J Expo Anal Environ Epidemiol 1999: 9: 381–392.

    Article  CAS  Google Scholar 

  30. Pellizzari E.D., and Clayton C.A. Assessing the measurement precision of various arsenic forms and arsenic exposure in the National Human Exposure Assessment Survey (NHEXAS). Environ Health Perspect 2006: 114: 220–227.

    Article  CAS  Google Scholar 

  31. Freeman G.B., Johnson J.D., Killinger J.M., Liao S.C., Davis A.O., Ruby M.V., Chaney R.L., Lovre S.C., and Bergstrom P.D. Bioavailability of arsenic in soil impacted by smelter activities following oral administration in rabbits. Fundam Appl Toxicol 1993: 21: 83–88.

    Article  CAS  Google Scholar 

  32. Freeman G.B., Schoof R.A., Ruby M.V., Davis A.O., Dill J.A., Liao S.C., Lapin C.A., and Bergstrom P.D. Bioavailability of arsenic in soil and house dust impacted by smelter activities following oral administration in cynomolgus monkeys. Fundam Appl Toxicol 1995: 28: 215–222.

    Article  CAS  Google Scholar 

  33. Carrizales L., Razo I., Tellez-Hernandez J.I., Torres-Nerio R., Torres A., Batres L.E., Cubillas A.C., and az-Barriga F. Exposure to arsenic and lead of children living near a copper-smelter in San Luis Potosi, Mexico: importance of soil contamination for exposure of children. Environ Res 2006: 101: 1–10.

    Article  CAS  Google Scholar 

  34. Rieuwerts J.S., Searle P., and Buck R. Bioaccessible arsenic in the home environment in southwest England. Sci Total Environ 2006: 371: 89–98.

    Article  CAS  Google Scholar 

  35. Palumbo-Roe B., and Klinck B. Bioaccessibility of arsenic in mine waste-contaminated soils: a case study from an abandoned arsenic mine in SW England (UK). J Environ Sci Health A Tox Hazard Subst Environ Eng 2007: 42: 1251–1261.

    Article  CAS  Google Scholar 

  36. Roberts S.M., Munson J.W., Lowney Y.W., and Ruby M.V. Relative oral bioavailability of arsenic from contaminated soils measured in the cynomolgus monkey. Toxicol Sci 2007: 95: 281–288.

    Article  CAS  Google Scholar 

  37. Ruby M.V., Davis A., Schoof R., Eberle S., and Sellstone C.M. Estimation of pb and As bioavailability using a physiologically based extraction test. Environ Sci Technol 1996: 30: 422–430.

    Article  CAS  Google Scholar 

  38. Ono F.B., Guilherme L.R., Penido E.S., Carvalho G.S., Hale B., Toujaguez R., and Bundschuh J. Arsenic bioaccessibility in a gold mining area: a health risk assessment for children. Environ Geochem Health 2011; e-pub ahead of print.

  39. Polissar L., Lowry-Coble K., Kalman D.A., Hughes J.P., van B.G., Covert D.S., Burbacher T.M., Bolgiano D., and Mottet N.K. Pathways of human exposure to arsenic in a community surrounding a copper smelter. Environ Res 1990: 53: 29–47.

    Article  CAS  Google Scholar 

  40. Gebel T.W., Suchenwirth R.H., Bolten C., and Dunkelberg H.H. Human biomonitoring of arsenic and antimony in case of an elevated geogenic exposure. Environ Health Perspect 1998: 106: 33–39.

    Article  CAS  Google Scholar 

  41. Calderon R.L., Hudgens E., Le X.C., Schreinemachers D., and Thomas D.J. Excretion of arsenic in urine as a function of exposure to arsenic in drinking water. Environ Health Perspect 1999: 107: 663–667.

    Article  CAS  Google Scholar 

  42. Concha G., Vogler G., Nermell B., and Vahter M. Intra-individual variation in the metabolism of inorganic arsenic. Int Arch Occup Environ Health 2002: 75: 576–580.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by a grant of the Agence de l’Environnement et de la maîtrise de l’Energie, Ademe (French Environment and Energy Management Agency) and the Institut de veille sanitaire, InVS (French Institute for Public Health Surveillance). We are grateful to the interviewers in Nancy (Centre d’épidémiologie Clinique, CEC), the Cire-Est (Cellule de l’Institut de veille sanitaire en région), the DDASS 54 (Direction Départementale des Affaires Sanitaires et Sociales), the DRASS of Lorraine (Direction Régionale des Affaires Sanitaires et Sociales), the local air pollution-monitoring network (AIRLOR), and Claire Dassonville. We would like to thank all the subjects who participated in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clémence Fillol.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fillol, C., Dor, F., Denys, S. et al. Arsenic urinary concentrations in children living in a naturally arsenic contaminated area. J Expo Sci Environ Epidemiol 23, 145–150 (2013). https://doi.org/10.1038/jes.2012.72

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jes.2012.72

Keywords

This article is cited by

Search

Quick links