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Ascertaining the true risk associated with exposure to particulate matter (PM) is difficult, given the fact that pollutant components are frequently

correlated with each other and with other gaseous pollutants; relationships between ambient concentrations and personal exposures are often not well

understood; and PM, unlike its gaseous co-pollutants, does not represent a single chemical. In order to examine differences between observed versus true

health risk estimates from epidemiologic studies, we conducted a simulation using data from a recent multi-pollutant exposure assessment study in

Baltimore, MD. The objectives of the simulation were twofold: (a) to estimate the distribution of personal air pollutant exposures one might expect to

observe within a population, given the corresponding ambient concentrations found in that location and; (b) using an assumed true health risk with

exposure to one pollutant, to estimate the distribution of health risk estimates likely to be observed in an epidemiologic study using ambient pollutant

concentrations as a surrogate of exposure as compared with actual personal pollutant exposures. Results from the simulations showed that PM2.5 was the

only pollutant where a true association with its total personal exposures resulted in a significant observed association with its ambient concentrations. The

simulated results also showed that true health risks associated with personal exposure to O3 and NO2 would result in no significant observed associations

with any of their respective ambient concentrations. Conversely, a true association with PM2.5 would result in a significant, observed association with NO2

(b¼ 0.0115, 95% confidence interval (CI): 0.0056, 0.0185) and a true association with exposure to SO4
2� would result in an observed significant

association with O3 (b¼ 0.0035, 95% CI: 0.0021, 0.0051) given the covariance of the ambient pollutant concentrations. The results provide an indication

that, in Baltimore during this study period, ambient gaseous concentrations may not have been adequate surrogates for corresponding personal gaseous

exposures to allow the question to be investigated using central site monitors. Alternatively, the findings may suggest that in some locations, observed

associations with the gaseous pollutants should be interpreted with caution, as they may be reflecting associations with PM or one of its chemical

components.
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Introduction

Daily changes in ambient particulate matter (PM) concen-

trations have been associated with daily changes in deaths

(Schwartz and Dockery, 1992; Katsouyanni et al., 1997),

cardiovascular and pulmonary hospital admissions (Schwartz

et al., 1999; Le Tertre et al., 2002), lung disease (Schwartz,

1994; Atkinson et al., 2001) and intermediary endpoints that

serve as risk factors for such adverse health outcomes (Salvi

et al., 1999; Gold et al., 2000; Schwartz, 2001). Some have

questioned the validity of these time-series results based on

the contention that ambient PM concentrations are poor

surrogates for corresponding personal PM exposures (Gam-

ble and Nicolich, 2000), whereby the degree to which that

measurement error may impact health risk estimates depends

upon the difference between the ambient PM concentration

and the corresponding personal exposure. In the National

Research Council’s Report ‘‘Research Priorities for Air-

borne Particulate Matter: I. Immediate Priorities and Long-

Range Research Portfolio’’ (National Research Council,

1998), the Committee on Research Priorities recommended

that EPA specifically address measurement error issues in

PM health effects studies.

Zeger et al. (2000) developed a statistical framework for

studying the effects of this type of measurement error on

health effect estimates. A key finding in this paper is that

previous discussions of exposure measurement error often

ignored the difference between classical and Berkson

measurement error. The authors discuss three types of

exposure measurement error in longitudinal studies of air

pollution and health, such as those cited above. The

first error is derived from the difference between the

daily personal exposures of each individual and the dailyReceived 7 September 2007; accepted 12 September 2007
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community-average personal exposure. The second error

stems from the difference between the daily community-

average personal exposure and the true ambient concentra-

tion. Finally, the third component of error is from the

difference between the measured and the true ambient

concentration (i.e., measurement error). Zeger and co-

workers argue that the first and third types of errors are of

the Berkson type. Since Berkson measurement error is such

that the true exposure is distributed around the measured

value, this form of error will not lead to biased health effect

estimates for a given pollutant, but does make the association

less significant since relying on the mismeasured surrogate is

not as informative as having true exposure. The second type

of error is termed classical and will bias the relative risk.

Upward bias can occur in rare settings where the ratio of the

amount of measurement error in PM to the measurement

error in the other pollutants is high and the correlations

among the pollutants are extreme. Hence, the authors

concluded that observed PM health risk estimates were likely

not biased away from 0 by measurement error.

