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Quantifying particulate matter (PM) infiltration efficiencies (Finf) in individual homes is an important part of PM exposure assessment because individuals

spend the majority of time indoors. While Finf of fine PM has most commonly been estimated using tracer species such as sulfur, here we evaluate an

alternative that does not require particle collection, weighing and compositional analysis, and can be applied in situations with indoor sources of sulfur,

such as environmental tobacco smoke, gas pilot lights, and humidifier use. This alternative method involves applying a recursive mass balance model

(recursive model, RM) to continuous indoor and outdoor concentration measurements (e.g., light scattering data from nephelometers). We show that the

RM can reliably estimate Finf, a crucial parameter for determining exposure to particles of outdoor origin. The RM Finf estimates showed good agreement

with the conventional filter-based sulfur tracer approach. Our simulation results suggest that the RM Finf estimates are minimally impacted by

measurement error. In addition, the average light scattering response per unit mass concentration was greater indoors than outdoors; after correcting for

differences in light scattering response the median deviation from sulfur Finf was reduced from 15 to 11%. Thus, we have verified the RM applied to light

scattering data. We show that the RM method is unable to provide satisfactory estimates of the individual components of Finf (penetration efficiency, air

exchange rate, and deposition rate). However, this approach may allow Finf to be estimated in more residences, including those with indoor sources of

sulfur. We show that individual homes vary in their infiltration efficiencies, thereby contributing to exposure misclassification in epidemiological studies

that assign exposures using ambient monitoring data. This variation across homes indicates the need for home-specific estimation methods, such as the

RM or sulfur tracer, instead of techniques that give average estimates of infiltration across homes.
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Introduction

Much recent research has focused on quantifying the PM

infiltration efficiency (Finf) and the building characteristics

and human behaviors that govern Finf (Abt et al., 2000;

Wilson et al., 2000; Long et al., 2001; Allen et al., 2003;

Williams et al., 2003; Wallace et al., 2006; Wu et al., 2006).

These studies all ultimately depend on an integrated solution

of the differential mass balance equation (Nazaroff and Cass,

1989). This solution assumes a single air exchange zone

throughout the house, uniform mixing of particles through-

out the house, and no chemical or physical processes (e.g.

coagulation or condensation) affecting the number or size

of the particles. Given these assumptions, Finf, defined as the

fraction of the ambient concentration that penetrates indoors

and remains suspended under steady-state conditions,

depends on the particle penetration efficiency (P; unitless),

the air exchange rate (a; h�1), and the particle deposition rate

(k; h�1):
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Finf ¼
Pa

a þ k
ð1Þ

The sum of a and k is the total particle loss rate, F. As P and

k depend on particle size (Mosley et al., 2001; Lai, 2002), Finf

is also particle size-dependent (Abt et al., 2000).

Quantifying Finf in individual residences is important to PM

exposure assessment. Finf is used, in combination with time-

location data, to estimate separately exposure to, and health

effects associated with, outdoor-generated and indoor-gener-

ated PM (Ebelt et al., 2005; Koenig et al., 2005). Exposure

studies have shown that Finf varies both between residences

and over time within a residence; and this variability in Finf

may result in exposure misclassification in epidemiologic

studies that rely entirely on outdoor monitoring data to

estimate exposure (Meng et al., 2005). In addition, epidemio-

logic studies have attempted to compare health effect estimates

from different cities or from different seasons within a city

(Dominici et al., 2003; Peng et al., 2005) to better understand

the toxicities of major PM constituents. However, these

comparisons of health effect estimates may be complicated by

the variability in Finf between cities and seasons.

The most common approach for estimating Finf has been

to use sulfur or sulfate as an ambient tracer, (Lewis, 1991;

Suh et al., 1992; Leaderer et al., 1999; Geller et al., 2002;

Sarnat et al., 2002; Na et al., 2004; Wallace et al., 2006;

Wilson and Brauer, 2006) based on the assumptions of the

absence of indoor sources (Lewis, 1991; Koutrakis et al.,

1992; Ozkaynak et al., 1996; Geller et al., 2002; Na et al.,

2004) and the similarity of its size distribution to PM2.5

(Lewis, 1991; Wilson et al., 2000; Long and Sarnat, 2004).

The latter assumption has been examined extensively because

particles containing sulfur are typically between 0.2 and

0.7 mm (Horvath et al., 1996; Sarnat et al., 2002; Smolik

et al., 2003; Martuzevicius et al., 2004). Other elements such

as nickel, zinc, and iron have shown potential as tracers of

various ranges of the ambient PM size distribution given

detectable concentrations and no indoor sources (Koutrakis

et al., 1992; Geller et al., 2002; Long and Sarnat, 2004).

