Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Conceptual model for assessment of inhalation exposure to manufactured nanoparticles

Abstract

As workplace air measurements of manufactured nanoparticles are relatively expensive to conduct, models can be helpful for a first tier assessment of exposure. A conceptual model was developed to give a framework for such models. The basis for the model is an analysis of the fate and underlying mechanisms of nanoparticles emitted by a source during transport to a receptor. Four source domains are distinguished; that is, production, handling of bulk product, dispersion of ready-to-use nanoproducts, fracturing and abrasion of end products. These domains represent different generation mechanisms that determine particle emission characteristics; for example, emission rate, particle size distribution, and source location. During transport, homogeneous coagulation, scavenging, and surface deposition will determine the fate of the particles and cause changes in both particle size distributions and number concentrations. The degree of impact of these processes will be determined by a variety of factors including the concentration and size mode of the emitted nanoparticles and background aerosols, source to receptor distance, and ventilation characteristics. The second part of the paper focuses on to what extent the conceptual model could be fit into an existing mechanistic predictive model for ‘‘conventional’’ exposures. The model should be seen as a framework for characterization of exposure to (manufactured) nanoparticles and future exposure modeling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Aitchison J., and Brown J.A.C. The Log-Normal Distribution. Cambridge University Press, Cambridge, UK, 1969.

    Google Scholar 

  • Ayer H.E., and Yeager D.W. Irritants in cigarette smoke plumes. Am J Pub Health 1982: 72: 1283–1285.

    Article  CAS  Google Scholar 

  • Bello D., Wardle B., Yamamoto N., Guzman deVilloria R., Garcia E., Hart A., Ahn K., Ellenbecker M., and Hallock M. Exposure to nanoscale particles and fibers during machining of hybrid advanced composites containing carbon nanotubes. J Nanopart Res 2009: 11: 231–249.

    Article  CAS  Google Scholar 

  • Brouwer D. Exposure to manufactured nanoparticles in different workplaces. Toxicol 2010: 269: 120–127.

    Article  CAS  Google Scholar 

  • Brouwer D.H., van Duuren-Stuurman B, Berges M., Jankowska E., Bard D., and Mark D. From workplace air measurement results towards estimates of exposure?: development of a strategy to assess exposure to manufactured nano-objects. J Nanopart Res 2009: 11: 1867–1881.

    Article  CAS  Google Scholar 

  • Chen F., and Lai A.C.K. An Eulerian model for particle deposition under electrostatic and turbulent conditions. J Aerosol Sci 2004: 35: 47–62.

    Article  CAS  Google Scholar 

  • DeCarlo P., Slowik J., Worsnop D., Davidovits P., and Jimenez J. Particle morphology and density characterization by combined mobility and aerodynamic diameter measurements. Part 1: Theory. Aerosol Sci Technol 2004: 38: 1185–1205.

    Article  CAS  Google Scholar 

  • Demou E., Peter P., and Hellweg S. Exposure to manufactured nanostructured particles in an industrial pilot plant. Ann Occup Hyg 2008: 52: 695–706.

    PubMed  Google Scholar 

  • Demou E., Stark W.J., and Hellweg S. Particle emission and exposure during nanoparticle synthesis in research laboratories. Ann Occup Hyg 2009: 53: 829–838.

    CAS  PubMed  Google Scholar 

  • Fransman W, Cherrie J, van Tongeren M, Schneider T, Tischler M, and Schinkel J, et al. Development of a Mechanistic Model for the Advanced REACH Tool (ART), Beta release. TNO report V 8667, Zeist, The Netherlands, 2009, pp 34–45. available from www.advancedreachtool.com.

    Google Scholar 

  • Fransman W., Schinkel J., Meijster T., van Hemmen J., Tielemans E., and Goede H. Development and evaluation of an exposure control efficacy Library (ECEL). Ann Occup Hyg 2008: 52 (7): 567–575.

    PubMed  Google Scholar 

  • Fujitani Y., Kobayashi T., Arashidani K., Kunugita N., and Suemura K. Measurement of the physical properties of aerosols in a fullerene factory for inhalation exposure assessment. J Occup Environ Hyg 2008: 5: 380–389.

    Article  CAS  Google Scholar 

  • Golanski L., Guiot A., Rouillon F., Pocachard J., and Tardif F. Experimental evaluation of personal protection devices against graphite nanoaerosols: fibre filter media, masks, protective clothing and gloves. Human Experim Toxicol 2009: 28: 353–353.