The second type of error will be influenced by pollution from

indoor sources and by the difference between the ambient

concentration and the ambient exposure (the ambient compo-

nent of personal exposure). Since indoor-generated sources are

generally uncorrelated with the ambient concentrations, the

indoor-generated component of personal exposure will not

affect the relative risk due to ambient pollution. The difference

between ambient concentration and ambient exposure leads to

a scaling factor. Consider the case where personal exposure to

PM2.5 is perfectly correlated with (no measurement error), but

always half of a corresponding ambient PM2.5 concentration

(i.e., a slope of 0.5 between the personal exposure and ambient

concentration). A 1-mg/m3 increase in ambient PM2.5, for

example, is associated with a 0.5-mg/m3 increase in personal

exposure to PM2.5. Therefore, a bA coefficient of 0.05 for

exposure to ambient PM2.5 as a predictor of health would

result in a bC coefficient of 0.025 for ambient concentrations as

a predictor of health. This result refers to the proportionality of

coefficients discussed by Zeger et al. (2000). That is, this

difference in coefficients is not bias due to measurement error,

but rather the realization that a given change in concentration

produces only half that change in exposure. Hence, bC would

be the true coefficient for changes in ambient concentrations.

More generally, in the absence of measurement error, we

would expect to observe a coefficient for ambient concentra-

tions related to health that was the product of the coefficient

relating exposure to health with the coefficient relating

concentration to exposure. Zeger et al. (2000) denoted this

scaling factor (the ratio of personal exposure to an ambient

pollutant to the ambient concentration) as ‘‘a’’. In addition to

the effect of this scaling factor, the b obtained in an

epidemiologic analysis using ambient concentrations will be

reduced if the exposure to ambient PM2.5 is not perfectly

correlated with the ambient PM2.5 concentration.

Finally, Zeger et al. (2000) noted that it is currently

difficult to quantify the effects of exposure measurement

error in PM epidemiology, due to the lack of data on both (1)

the magnitude of these errors and (2) how the components of

error covary across pollutants. As a result, the authors called

for studies that collect daily measurements of personal

exposure and ambient levels for multiple pollutants for each

person (Zeger et al., 2000).

The development of novel multiple pollutant personal

samplers (MPPS) has provided air pollution researchers with

a tool for examining these issues using a human panel study

design (Demokritou et al., 2001). The results from the

current analysis represent the first effort to simulate

particulate and gaseous pollutant correlations and co-

variances using empirical data and assess their impact on

epidemiological observations. Specifically, we used data from

a longitudinal exposure assessment panel study conducted in

Baltimore, MD to obtain realistic estimates of the effects of

measurement error in PM epidemiology. Study subjects wore

the MPPS that simultaneously measured personal exposures

for multiple particulate and gaseous pollutants, including

ozone (O3), and nitrogen dioxide (NO2). We also obtained

corresponding ambient concentrations of these pollutants for

use in the current analysis. We then performed simulation

analyses to generate the distribution of the health effect

estimates for different pollutants when the measurement

errors and cross-pollutant correlations match those observed

in the Baltimore data, for a variety of assumed true health

effect associations with exposures to each of the pollutants.

The resulting framework builds upon that of Zeger et al.

(2000) by allowing the covariances among personal and

ambient exposures to vary across subjects, and by explicitly

incorporating observed measurement error in the gaseous

pollutants.

Data and methods

Sources of Data on Associations Among Pollutants
The initial stage of the simulation consisted of collecting

distributions of associations between personal pollutant

exposures and corresponding ambient pollutant concentra-

tions measured at fixed-site monitors, which are traditionally

used in air pollution epidemiology as surrogates of personal

exposure. We used data from a panel study conducted by

Sarnat et al. (2001), which examined the associations

between personal exposures to multiple pollutants as well as

corresponding ambient concentrations in Baltimore, MD.

In the Baltimore panel study (Sarnat et al., 2001), the

investigators measured personal PM2.5, PM10, O3, and NO2

exposures and corresponding ambient concentrations for 56

subjects living in Baltimore, MD (20 healthy senior adults, 15

adults with COPD, 21 children). All the subjects were

non-smokers and lived in residences with non-smokers.

Effects of exposure measurement error on PM epidemiology Schwartz et al.
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Subject selection was not random and was not intended to be

representative of the population-at-large, but did broadly

sample potentially sensitive populations of interest in air

pollution epidemiology, such as children and senior adults.

Investigators measured the subjects for 12 consecutive days

(henceforth, sampling session) in each of one or two seasons

(summer and winter), with the exception of children in the

summer, who were measured for 8 consecutive days. Of the

56 subjects, 10 senior adults and four children participated

during both the summer and winter sampling seasons, which

resulted in 70 individual sampling sessions. A total of 800

person-days of personal exposure data were collected for the

following pollutants: particles with aerodynamic diameters

less than 2.5 mm (PM2.5), particles with aerodynamic

diameters less than 10mm (PM10), sulfate (SO4
2�), ozone

(O3), and nitrogen dioxide (NO2). PM2.5 and PM10

were collected using Personal Environmental Monitors with

37-mm Teflon filters (37mm Teflot; Gelman Sciences).