As an alternative approach, we previously described the

application of a recursive form of the mass balance model

(recursive model; RM) to hourly indoor and outdoor light

scattering data to estimate P, a, k, and Finf for each of 44

residences in Seattle, WA (Allen et al., 2003). The

deployment of continuous or semi-continuous (e.g. hourly)

particle monitors requires neither the collection of a physical

sample nor any compositional analysis. The ease of the data

acquisition potentially allows Finf to be estimated in more

residences in the population. In addition, our approach uses

censoring algorithms to identify and remove the influence of

indoor particle sources; thus, the RM method does not

require the exclusion of homes with indoor sources. This

represents another potential advantage over the tracer

approach because, although indoor sources of sulfur or

sulfate are few, previous studies have reported elevated

indoor concentrations in homes with smokers (Koutrakis

et al., 1992), kerosene heaters (Koutrakis et al., 1992;

Leaderer et al., 1999), pilot lights (Wallace et al., 2006), and

humidifiers (Wallace et al., 2006). In addition, whereas sulfur

is most representative of the infiltration behavior of 0.06–

0.5 mm particles, the RM approach could be used to estimate

the infiltration efficiencies of any particle sizes or components

for which reliable continuous measurement methods exist.

Despite its promise, the application of the RM to light

scattering data has some potential limitations. The recursive

model cannot estimate daily values of Finf due to an

insufficient amount of data, particularly if indoor PM

sources are frequent. Also, one must assume that the

relationship between particle mass concentration and light

scattering coefficient (bsp) is the same indoors and outdoors.

In addition, indoor sources that are not censored will be

incorrectly treated as ambient particles and bias the estimates

of Finf. This paper presents an analysis to (1) evaluate the

stability of the RM estimates of Finf (Finf
RM), P, a, k, and F in

individual residences; (2) compare the Finf
RM estimates with

those obtained using the sulfur ratio approach (Finf
S ) under

different model and censoring scenarios; (3) compare the

accuracy of the Finf
RM estimates with the accuracy of estimates

from the simpler Random Component Superposition (RCS)

model; and (4) evaluate the effect of indoor–outdoor

differences in fine particle mass scattering efficiencies on the

Finf
RM estimates.

Methods

Data Collection
The data used in this analysis were collected as part of a large

PM exposure assessment study in Seattle, WA (henceforth

called the ‘‘Seattle study’’). The study design and data

collection methods for the Seattle study have been described

previously (Liu et al., 2003). In summary, indoor and

outdoor PM2.5 concentrations were measured at 108 study

residences. The residences included private homes, private

apartments, and group retirement homes. Monitoring

occurred in both the heating (October–Febuary) and

nonheating (March–September) seasons. Up to nine resi-

dences were monitored simultaneously during individual

10-day monitoring sessions and individual residences were

monitored in up to three sessions. As some residences were

monitored multiple times, we have previously defined a

‘‘monitoring event’’ as the monitoring of a single residence

for a single 10-day monitoring session (i.e., one residence

monitored twice is considered two monitoring events) (Allen

et al., 2003).

We measured indoor and outdoor PM2.5 on a 24-h basis

during all monitoring events using 10-l/min single-stage

inertial Harvard Impactors (HI; Air Diagnostics and

Recursive model evaluation Allen et al.
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Engineering Inc., Naples, ME) with 37-mm Teflon filters.

The precision of the HI PM2.5 samples was 1.2 mg/m3 (Liu

et al., 2003). During 73 monitoring events, we also measured

bsp on a continuous basis indoors and outdoors using

nephelometers (henceforth called ‘‘neph,’’ Model 902 and

903, Radiance Research, Seattle, WA). The precision of the

neph measurements was 3–8% (Liu et al., 2002). A subset of

the Teflon filters was analyzed using energy-dispersive X-ray

fluorescence (XRF) for a suite of 55 trace elements including

sulfur. Our previous paper reported XRF-based sulfur results

from 136 indoor–outdoor filter pairs from 14 monitoring

events (Allen et al., 2003). This analysis includes 100

additional filter pairs from 15 monitoring events recently

analyzed by XRF.

Quality Control
The quality control (QC) procedures for the filter data were

previously described by Liu et al. (2003). Briefly, data were

removed if the flow rate was not within 10% of the

designated value or in the event of a pump failure, power

outage, broken filter, or if tubing became disconnected.