    Article  CAS  Google Scholar 

  • Gong L., Xu B., and Zhu Y. Ultrafine particles deposition inside passenger vehicles. Aerosol Sci Technol 2009: 43: 544–553.

    Article  CAS  Google Scholar 

  • Hagendorfer H., Lorenz C., and Kaegi R., et al. Size-fractionated characterization and quantification of nanoparticle release rates from a consumer spray product containing engineered nanoparticles. J Nanopart Res 2010: 12: 2481–2494.

    Article  CAS  Google Scholar 

  • He C., Morawska L., and Gilbert D. Particle deposition rates in residential houses. Atmos Environm 2005: 39: 3891–3899.

    Article  CAS  Google Scholar 

  • Health and Safety Executive. Controlling Airborne Contaminants at Work. A guide to local exhaust ventilation (LEV). Health and Safety Executive, UK, 2008 ISBN 9780717662982.

  • Hinds W.C. Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles, 2nd ed. Wiley-Interscience, New York, USA, 1999.

    Google Scholar 

  • International Organization for Standardization. Health and Safety Practices in Occupational Settings Relevant to Nanotechnologies. ISO TR 12885, Geneva, Switzerland, 2008a.

  • International Organization for Standardization. Nanotechnologies—Terminology and Definitions for Nano-objects—Nanoparticle, Nanofibre and Nanoplate. ISO TS 27687 Geneva, Switzerland, 2008b.

  • International Standardisation Organiation. Workpklace Atmospheres—Ultrafine, Nanoparticle and Nano-structured Aerosols—Inhalation Exposure Characterization and Assessment. ISO/TR 27628, Geneva, Switzerland, 2007.

  • Jacobson M.Z., and Seinfeld J.H. Evolution of nanoparticle size and mixing state near the point of emission. Atmos Environ 2004: 38: 1839–1850.

    Article  CAS  Google Scholar 

  • Kim D.S., Hong S.B., Kim Y.J., and Lee K.W. Deposition and coagulation of polydisperse nanoparticles by Brownian motion and turbulence. J Aerosol Sci 2006: 37: 1781–1787.

    Article  CAS  Google Scholar 

  • Koch W Das dynamische verhalten von ultrafeinen aerosolen. In: BIA-Report 7/2003. BIA-Workshop “Ultrafeine Aerosole and Arbeitsplätzen” 2002. Downloaded 2009-07-09 from http://www.dguv.de/bgia/de/pub/rep/rep04/biar0703/index.jsp.

  • Koponen I.K., Jensen K.A., and Schneider T. Sanding dust from nanoparticle-containing paints: physical characterization. J Phys: Conference Series 2009: 151: 1–9.

    Google Scholar 

  • Korhonen H., Lehtinen K.E.J., and Kulmala M. Multicomponent aerosol dynamics model UHMA: model development and validation. Atmos Chem Phys 2004: 4: 757–771.

    Article  CAS  Google Scholar 

  • Kousaka Y., Okuyama K., and Endo Y. Re-entrainment of small aggregate particles from a plane surface by air stream. J Chem Engi Japan 1980: 13: 143–147.

    Article  CAS  Google Scholar 

  • Kuhlbusch T.A., and Fissan H. Particle characteristics in the reactor and pelletizing areas of carbon black production. J Occup Environ Hyg 2006: 3: 558–567.

    Article  CAS  Google Scholar 

  • Kuhlbusch T.A.J., Neumann S., and Fissan H. Number size distribution, mass concentration, and particle composition of PM1, PM2.5, and PM10 in bag filling areas of carbon black production. J Occup Environl Hyg 2004: 1: 660–671.

    Article  CAS  Google Scholar 

  • Lai A.C. Particle deposition indoors: a review. Indoor Air 2002: 12: 211–214.

    Article  CAS  Google Scholar 

  • Lai A.C.K., and Chen F. Modeling particle deposition and distribution in a chamber with a two-equation Reynolds-averaged Navier-Stokes model. J Aerosol Sci 2006: 37: 1770–1780.

    Article  CAS  Google Scholar 

  • Luther W Industrial Applications of Nanomaterials—Chances and Risks. Future Technol No. 54, VDI Technologiezentrum GmbH, Düsseldorf, Germany, 2004.

    Google Scholar 

  • Ma-Hock L., Gamer A.O., Landsiedel R., Leibold E., Frechen T., Sens B., Linsenbuehler M., and van Ravenzwaay B. Generation and characterization of test atmospheres with nanomaterials. Inhal Toxicol 2007: 19: 833–848.