Particulate SO4
2� levels were obtained by analyzing the

aqueous extract of the PM2.5 filters using ion chromato-

graphy, O3, and NO2 concentrations were measured using

passive Ogawa samplers (Koutrakis et al., 1994; Ogawa &

Company, 1998).

Twenty-four-hour integrated ambient PM2.5 concentra-

tions were measured using Harvard Impactors operated at a

centrally located site. Ambient O3 and NO2 data were

obtained from local stationary ambient monitoring sites

operated by the Maryland Department of the Environment

(MDE), and USEPA. O3 and NO2 were measured using UV

photometric analyzers and chemiluminiscence monitors,

respectively. In cases where pollutant concentrations were

measured at multiple sites, concentrations were averaged

across the sites.

Standard QA/QC procedures were followed for this study.

Collected data were assessed for bias, precision, and

completeness. Detailed descriptions of the sampling system,

precision, accuracy, and LOD information and study design

have been provided elsewhere (Sarnat et al., 2000; Demokritou

et al., 2001; Koutrakis, 2005, no. 266).

Analytical Approach
The objectives of the simulation were twofold: (a) to estimate

the distribution of personal air pollutant exposures one might

expect to observe within a population, given the correspond-

ing ambient concentrations found in that location, and (b)

using an assumed true health risk with exposure to one

pollutant to estimate the distribution of health risk estimates

likely to be observed in an epidemiologic study using ambient

pollutant concentrations as a surrogate of exposure

as compared to actual personal pollutant exposures. In

particular, we were interested in the possibility that a true

association with exposure to pollutant ‘‘A’’ may, because of

correlations among the ambient pollutant concentrations and

exposures, result in an observed association with an ambient

concentration of pollutant ‘‘B’’. The analytical approach

used for the simulation can be described in the following six

steps and is presented graphically in Figure 1.

(1) Using data from the Baltimore panel study (Sarnat et al.,

2001), we calculated subject-specific covariance matrices, by

Randomly select 1 
subject from 70 subjects

Generate time series of 
2000 days of events

Regress ambient 
concentrations on events

to derive βpa

Calculate covariances for 
all subjects

ββp

σxy

Generate time series of 
2000 days of exposures and 

concentrations 

P(x, λ)

Repeat 210 times to 
generate distribution of 

βpa’s

Grand distribution of
βpa’s to be compared 

with βp

Repeat 200 times

Figure 1. Schematic for the sampling scheme for the simulation analyses.
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season, between the personal exposures and corresponding

ambient concentrations for all of the measured pollutants.

Importantly, the use of the covariance matrix allows us to

capture not only the correlation between ambient concentra-

tions of each pollutant and personal exposures to that same

pollutant, but also the cross-correlations among the ambient

pollutants and exposures (i.e., correlations between ambient

concentrations of a given pollutant and personal exposures

to a different pollutant).

(2) Next, we generated a time series consisting of 2000 days

of ambient air pollution concentrations and personal

exposures to PM2.5, O3, and NO2 using a randomly

selected covariance matrix from a given subject.

(3) We then assumed that a true health association, denoted

as the coefficient bp¼ 0.05, existed between personal

exposures to one of the pollutants (i.e., PM2.5, O3, or

NO2) and an unspecified health event (either morbidity or

mortality). We also assumed that exposures to the other

two pollutants were not associated with any health risks.

Assuming further that events are Poisson distributed

about their true risk, we simulated the number of adverse

events occurring each day over the 2000-day period by a

Poisson distribution, with a daily mean equal to:

0:1 � e0:05�Xit ð1Þ
where Xiit is the personal exposure of the ith subject to the

assumed causal pollutant on day t. This is equivalent to

assuming that the exposure generated by this subject’s

covariance matrix was typical of the average covariance

matrix of several thousand people in a population with an

outcome such as a mortality or hospital admission.

(4) We regressed these events against each of the simulated

ambient concentrations, producing a second estimated

coefficient, bpa, for each of the pollutants. bpa was

compared with bp (i.e., 0.05 for the chosen pollutant),

and to 0 for the other pollutants. To capture the range of

possible covariances observed in Baltimore, this entire

process was repeated 210 times (sampling with replace-

ment). The mean of the bpa’s was used as an indication of

what might be expected for each ambient pollutant given

the covariance between ambient concentrations and

personal exposures and its distribution in Baltimore.

(5) We interpreted the mean of these 210 sets of coefficients

to be comparable to what one might expect to find using

Poisson regression analysis with ambient pollution as an

exposure metric, in a city with 22 events per day, which is

a reasonable count per day estimate for many observed

pollution-related outcomes (Metzger et al., 2002).

Multiple simulations were conducted to allow for each

pollutant to have an assumed true association with a

health risk.