Consistent with our previous criterion, sulfur data were

removed if the indoor sulfur concentration (Si) exceeded the

corresponding day’s outdoor sulfur concentration (So) (Allen

et al., 2003). Monitoring events with 5 or fewer valid indoor–

outdoor sulfur pairs were excluded from the analysis. The

final sulfur data set contained 195 daily indoor–outdoor pairs

from 24 monitoring events at 21 unique residences. For

continuous neph data, we used three QC criteria to include

monitoring events that (1) achieved 50% data collection to

ensure unbiased estimates; (2) had a significant (Po0.05)

indoor-to-outdoor relationship during nonsource (night

time) periods; and (3) had a median indoor-to-outdoor

ratioo1 during nonsource periods (Allen et al., 2003). The

final neph data set contained hourly indoor–outdoor pairs

from 55 monitoring events at 44 unique residences (in which

24 monitoring events from 21 unique residences overlapped

with those in the sulfur data set).

Recursive Modeling Approach
The RM is derived from the differential mass balance

equation assuming constant a and piecewise constant

outdoor concentrations during each discrete time step

(Switzer and Ott, 1992). When applied to hourly light

scattering data, the RM states that the average indoor

particle light scattering coefficient (bsp) during hour t ((bsp)t
in)

is equal to the sum of a fraction of the average outdoor

particle scattering coefficient during the same hour ((bsp)t
out),

a fraction of the average indoor particle scattering coefficient

remaining from the previous hour ((bsp)t�1
in ), and the

scattering contribution from indoor sources (St
in) (Allen

et al., 2003):

ðbspÞint ¼ a1ðbspÞoutt þ a2ðbspÞint�1 þ Sin
t ð2Þ

where

a1 ¼ Finff1� exp½�FDt�g ð3Þ
and

a2 ¼ exp½�FDt� ð4Þ
As we use hourly averages of bsp, Dt¼ 1 h and both a and k

are in units of h�1. This approach using hourly averaged

values departs somewhat from the original derivation that

assumed constant outdoor concentrations during each time

step (Switzer and Ott, 1992); because the outdoor concen-

trations are generally slowly varying, we expected that this

departure would generally have negligible effects. The

influence of indoor sources is minimized by applying

algorithms that identify hours when the indoor light

scattering signal was influenced by indoor sources. These

identified hours are then ‘‘censored’’ to eliminate the St
in term

from Eq. (2):

ðbspÞint ¼ a1ðbspÞoutt þ a2ðbspÞint�1 ð5Þ
The censored values are set to missing, and therefore these

hours are not included in the regression. P, a, and k are

estimated from nonlinear regression of Eq. (5) after substitut-

ing a1 and a2 with Eq. (3) and (4), respectively. Finf can then

be estimated using the P, a, and k estimates and Eq. (1) or by

estimating the coefficients a1 and a2 via multiple linear

regression of Eq. (5) and using the following relationship:

Finf ¼
a1

1� a2
ð6Þ

When the multiple linear regression intercept from Eq. (5) is

forced to zero, these two methods give identical estimates of

Finf and F. Multiple linear regression can only estimate two

of the three individual parameters (P, a, and k) influencing

Finf. As a was only measured in a small subset of the Seattle

study residences, our previous work relied on nonlinear

regression to estimate the three parameters simultaneously

(Allen et al., 2003).

Testing the Stability of the Estimates
We evaluated the stability of the parameter estimates by

performing grid searches of combinations of P, a, and k for

each of the 55 monitoring events and examining the contours

of the solution surfaces. These grid searches were repeated for

combinations of Finf
RM and F. The contour of the solution

surface provided information on the uncertainty in the point

estimates of P, a, k, F, and Finf
RM. In addition, we used two

goodness-of-fit criteria to fit the RM model and compared

results for each of the 55 monitoring events. The goodness-

of-fit criteria included the sum of the absolute values of the

residuals (AVR) and the ordinary least squares (OLS)

residuals. The AVR is less influenced by outliers than is

OLS, which is the default in the nonlinear regression

procedure.

We conducted simulations to test the sensitivity of the RM

estimates to measurement error in the indoor and outdoor bsp

Recursive model evaluationAllen et al.
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data under the ‘‘best case’’ scenario; that is in situations

where a is constant and known. Using the 10-day outdoor

bsp time series from one Seattle study monitoring event, we

recreated the exact 10-day indoor bsp time series using Eq. (5)

and assuming P¼ 1.00, a¼ 0.75 h�1, and k¼ 0.25 h�1 (and

therefore Finf¼ 0.75). We then introduced measurement error

into the bsp values by adding a series of uniformly distributed

random values (with mean¼ 0 and range¼�0.18
 10�5 to

0.18
 10�5m�1) to the indoor bsp values and a different

series of uniformly distributed random values (also with

mean¼ 0 and range¼�0.18
 10�5 to 0.18
 10�5m�1) to

the outdoor bsp values. These ranges were selected to achieve

average errors equal to approximately 5% of the average of

the outdoor bsp value used in the simulation, with 5%

corresponding to the previously reported neph precision of

3–8%. After recreating the indoor bsp, the first 24-h of indoor

and outdoor bsp data were removed to eliminate the influence

of starting conditions on the simulated data. Next, we solved

Eq. (5) via multiple linear regression to estimate a1 and a2
and estimated Finf from Eq. (6). P and k were then estimated

from the known value of a and the estimates of a1 and a2 as

follows:

