Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Domestic airborne black carbon and exhaled nitric oxide in children in NYC

Abstract

Differential exposure to combustion by-products and allergens may partially explain the marked disparity in asthma prevalence (3–18%) among New York City neighborhoods. Subclinical changes in airway inflammation can be measured by fractional exhaled nitric oxide (FeNO). FeNO could be used to test independent effects of these environmental exposures on airway inflammation. Seven- and eight-year-old children from neighborhoods with lower (range 3–9%, n=119) and higher (range 11–18%, n=121) asthma prevalence participated in an asthma case–control study. During home visits, FeNO was measured, and samples of bed dust (allergens) and air (black carbon; BC) were collected. Neighborhood built-environment characteristics were assessed for the 500 m surrounding participants’ homes. Airborne BC concentrations in homes correlated with neighborhood asthma prevalence (P<0.001) and neighborhood densities of truck routes (P<0.001) and buildings burning residual oil (P<0.001). FeNO concentrations were higher among asthmatics with than in those without frequent wheeze (≥4 times/year) (P=0.002). FeNO concentrations correlated with domestic BC among children without seroatopy (P=0.012) and with dust mite allergen among children with seroatopy (P=0.020). The association between airborne BC in homes and both neighborhood asthma prevalence and FeNO suggest that further public health interventions on truck emissions standards and residual oil use are warranted.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Garg R.K.A., Leighton J., Perrin M., and Shah M. Asthma Facts, 2nd edn. Department of Health and Mental Hygine: New York, 2003.

    Google Scholar 

  2. Eder W., Ege M.J., and von Mutius E. The asthma epidemic. N Engl J Med 2006: 355 (21): 2226–2235.

    Article  CAS  Google Scholar 

  3. Postma D.S., and Boezen H.M. Rationale for the Dutch hypothesis. Allergy and airway hyperresponsiveness as genetic factors and their interaction with environment in the development of asthma and COPD. Chest 2004: 126 (2 Suppl): 96S–104S; discussion 159S–161S.

    Article  Google Scholar 

  4. Olmedo O., Goldstein I.F., Acosta L., Divjan A., Rundle A.G., and Chew G.L., et al. Neighborhood differences in exposure and sensitization to cockroach, mouse, dust mite, cat, and dog allergens in New York City. J Allergy Clin Immunol 2011: 128 (2): 284–292.e287.

    Article  Google Scholar 

  5. Rosenstreich D.L., Eggleston P., Kattan M., Baker D., Slavin R.G., and Gergen P., et al. The role of cockroach allergy and exposure to cockroach allergen in causing morbidity among inner-city children with asthma. N Engl J Med 1997: 336 (19): 1356–1363.

    Article  CAS  Google Scholar 

  6. Laden F., Schwartz J., Speizer F.E., and Dockery D.W. Reduction in fine particulate air pollution and mortality: extended follow-up of the Harvard Six Cities study. Am J Respir Crit Care Med 2006: 173 (6): 667–672.

    Article  CAS  Google Scholar 

  7. Pope III C.A., and Dockery D.W. Health effects of fine particulate air pollution: lines that connect. J Air Waste Manag Assoc 2006: 56 (6): 709–742.

    Article  CAS  Google Scholar 

  8. Pope III C.A., Ezzati M., and Dockery D.W. Fine-particulate air pollution and life expectancy in the United States. N Engl J Med 2009: 360 (4): 376–386.

    Article  CAS  Google Scholar 

  9. Behndig A.F., Mudway I.S., Brown J.L., Stenfors N., Helleday R., and Duggan S.T., et al. Airway antioxidant and inflammatory responses to diesel exhaust exposure in healthy humans. Eur Respir J 2006: 27 (2): 359–365.

    Article  CAS  Google Scholar 

  10. Delfino R.J., Staimer N., Gillen D., Tjoa T., Sioutas C., and Fung K., et al. Personal and ambient air pollution is associated with increased exhaled nitric oxide in children with asthma. Environ Health Perspect 2006: 114 (11): 1736–1743.

    Article  CAS  Google Scholar 

  11. Holguin F., Flores S., Ross Z., Cortez M., Molina M., and Molina L., et al. Traffic-related exposures, airway function, inflammation, and respiratory symptoms in children. Am J Respir Crit Care Med 2007: 176 (12): 1236–1242.

    Article  CAS  Google Scholar 

  12. McCreanor J., Cullinan P., Nieuwenhuijsen M.J., Stewart-Evans J., Malliarou E., and Jarup L., et al. Respiratory effects of exposure to diesel traffic in persons with asthma. N Engl J Med 2007: 357 (23): 2348–2358.