    Article  CAS  Google Scholar 

  • Marquart H., Heussen H., and le Feber M. Stoffenmanger: a web-based control banding tool using an exposure process model. Ann Occup Hyg 2008: 52: 429–441.

    PubMed  Google Scholar 

  • Maynard A., and Aitken R. Assessing exposure to airborne nanomaterials; current abilities and future requirements. Nanotoxicol 2007: 1: 26–41.

    Article  CAS  Google Scholar 

  • Maynard A.D., Baron P.A., Foley M., Shvedova A.A., Kisin E.R., and Castranova V. Exposure to carbon nanotube material: aerosol release during the handling of unrefined single-walled carbon nanotube material. J Toxicol Environ Health Part A 2004: 67: 87–107.

    Article  CAS  Google Scholar 

  • McMurry P.H., and Rader D.J. Aerosol wall losses in electrically charged chambers. Aerosol Sci and Technol 1985: 4: 249–268.

    Article  CAS  Google Scholar 

  • Methner M., Hodson L., Dames A., and Geraci C. Nanoparticle emission assessment technique (NEAT) for the identification and measurement of potential inhalation exposure to engineered nanomaterials Part A. J Occup Environ Hyg 2010: 7: 127–132.

    Article  CAS  Google Scholar 

  • Nørgaard A.W., Jensen K.A., Janfeldt C., Lauritsen F.R., Clause P.A., and Wolkoff P. Release of VOCs and particles during use of nanofilm spray products. Environ Sci Technol 2009: 43 (20): 7824–7830.

    Article  Google Scholar 

  • Occupational Safety & Health Agency. Assigned Protection Factors: Final Rule, Fed Regist 71:50121–50192. 2006: http://www.osha.gov/pls/oshaweb/owadisp.show_document?p_table=FEDERAL_REGISTER&p_id=18846.

  • Old L., and Methner M. Effectiveness of local exhaust ventilation (LEV) in controlling engineered nanomaterial emissions during reactor cleanout operations. J Occup Environ Hyg 2008: 5: D63–D69.

    Article  Google Scholar 

  • Park J.P., Kwak B.K., Bae E., Lee J., Kim Y., Choi K., and Yi J. Characterization of exposure to silver nanoparticles in a manufacturing facility. J Nanopart Res 2009: 11: 1705–1712.

    Article  CAS  Google Scholar 

  • Peters T.M., Elzey S., Johnson R., Park H., Grassian V.H., Maher T., and O’Shaughnessy P. Airborne monitoring to distinguish engineered nanomaterials from incidental particles for environmental health and safety. J Occup Environ Hyg 2009: 6: 73–81.

    Article  CAS  Google Scholar 

  • Pui DY.H., Qi C., Stanley N., Oberdörster G., and Maynard A. Recirculating air filtration significantly reduces exposure to airborne nanoparticles. Environ Health Perspect 2008: 116: 863–866.

    Article  Google Scholar 

  • Qian J., and Ferro A.R. Resuspension of dust particles in a chamber and associated environmental factors. Aerosol Sci Technol 2008: 42: 566–578.

    Article  CAS  Google Scholar 

  • Raabe O.G. The dilution of monodisperse suspensions for aerosolization. Am Ind Hyg Assoc J 1968: 29: 439–443.

    Article  CAS  Google Scholar 

  • Schneider T., and Jensen K.A. Combined single-drop and rotating drum dustiness test of fine to nanosize powders using a small drum. Ann Occup Hyg 2008: 52: 23–34.

    CAS  PubMed  Google Scholar 

  • Schneider T., and Jensen K.A. Relevance of aerosol dynamics and dustiness for personal exposure to manufactured nanoparticles. J Nanopart Res 2009: 11: 1637–1650.

    Article  CAS  Google Scholar 

  • Schulte P., Geraci C., Zumwalde R., Hoover M., and Kuempel E. Occupational risk management of engineered nanoparticles. J Occupl Environ Hyg 2008: 5: 239–249.

    Article  CAS  Google Scholar 

  • Seaton A., Tran L., AItken R., and Donaldson K. Nanoparticles, human health hazard and regulation. J R Soc Interface 2010: 7 (Suppl 1): S119–S129.