P ¼ 1
a

� �
a1

1� a2

� �
ð� logða2ÞÞ ð7Þ

k ¼ � logða2Þ � a ð8Þ
The simulations were repeated 1,000 times, thus simulating

1,000 concurrent 10-day measurements indoors and out-

doors at one residence.
As a final check on the sensitivity of the parameter

estimates we compared estimates using hourly data with

those obtained using 10-min data. This was necessary to

evaluate the effect of using hourly data in the RM, which

assumes constant outdoor concentrations during each time

step.

Sulfur Tracer Finf Estimates
Previously, reference values used to assess the accuracy of our

Finf
RM estimates were obtained by regressing the indoor sulfur

concentration on the outdoor sulfur concentration at each

residence and estimating Finf
S from the regression slope (Allen

et al., 2003). The sulfur slope approach was also used in a

recent paper by Wilson and Brauer (2006). In contrast,

Wallace et al. (2006) estimated Finf
S by taking the average

indoor sulfur concentration over all days at a residence

divided by the average outdoor sulfur concentration over all

days at the residence (Sin=Sout) and found this ratio provided

a more trustworthy estimate of Finf
S than the regression slope.

In their sulfur tracer validation study, Sarnat and colleagues

(2002) also used the indoor-to-outdoor sulfur ratio. We used

the sulfur ratio as our primary method to estimate Finf
S for

our comparison with Finf
RM. As a secondary check, we also

compared Finf
RM with Finf

S estimated from the sulfur slope.

Unless otherwise indicated, the Finf
S results are those

estimated using the sulfur ratio approach.

Evaluating Censoring Approaches for Indoor Sources
Our previous work evaluated two censoring approaches:

‘‘whole peak’’ and ‘‘rising edge’’ (Allen et al. 2003). In this

paper we present the results of four combinations of multiple

regression models and censoring techniques to find the most

accurate estimates of Finf
RM: (1) rising edge censoring and a

regression model with no intercept term (i.e. with the

intercept forced to 0); (2) rising edge censoring and a

regression model with an intercept term; (3) whole peak

censoring and a regression model without an intercept term;

and (4) whole peak censoring and a regression model with an

intercept term. We calculated the accuracy of the Finf
RM

estimates as the percent difference from the Finf
S estimate for

each monitoring event:

%difference ¼ FRM
inf � FS

inf

FS
inf

����
����
100 ð9Þ

Evaluating the Effect of Mass Scattering Efficiencies on the
Finf Estimates
A key assumption in applying the RM to light scattering data

is that the mass scattering efficiencies at individual homes

are the same indoors and outdoors. First, we evaluated

the relationship between bsp and PM2.5 across all homes by

regressing 24-h averaged bsp on the colocated PM2.5

measurement indoors and outdoors. This provided a direct

comparison with our previous pooled analysis based on the

first year of data from the Seattle study (Liu et al., 2002). In

addition, we calculated mass scattering efficiencies (in units of

m2/g) indoors and outdoors at each home by dividing the

average bsp by the corresponding PM2.5 mass concentration

measured with HI. We then repeated the Finf
RM–Finf

S compar-

isons after normalizing the indoor bsp time series to the

outdoor mass scattering efficiency (i.e., by dividing the

indoor bsp values on a given day by that day’s indoor–

outdoor ratio of mass scattering efficiencies).

Results

The 44 individual homes with valid indoor and outdoor neph

data included 27 private homes, 12 private apartments, and

five group retirement facilities. The median hourly bsp values

indoors and outdoors were 2.32
 10�5m�1 (corresponding

to B8.1 mg/m3 based on an indoor conversion factor of

mg/m3¼ (bsp
 105þ 0.09)/0.30) and 2.55
 10�5m�1 (or

B10.2mg/m3 based on an outdoor conversion factor of

mg/m3¼ (bsp
 105þ 0.31)/0.28), respectively. The ratio of in-

door to outdoor bsp at individual homes ranged between 0.38

and 1.89, with an average of 0.97. The summary statistics of

Recursive model evaluation Allen et al.
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indoor and outdoor concentrations of gravimetric PM2.5

and sulfur are presented in Table 1. Consistent with our

previous findings, the high indoor–outdoor correlations

(median¼ 0.97) and small (median¼ 0.0270.06mg/m3),

nonsignificant intercepts (23 of 24 not significantly40)

indicate an absence of indoor sulfur sources in most of these

residences.