    Article  CAS  Google Scholar 

  13. Nadeau K., McDonald-Hyman C., Noth E.M., Pratt B., Hammond S.K., and Balmes J., et al. Ambient air pollution impairs regulatory T-cell function in asthma. J Allergy Clin Immunol 2010: 126 (4): 845–852. e810.

    Article  CAS  Google Scholar 

  14. Peters J.M., Avol E., Gauderman W.J., Linn W.S., Navidi W., and London S.J., et al. A study of twelve Southern California communities with differing levels and types of air pollution. II. Effects on pulmonary function. Am J Respir Crit Care Med 1999: 159 (3): 768–775.

    Article  CAS  Google Scholar 

  15. Mann J.K., Balmes J.R., Bruckner T.A., Mortimer K.M., Margolis H.G., and Pratt B., et al. Short-term effects of air pollution on wheeze in asthmatic children in Fresno, California. Environ Health Perspect 2010: 118 (10): 1497–1502.

    Article  CAS  Google Scholar 

  16. McConnell R., Islam T., Shankardass K., Jerrett M., Lurmann F., and Gilliland F., et al. Childhood incident asthma and traffic-related air pollution at home and school. Environ Health Perspect 2010: 118 (7): 1021–1026.

    Article  CAS  Google Scholar 

  17. Patel M.M., Chillrud S.N., Correa J.C., Hazi Y., Feinberg M., and Kc D., et al. Traffic-related particulate matter and acute respiratory symptoms among New York City area adolescents. Environ Health Perspect 2010: 118 (9): 1338–1343.

    Article  Google Scholar 

  18. Flamant-Hulin M., Caillaud D., Sacco P., Penard-Morand C., and Annesi-Maesano I. Air pollution and increased levels of fractional exhaled nitric oxide in children with no history of airway damage. J Toxicol Environ Health A 2010: 73 (4): 272–283.

    Article  CAS  Google Scholar 

  19. Jung K.H., Patel M.M., Moors K., Kinney P.L., Chillrud S.N., and Whyatt R., et al. Effects of heating season on residential indoor and outdoor polycyclic aromatic hydrocarbons, black carbon, and particulate matter in an urban birth cohort. Atmos Environ 2010: 44 (36): 4545–4552.

    Article  CAS  Google Scholar 

  20. Kinney P.L., Chillrud S.N., Ramstrom S., Ross J., and Spengler J.D. Exposures to multiple air toxics in New York City. Environ Health Perspect 2002: 110 (Suppl 4): 539–546.

    Article  CAS  Google Scholar 

  21. Cromar K.R., and Schwartz J.A. Residual risks: the unseen costs of using dirty oil in New York City boilers, 2010b. Available at: http://policyintegrity.org/files/publications/ResidualRisks.pdf.

  22. Seamonds D., Lowell D., Balon T., Leigh R., and Silverman I. The bottom of the barrel: How the dirtiest heating oil pollutes our air and harms our health, 2009 Available at: http://www.edf.org/dirtybuildings.

  23. http://www.edf.org.2010. http://www.edf.org/page.cfm?tagID=49624 (accessed 14 December 2010).

  24. Cromar K.R., and Schwartz J.A. More Residual Risks: An update on New York City Boilers 2010a. Available at: http://policyintegrity.org/files/publications/More_Residual_Risks.pdf.

  25. Caudri D., Wijga A.H., Hoekstra M.O., Kerkhof M., Koppelman G.H., and Brunekreef B., et al. Prediction of asthma in symptomatic preschool children using exhaled nitric oxide, Rint and specific IgE. Thorax 2010: 65 (9): 801–807.

    Article  Google Scholar 

  26. van Amsterdam J.G., Nierkens S., Vos S.G., Opperhuizen A., van Loveren H., and Steerenberg P.A. Exhaled nitric oxide: a novel biomarker of adverse respiratory health effects in epidemiological studies. Arch Environ Health 2000: 55 (6): 418–423.

    Article  CAS  Google Scholar 

  27. Asher M.I., Keil U., Anderson H.R., Beasley R., Crane J., and Martinez F., et al. International Study of Asthma and Allergies in Childhood (ISAAC): rationale and methods. Eur Respir J 1995: 8 (3): 483–491.

    Article  CAS  Google Scholar 

  28. Yan B.Z.K.D., Miller R.L., Cowin J., Jung KH., Perzanowski MS., Balletta M., Perara F., Kinney P.L., and Chillrud S.N. Validating a nondestructive optical method for apportioning colored particulate matter into black carbon and additional components. Atmos Environ 2011; 45: 7478–7486.