    CAS  PubMed  Google Scholar 

  • Seipenbusch M, Binder A, and Kasper G Temporal evolution of nanoparticle aerosols in workplace exposure. Ann Occup Hyg 2008: 52: 707–716.

    CAS  PubMed  Google Scholar 

  • Shaffer R.E., and Rengasamy S. Respiratory protection against airborne nanoparticles: a review. J Nanopart Res 2009: 11: 1661–1672.

    Article  CAS  Google Scholar 

  • Tielemans E., Schneider T., Goede H., Tischer M., Warren N., and Kromhout H., et al. Conceptual model for assessment of inhalation exposure: Defining modifying factors. Ann Occup Hyg 2008: 52: 577–586.

    PubMed  Google Scholar 

  • Tielemans E., Warren N., Schneider T., Tischer M., Ritchie P., Goede H., Kromhout H., van Hemmen J., and Cherrie J.W. Tools for regulatory assessment of occupational exposure: development and challenges. J Expos Sci Environ Epidemiol 2007: 17: S72–S80.

    Article  CAS  Google Scholar 

  • Tsai C.-J., Pui D.Y.H., and Liu B.Y.H. Elastic flattening and particle adhesion. Aerosol Sci Tech 1991: 15: 239–255.

    Article  CAS  Google Scholar 

  • Tsai S.-J., Ada EIsaacs J.A., and Ellenbecker M.J. Airborne nanoparticle exposures associated with the manual handling of nanoalumina and nanosilver in fume hoods. J Nanopart Res 2008a: 11: 147–161.

    Article  Google Scholar 

  • Tsai S.-J., Ashter A., Ada E., Mead J.L., Barry C.F., and Ellenbecker M.J. Airborne nanoparticles release associated with the compounding of nanocomposites using Nanoalumina as fillers. Aerosol Air Quality Res 2008b: 8: 160–177.

    Article  CAS  Google Scholar 

  • Tsai S.-J., Hofmann M., Hallock M., Ada E., Kong J., and Ellenbecker M. Characterization and evaluation of nanoparticle release during the synthesis of single-walled and multiwalled carbon nanotubes by chemical vapor deposition. Environ Sci Technol 2009: 43: 6017–6023.

    Article  CAS  Google Scholar 

  • Van Duuren-Stuurman B. Exploration of the Likelihood of Dermal Exposure to Manufactured Nano Materials; Results from the NANOSH Project. OESSC, Edinburgh, (abstract 20–3) 2009.

    Google Scholar 

  • Vorbau M., Hillemann L., and Stintz M. Method for the characterization of the abrasion induced nanoparticle release into air from surface coatings. J Aerosol Sci 2009: 40: 209–217.

    Article  CAS  Google Scholar 

  • Whitby K.T. Determination of aerosol growth rates in the atmosphere using lumped mode aerosol dynamics. J Aerosol Sci 1981: 12: 173–178.

    Article  Google Scholar 

  • Yeganeh B., Kull C.M., Hull M.S., and Marr L.C. Characterization of airborne particles during production of carbonaceous nanomaterials. Environ Sci Tech 2008: 42: 4600–4606.

    Article  CAS  Google Scholar 

  • Zaghbani I., Songmene V., and Khettabi R. Fine and ultrafine particle characterization and modeling in high-speed milling of 6061-T6 aluminum alloy. J Mat Engin Perform 2009: 18: 38–48.

    Article  CAS  Google Scholar 

  • Zalk D.M., Paik S.Y., and Swuste P. Evaluating the control banding nanotool: a qualitative risk assessment method for controlling nanoparticle exposures. J Nanopart Res 2009: 11: 1685–1704.

    Article  CAS  Google Scholar 

  • Zebel G. Coagulation of aerosols. In: Davies C.N. (ed). Aerosol Science. Academic Press, London and New York, 1966.

    Google Scholar 

Download references

Acknowledgements

The work was partially sponsored by the EU FP7 project NANODEVICE contract NMP4-LA-2009-211464, the Dutch Ministry of Social Affaires and Employment, the Occupational Safety and Health Advisory Boards for the Industry, Teaching and Research, and the Ministry of Science, Technology and Innovation in Denmark.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Derk Henri Brouwer.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schneider, T., Brouwer, D., Koponen, I. et al. Conceptual model for assessment of inhalation exposure to manufactured nanoparticles. J Expo Sci Environ Epidemiol 21, 450–463 (2011). https://doi.org/10.1038/jes.2011.4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jes.2011.4

Keywords

This article is cited by

Search

Quick links