Stability of the Parameter Estimates
The solution surfaces for all monitoring events had the same

general appearance as that shown in Figure 1 from one

representative residence. Figure 1a shows the residual sum

of squares (SS) for various combinations of P and k, while

Figure 1b shows the SS for combinations of k and a at this

residence (in Figure 1a and b, for each combination of

plotted parameters, the third parameter was set to the value

that provided the best model fit). The two filled circles in

Figures 1a and b indicate that two combinations of P, a, and

k produced identical SS. The surfaces for the P/k and a/k

combinations were flat and lacked a unique solution, whereas

the solution surface for Finf
RM and F showed a steeper gradient

(Figure 1c) that resulted in a unique solution. This suggests

larger uncertainties in the estimates of P, a, and k than in

the estimates of F and Finf
RM. For example, the area of

the solution surface with residual sum of squares

r0.60
 10�8m�2 includes values of P, a, and k ranging

between 0.44 and 1 (when bounded at 1), 0.38–1.14 h�1, and

0–0.62 h�1 (when bounded at 0), respectively. In contrast,

the same areas of the surface for F and Finf
RM contain

narrower ranges of values: 0.9–1.2 h�1 for F and 0.42–0.55

for Finf
RM.

Figure 2 shows comparisons of the point estimates of P, a,

k, F, and Finf
RM for 54 monitoring events from two goodness-

of-fit criteria: OLS and AVR (note that one monitoring event

Table 1. Indoor–outdoor relationships for 24-h PM2.5 and sulfur concentrations during 24 monitoring events (all concentrations are in mg/m3)

sorted by descending indoor-outdoor sulfur ratio.

Monitoring

event

N PM2.5 (measured w/harvard impactor) Sulfur (measured by XRF)

I/O regression

Mean indoor

conc.

Mean outdoor

conc.

I/O

corr.

I/O

ratio

Mean indoor

conc.

Mean outdoor

conc.

I/O

corr.