    Article  CAS  Google Scholar 

  29. Earle C.D., King E.M., Tsay A., Pittman K., Saric B., and Vailes L., et al. High-throughput fluorescent multiplex array for indoor allergen exposure assessment. J Allergy Clin Immunol 2007: 119 (2): 428–433.

    Article  CAS  Google Scholar 

  30. Pollart S.M., Smith T.F., Morris E.C., Gelber L.E., Platts-Mills T.A., and Chapman M.D. Environmental exposure to cockroach allergens: analysis with monoclonal antibody-based enzyme immunoassays. J Allergy Clin Immunol 1991: 87 (2): 505–510.

    Article  CAS  Google Scholar 

  31. Chapman M.D., Filep S., Tsay A., Vailes L.D., Gadermaier G., and Ferreira F., et al. Allergen standardization: CREATE principles applied to other purified allergens. Arb Paul Ehrlich Inst Bundesamt Sera Impfstoffe Frankf A M 2009: 96: 21–24; discussion 25.

    Google Scholar 

  32. American Thoracic Society; European Respiratory Society. ATS/ERS Recommendations for Standardized Procedures for the Online and Offline Measurement of Exhaled Lower Respiratory Nitric Oxide and Nasal Nitric Oxide. Am J Respir Crit Care Med 2005: 171 (8): 912–930.

    Article  Google Scholar 

  33. Perzanowski M.S., Rosa M.J., Divjan A., Johnson A., Jacobson J.S., and Miller R.L. Modifications improve an offline exhaled nitric oxide collection device for use with young children. J Allergy Clin Immunol 2008: 122 (1): 213; author reply 214.

    Article  Google Scholar 

  34. Linn W.S., Berhane K.T., Rappaport E.B., Bastain T.M., Avol E.L., and Gilliland F.D. Relationships of online exhaled, offline exhaled, and ambient nitric oxide in an epidemiologic survey of schoolchildren. J Expo Sci Environ Epidemiol 2009: 19 (7): 674–681.

    Article  CAS  Google Scholar 

  35. Beydon N., Davis S.D., Lombardi E., Allen J.L., Arets H.G., and Aurora P., et al. An official American Thoracic Society/European Respiratory Society statement: pulmonary function testing in preschool children. Am J Respir Crit Care Med 2007: 175 (12): 1304–1345.

    Article  Google Scholar 

  36. Loeb J.S., Blower W.C., Feldstein J.F., Koch B.A., Munlin A.L., and Hardie W.D. Acceptability and repeatability of spirometry in children using updated ATS/ERS criteria. Pediatr Pulmonol 2008: 43 (10): 1020–1024.

    Article  Google Scholar 

  37. Stanojevic S., Wade A., Stocks J., Hankinson J., Coates A.L., and Pan H., et al. Reference ranges for spirometry across all ages: a new approach. Am J Respir Crit Care Med 2008: 177 (3): 253–260.

    Article  Google Scholar 

  38. Stocks J. Introduction and overview of preschool lung function testing. Paediatr Respir Rev 2006: 7 (Suppl 1): S2–S4.

    Article  Google Scholar 

  39. Lovasi G.S., Hutson M.A., Guerra M., and Neckerman K.M. Built environments and obesity in disadvantaged populations. Epidemiol Rev 2009: 31: 7–20.

    Article  Google Scholar 

  40. www.nyc.gov.2011. http://www.nyc.gov/html/dob/html/applications_and_permits/boiler_permit_and_insp.shtml. Accessed on 30 August 2011.

  41. Spalding C., Hsu S.I., Patel M.M., Moors K.M., Chillrud S., and Jusino C.M., et al. The effect of wind direction and speed on black carbon concentrations in Northern Manhattan and the Bronx. J Allergy Clin Immunol 2011: 127 (2): AB96.

    Article  Google Scholar 

  42. Wolff G.T., and Lioy P.J. Transport of suspended particulate matter into the New York metropolitan area. Bull N Y Acad Med 1978: 54 (11): 1032–1044.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Bosson J., Barath S., Pourazar J., Behndig A.F., Sandstrom T., and Blomberg A., et al. Diesel exhaust exposure enhances the ozone-induced airway inflammation in healthy humans. Eur Respir J 2008: 31 (6): 1234–1240.

    Article  CAS  Google Scholar 

  44. Bosson J., Pourazar J., Forsberg B., Adelroth E., Sandstrom T., and Blomberg A. Ozone enhances the airway inflammation initiated by diesel exhaust. Respir Med 2007: 101 (6): 1140–1146.