I/O

ratio

Slope Intercepta

M03 9 9.05 8.74 0.97 1.04 0.51 0.58 0.99 0.88 0.85 0.02

M01 8 11.81 10.40 0.87 1.13 0.70 0.81 0.95 0.86 0.99 �0.11

M44 10 7.56 7.23 0.35 1.04 0.39 0.48 0.96 0.81 0.93 �0.06

M02 7 7.58 7.69 0.93 0.99 0.44 0.55 0.99 0.80 0.90 �0.05

T63 10 10.56 10.05 0.75 1.05 0.39 0.51 0.98 0.77 0.85 �0.04

S21 8 13.66 9.21 0.82 1.48 0.40 0.52 1.00 0.76 0.67 0.05

S57 10 7.16 8.68 0.96 0.82 0.47 0.62 0.97 0.76 0.70 0.04

H25 6 5.95 6.84 0.82 0.87 0.33 0.44 0.97 0.74 0.71 0.01

H28 6 7.50 7.89 0.87 0.95 0.36 0.48 1.00 0.74 0.76 �0.01

S33 9 8.62 8.40 0.58 1.03 0.46 0.62 1.00 0.73 0.79 �0.04

H02 6 7.51 6.96 0.85 1.08 0.38 0.53 0.86 0.72 1.14 �0.22

H31 8 10.44 8.01 0.93 1.30 0.30 0.43 0.98 0.68 0.70 �0.01

M05 9 10.32 13.74 0.62 0.75 0.31 0.48 0.99 0.65 0.61 0.02

H05 7 10.35 14.17 0.89 0.73 0.31 0.49 0.92 0.64 0.69 �0.03

H39 10 8.47 7.59 0.49 1.12 0.26 0.41 0.98 0.64 0.60 0.02

M28 6 9.05 11.24 0.93 0.80 0.20 0.30 0.98 0.64 0.60 0.01

M29 10 6.49 10.51 0.98 0.62 0.28 0.44 0.97 0.64 0.60 0.02

M07 10 10.59 22.03 0.95 0.48 0.38 0.65 0.98 0.59 0.53 0.04

H19 9 5.88 8.73 0.63 0.67 0.23 0.41 0.86 0.55 0.70 �0.06

M26 8 7.88 12.54 0.50 0.63 0.22 0.47 0.94 0.48 0.50 �0.01

H14 7 4.63 10.94 0.83 0.42 0.21 0.44 0.88 0.47 0.38 0.04

M42 8 6.08 9.30 0.94 0.65 0.20 0.43 0.96 0.47 0.46 0.01

M18 6 6.85 15.23 0.91 0.45 0.20 0.49 0.90 0.41 0.34 0.03

F47 8 4.04 6.67 0.01 0.60 0.13 0.37 0.83 0.34 0.28 0.02

Mean 8.1 8.25 10.12 0.77 0.86 0.34 0.50 0.95 0.66 0.68 �0.01

SD 1.5 2.31 3.48 0.24 0.27 0.13 0.11 0.05 0.14 0.21 0.06

Min 6.0 4.04 6.67 0.01 0.42 0.13 0.30 0.83 0.34 0.28 �0.22

Median 8.0 7.73 8.98 0.86 0.85 0.32 0.48 0.97 0.67 0.70 0.01

Max 10.0 13.66 22.03 0.98 1.48 0.70 0.81 1.00 0.88 1.14 0.05

aBold indicates intercept significantly (Po0.05) different from zero.

Recursive model evaluationAllen et al.
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with estimates of a42 h�1 and k42 h�1 is not shown in

Figure 2). When multiple parameter combinations provided

equally good model fit, Figure 2 shows the estimates from

the combination with P estimated closest to 1. P, a, and k are

sensitive to the goodness-of-fit criterion, whereas F is less

sensitive and the Finf
RM estimates are the most robust.

As expected based on the solution surfaces, the estimates

of Finf were much less sensitive to measurement error than the

estimates of P and k (Figure 3), even assuming that a is

constant and known. The mean (72s) of the distribution of

1000 Finf
RM estimates was 0.7570.01, whereas for P and k the

estimates were 1.0170.10 and 0.2670.10 h�1, respectively.

The estimates of P, a, and k demonstrated some sensitivity

to the averaging time of the indoor and outdoor neph data.

We ran the nonlinear RM on the 10-min neph data and

compared the estimates with those previously obtained using

hourly data. The correlation coefficients between estimates

using the two averaging times were 0.52, 0.70, and 0.64 for

P, a, and k, respectively. Therefore, although hourly data

and the RM do not allow for reliable estimates of P, a, and k,

we cannot rule out the possibility that shorter averaging times

in combination with measurements of a will allow the RM to

reliably estimate P and k. Finf
RM was much less sensitive to the

averaging time; the correlation between estimates using 10-

min data and those using hourly data was 0.96. The

remainder of this paper will focus on hourly data, since our

primary goal is to evaluate our previously used method.

Evaluating Censoring and Modeling Approaches
To identify the best method for estimating Finf

RM, the Finf
s

estimates were compared against the Finf
RM estimates from

multiple linear regression models with and without an

intercept, each using two different censoring techniques.

Under both censoring scenarios, the no intercept models

showed better agreement with Finf
s (median % differences:

11.1–14.6%; R2: 0.62–0.64) than the intercept models

(median % differences: 21.0–28.0%; R2: 0.38–0.47). The

same conclusion was drawn when Finf
s was estimated using

the indoor–outdoor slope; again the no intercept models

showed better agreement with Finf
s (median % differences:

12.5–13.0%; R2: 0.72–0.73) than the intercept models

(median % differences: 18.2–19.6%; R2: 0.52–0.65). In

addition, the Finf
RM estimates from the intercept models were

more sensitive to the influence of individual hours. Using

rising edge censoring and the intercept model, 37 monitoring

events had at least 1 h that, when removed, resulted in a

Z5% change in Finf
RM estimate. In contrast, under the no

intercept model 13 monitoring events had one or more such

hours.

The small difference in Finf
RM–Finf

s agreement between the

rising edge and whole peak censoring approaches under the

no intercept model was due almost entirely to one monitoring

event. When rising edge censoring was used in the no

intercept model, the estimate of Finf
RM for this monitoring

event was 0.93, whereas whole peak censoring in the no

intercept model produced an Finf
RM estimate of 0.74. Further

examination of the data from this monitoring event revealed

that 1 h during the decay of a large indoor peak was highly

influential on the estimate of Finf
RM. Censoring this single

influential hour in addition to rising edge censored points

resulted in an Finf
RM estimate of 0.65 (a decrease of 30%). The

influential point occurred during an hour in which the indoor

bsp decreased from 50.2
 10�5m�1 (or approximately

170mg/m3) to 12.1
 10�5m�1 (or approximately 40 mg/
m3). This suggests that in rare cases of extremely high indoor

concentrations, the decay of the indoor peak may be
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particularly influential on the Finf
RM estimate. In addition to

our rising edge censoring criteria, users of this RM method

should consider the use of an additional censoring criterion

(e.g. if ðbspÞint�1 � ðbspÞint 410�4m�1) to remove the effect of

such potentially influential time periods.

Comparison of the Recursive Model with the Random
Component Superposition Model
Ott et al. (2000) proposed the RCS model in which indoor

PM concentrations are regressed on outdoor PM concentra-

tions; the model’s slope is then interpreted as Finf and the

intercept indicates the indoor-generated concentration. We

estimated Finf in individual homes using the RCS model

applied to (1) 1-h averaged neph data, (2) 24-h averaged

neph data, and (3) 24-h gravimetric PM2.5 concentrations

measured with HI. We then compared these estimates with

Finf
s to determine if the Finf

RM estimates were more or less

accurate than those from the simpler RCS model.

The RCS model produced inaccurate estimates of Finf.

There was poor agreement between Finf
s and the RCS model
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Figure 2. Comparisons of parameter estimates using different goodness-of-fit criteria and nonlinear regression to solve the RM.
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estimates derived from hourly neph data (median %

difference ¼ 31.2%), daily neph data (38.5%), and daily

PM2.5 data (39.2%). Similarly, when Finf
s was estimated from

the indoor–outdoor sulfur slope, the agreement was again

poor for RCS model estimates from hourly neph data

(median % difference¼ 33.0%), daily neph data (23.0%),

and daily PM2.5 data (37.3%). Thus, the estimates from the

RCS model were less accurate than the RM estimates, which

had median % differences of 11–15%.

Effect of Mass Scattering Efficiencies on the Finf Estimates
Differences were observed between indoor and outdoor mass

scattering efficiencies. Pooling data from all monitoring

events, the slope and intercept of regressing 24-h average

outdoor bsp on outdoor PM2.5 were 2.81m2/g and

�0.31
 10�5m�1, respectively. Indoors, the regression slope

was 2.98m2/g and the intercept was�0.09
 10�5m�1. In an

interaction model comparing the indoor and outdoor

regression equations, the slopes (P¼ 0.04) and intercepts

(Po0.01) both showed significant differences. We calculated

monitoring event-averaged efficiencies indoors and outdoors

by dividing each monitoring event’s 10-day average bsp by

the corresponding gravimetric PM2.5 concentration measured

with HI. Indoors, the average mass scattering efficiency

across all 55 monitoring events was 2.8370.42m2/g, which

was higher than the outdoor average of 2.4770.46m2/g

(paired t-test: Po0.001). Indoor–outdoor ratios of scattering

efficiencies ranged between 0.59 and 1.76, with a mean of

1.17. There was not a statistically significant difference

between seasons; the average heating season ratio was

1.1470.20 (N¼ 29) and average nonheating season ratio

was 1.2170.21 (N¼ 26; P¼ 0.22). Some of the indoor–

outdoor differences in scattering efficiencies are attributable

to the use in some homes of the older model 902 nephs (used

indoors only), which were not calibrated directly but were

adjusted to the model 903 nephs based on laboratory

colocation experiments (Liu et al., 2002). For monitoring

events in which 902 nephs were used (12 monitoring events)

the mean indoor–outdoor scattering efficiency ratio was

1.2970.19, whereas for 903 nephs (43 monitoring events)

the mean ratio was 1.1470.20 (2-sample t-test: Po0.05).

We corrected for indoor–outdoor differences by calculating

daily mass scattering efficiencies indoors and outdoors for

each monitoring event. We then normalized the indoor mass

scattering efficiency to that outdoors by dividing the indoor

bsp values for a given day by that day’s indoor–outdoor mass

scattering efficiency ratio. Using these corrected bsp values in

the RM resulted in improved agreement between the Finf
RM

and Finf
s estimates (Figure 4): the median percent difference

decreased from 14.6 to 10.9% and the R2 increased from

0.62 to 0.74. Likewise, when compared to Finf
s estimates from

the sulfur slope method, use of the corrected bsp values in the

RM decreased the median percentage difference from 13.0 to

12.0% and increased the R2 from 0.72 to 0.87. These results

suggest that deviations from the assumption of equal light

scattering-to-mass concentration relationships indoors and

outdoors have a modest impact on the estimates of Finf
RM.

Discussion

We have evaluated the RM technique for estimating Finf (and

the individual parameters that govern it) in individual homes.

Finf can be used in combination with time-location data to

estimate ambient contribution fractions (a, the fraction of the

ambient concentration to which an individual is exposed).

Alternatively, a can be estimated directly as the personal-to-
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ambient ratio (or slope) of an ambient tracer such as sulfur

(Wilson and Brauer, 2006). While this direct estimation of a
is one potential advantage of sulfur over the RM, personal

PM measurements are generally not feasible on a large scale

because such measurements are costly and can be burden-

some for participants. Therefore, large-scale studies of

personal exposure to ambient PM are likely to rely on Finf,

which can be estimated from indoor and outdoor data and

does not require personal measurements.