    Article  Google Scholar 

  45. Tarantini L., Bonzini M., Apostoli P., Pegoraro V., Bollati V., and Marinelli B., et al. Effects of particulate matter on genomic DNA methylation content and iNOS promoter methylation. Environ Health Perspect 2009: 117 (2): 217–222.

    Article  CAS  Google Scholar 

  46. www.stateoftheair.org.2011. http://www.stateoftheair.org/2011/assets/SOTA2011.pdf. Accessed on 30 August 2011.

  47. Dockery D.W., Pope III C.A., Xu X., Spengler J.D., Ware J.H., and Fay M.E., et al. An association between air pollution and mortality in six U.S. cities. N Engl J Med 1993: 329 (24): 1753–1759.

    Article  CAS  Google Scholar 

  48. NYC Department of Health and Mental Hygiene. The New York City Community Air Survey. Results from Year One Monitoring 2008-2009, 2011.

  49. Narvaez R.F., Hoepner L., Chillrud S.N., Yan B., Garfinkel R., and Whyatt R., et al. Spatial and temporal trends of polycyclic aromatic hydrocarbons and other traffic-related airborne pollutants in New York City. Environ Sci Technol 2008: 42 (19): 7330–7335.

    Article  CAS  Google Scholar 

  50. Peltier R.E., and Lippmann M. Residual oil combustion: 2. Distributions of airborne nickel and vanadium within New York City. J Expo Sci Environ Epidemiol 2010: 20 (4): 342–350.

    Article  CAS  Google Scholar 

  51. Lippmann M., Ito K., Hwang J.S., Maciejczyk P., and Chen L.C. Cardiovascular effects of nickel in ambient air. Environ Health Perspect 2006: 114 (11): 1662–1669.

    Article  CAS  Google Scholar 

  52. Patel M.M., Hoepner L., Garfinkel R., Chillrud S., Reyes A., and Quinn J.W., et al. Ambient metals, elemental carbon, and wheeze and cough in New York City children through 24 months of age. Am J Respir Crit Care Med 2009: 180 (11): 1107–1113.

    Article  CAS  Google Scholar 

  53. Peng R.D., Bell M.L., Geyh A.S., McDermott A., Zeger S.L., and Samet J.M., et al. Emergency admissions for cardiovascular and respiratory diseases and the chemical composition of fine particle air pollution. Environ Health Perspect 2009: 117 (6): 957–963.

    Article  CAS  Google Scholar 

  54. Baraldi E., Carra S., Dario C., Azzolin N., Ongaro R., and Marcer G., et al. Effect of natural grass pollen exposure on exhaled nitric oxide in asthmatic children. Am J Respir Crit Care Med 1999: 159 (1): 262–266.

    Article  CAS  Google Scholar 

  55. de Kluijver J., Evertse C.E., Schrumpf J.A., van der Veen H., Zwinderman A.H., and Hiemstra P.S., et al. Asymptomatic worsening of airway inflammation during low-dose allergen exposure in asthma: protection by inhaled steroids. Am J Respir Crit Care Med 2002: 166 (3): 294–300.

    Article  Google Scholar 

  56. Hohlfeld J.M., Holland-Letz T., Larbig M., Lavae-Mokhtari M., Wierenga E., and Kapsenberg M., et al. Diagnostic value of outcome measures following allergen exposure in an environmental challenge chamber compared with natural conditions. Clin Exp Allergy 2010: 40 (7): 998–1006.

    Article  CAS  Google Scholar 

  57. Piacentini G.L., Del Giudice M.J., Bodini A., Costella S., Vicentini L., and Peroni D., et al. Exhaled NO reduced on allergen avoidance. Allergy 2001: 56 (3): 251–252.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Institute of Environmental Health Sciences (NIEHS) (grant no. R01 ES014400, P50 ES015905, P30 ES009089, P01ES09600, R01 ES008977) and the Environmental Protection Agency (R827027). This project would not have been possible without our collaborators at HIP Health Plan. Beatriz Jaramillo, Dr. PH, was instrumental in the design and initial implementation of the study and Michael Byrne, MA, has ensured the continued success of the recruitment for the study. We thank the NYC Neighborhood Asthma and Allergy Study field team for their hard work. We thank Stephanie Soucier for the artistic design of the recruitment material. We also thank the families who have participated in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew S Perzanowski.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Journal of Exposure Science and Environmental Epidemiology website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cornell, A., Chillrud, S., Mellins, R. et al. Domestic airborne black carbon and exhaled nitric oxide in children in NYC. J Expo Sci Environ Epidemiol 22, 258–266 (2012). https://doi.org/10.1038/jes.2012.3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jes.2012.3

Keywords

This article is cited by

Search

Quick links