Consistent with results from our earlier, preliminary

sensitivity analysis (Allen et al., 2003), the individual

estimates of P, a, and k were unstable. The estimates were

highly dependent upon the goodness-of-fit criterion, particu-

larly for P, and the solution surfaces for P, a, and k were

quite flat, with multiple solutions producing equally good

model fit. Other investigators have observed similar difficul-

ties in estimating P and k (Bennett and Koutrakis, 2006). In

contrast, the solution surfaces for Finf
RM had much steeper

gradients and had a unique solution. In addition, the

estimates of Finf
RM were more robust as they were less sensitive

to the goodness-of-fit criterion.

Simulations with random 5% light scattering measurement

errors resulted in precise estimates of Finf, but large errors in k

and P, under the best-case scenario in which a is constant and

known. Our results suggest that under typical measurement

conditions, estimates of P and k using the RM may be

unreliable. Additional simulations at shorter time steps and with

various outdoor concentration profiles are needed to determine

conclusively whether the RM is able to estimate P and k.

We found that, when compared with the RCS model, the

RM provided better agreement with Finf as indicated by

sulfur. In a study of agriculture burning exposure, Wu et al.

(2006) estimated a and exposure to agriculture burning

smoke using both the RCS model applied to 14-61 central

site-indoor pairs of 12-h (0800–2000, 2000–0800) PM2.5

measurements and the RM applied to hourly neph light

scattering data. When compared with a specific marker

(levoglucosan) for biomass burning smoke, Wu et al. (2006)

reported better performance for the RM (r¼ 0.75) than the

RCS model (r¼ 0.58) for estimating this ambient-generated

exposure. In a recent study in North Carolina, Wallace et al.

(2006) found that the RCS model applied to gravimetric

PM2.5 data was not able to reliably estimate Finf for

individual homes, even though up to 28 days of data were

available per home. Taken together, these results suggest that

the RM is a better option than the RCS model for estimating

individual infiltration efficiencies.

We found slightly higher mass scattering efficiencies

indoors compared to outdoors. This differs from our

previous finding of no difference between the indoor and

outdoor bsp-PM2.5 regression slopes based on data from the

first year of the Seattle study (Liu et al., 2002). In addition to

the effect of using an older model neph, this difference in

mass scattering efficiencies may also be due to indoor-

generated particles that scatter light more efficiently than the

ambient aerosol (Brauer et al., 2000) and/or to the fact that

the neph is especially sensitive to the size range in which

particles infiltrate most efficiently (B0.1–0.5mm) (Waggoner

and Weiss, 1980; Sarnat et al., 2006). Thus, the particle size-

dependence of Finf may alter the size distribution of the

ambient aerosol as it comes indoors and result in an indoor

aerosol with a slightly increased mass scattering efficiency.

The agreement between Finf
RM and Finf

s improved somewhat

after adjusting the indoor bsp data to account for these

differences in mass scattering efficiency. Therefore, although

the uncorrected data produced acceptably accurate results,

the application of the recursive model technique may require

some colocated gravimetric measurements, particularly in

settings where differences in the indoor and outdoor

scattering-to-mass relationships (due to differences in particle

size distribution, composition, density, etc.) are expected.

For example, Sarnat et al. (2006) recently reported results

from Los Angeles, an area with relatively high concentra-

tions of outdoor ammonium nitrate. They found that

volatilization of nitrate indoors led to differences in the

indoor and outdoor PM2.5 compositions. In this setting,

some measurements of the indoor and outdoor mass

scattering efficiencies would probably be necessary.

Although individual estimates of P, a, and k are unreliable,

the RM applied to hourly data provides a reliable method for

estimating particle infiltration efficiencies (the relevant para-

meter for estimating ambient exposure) in individual homes,

even when light scattering data are used in place of fine

particle mass concentrations. Although the sulfur tracer

method has some important advantages, such as the ability

to estimate Finf on a daily basis and the ability to estimate a
directly, the relative ease with which continuous data can be

collected and the ability to reliably estimate Finf in individual

homes may make the recursive model approach a desirable

alternative. This is particularly true in homes with indoor

sulfur sources such as environmental tobacco smoke,

kerosene heaters, pilot lights, or humidifiers.

Obtaining estimates of Finf in individual homes will lead to

an improved understanding of the variability in Finf between

homes and/or seasons, which is important for epidemiologic

studies that rely on outdoor concentrations to assign

exposure. Differences in Finf between individual homes can

contribute errors resulting in exposure misclassification in

studies that rely on concentration gradients across space (i.e.

between homes) or over time. The recursive model shows

promise for improving our understanding of these important

sources of PM exposure heterogeneity.
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