(6) Finally, the entire process was repeated 200 times. The

mean and empirical 95% confidence interval (CI) of

the coefficients for the 200 replications was used to

simulate the distribution of results that might be seen

from a large multi-city study, where in each city we fit the

Poisson regression of events for each air pollutant, under

the assumption of a true association, with the chosen

exposure. This was repeated assuming a true association

with each exposure in turn.

(7) Results of the simulation are presented in Tables 1 and 2.

Table 1 gives the median b for the association of ambient

PM2.5, ambient O3, and ambient NO2 with the health effect

when the true association is with personal exposure to (1)

total PM2.5, (2) ambient PM2.5, (3) sulfate, (4) O3, and

(5) NO2. Since our interest is in the attenuation (or

enhancement) due to measurement error, we report the

reliability factor (median b/true b [0.05]) (Fuller, 1987) for

the pollutant that was assumed to be truly associated with

the adverse health risk.

For the other pollutants, assumed not to be associated

with the health outcome, the issue of reliability is irrelevant,

and the results (median b versus 0) provide an estimate of the

deviation from the truth that might be expected, given

measurement error and the correlations among the variables.

Additional Simulations
We also conducted simulations using personal exposures to

SO4
2�, a component of PM2.5 that is largely ambient in origin

(Leaderer et al., 1999). Simulations including SO4
2� allowed

us to examine what may happen with health risk estimates

associated with PM2.5 or its gaseous co-pollutants if the true

health risk association was with a PM component. We

Table 1. Distribution of ambient concentrations and exposures.

Variable Mean Standard

deviation

Personal exposure parameters

Total personal PM2.5 exposure 20.9 mg/m3 18.5 mg/m3

Personal exposure to PM2.5

of ambient origin

10.9 mg/m3 6.5 mg/m3

Personal SO4
2� exposure 3.1 mg/m3 2.9 mg/m3

Personal O3 exposure 1.3 p.p.b. 3.5 p.p.b.

Personal NO2 exposure 11.1 p.p.b. 14.2 p.p.b.

Total personal CM exposure 8.9 9.4

Total personal PM10 exposure 30.7 22.5

Personal exposure to CM of

ambient origin

1.8 mg/m3 1.5 mg/m3

Ambient concentration parameters

Ambient PM2.5 concentration 21.2 mg/m3 10.7 mg/m3

Ambient O3 concentration 23.8 p.p.b. 12.7 p.p.b.

Ambient NO2 concentration 21.8 p.p.b. 6.6 p.p.b.

Ambient PM10 concentration 30.2 mg/m3 12.9 mg/m3

Ambient SO4
2� concentration 7.4 6.4

CM, coarse-mode PM mass; PM, particulate matter.

Effects of exposure measurement error on PM epidemiology Schwartz et al.
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conducted additional simulations including PM mass with an

aerodynamic diameter between 2.5 and 10mm, or coarse-

mode PM mass (CM). CM was calculated as the difference

between measured PM10 and PM2.5 exposures (for personal

CM exposures) and concentrations (for ambient CM

concentrations). We also examined what health risks might

be found associated with concentrations of either CM or

PM2.5 if the true health risk association existed with exposure

to the other pollutant.

As suggested by Wilson et al. (2000), the ratio of personal

SO4
2� to ambient SO4

2� should be the same as the ratio

for personal PM2.5 to ambient PM2.5, provided there are

no indoor sources of SO4
2� and the PM2.5 and SO4

2� have

similar size distributions (Wilson et al., 2000). A recent

study has shown that this technique may provide a good

surrogate for exposure to ambient PM2.5 mass in some US

locations (Sarnat et al., 2002). Since the personal PM2.5

exposures measured in our study included particles with

indoor sources whose toxicity may differ from that of

particles of outdoor origin, we used this technique to

construct an estimate of personal exposure to ambient

PM2.5 using the equation:

½SO2�
4 �Personalij

½SO2�
4 �Ambientj

 !
	 PM2:5½ �AmbientConcentrationj

¼ PM2:5½ �Ambient Exposureij
ð2Þ

where ‘‘Personalij’’ represents the personal exposure to SO4
2�

for subject i on day j, ‘‘Ambient Concentrationj’’ represents

the ambient concentration measured at the stationary site on

day j, and ‘‘Ambient Exposureij’’ represents the personal

exposure to ambient PM2.5 for subject i on day j. Personal

Table 2. Distribution of coefficients observed in regressions against ambient pollutants, given a true health association with personal exposure, based

on the covariance of personal and ambient exposures in Baltimore.

Model scenario: True association with personal exposure to total PM2.5

Observed association with: Ambient PM2.5 Ambient O3 Ambient NO2

Median b 0.0143 �0.0016 0.0115

95% CI 0.0097, 0.0177 �0.0056, 0.0025 0.0056, 0.0185

Reliability factor 0.286 NA NA

Model scenario: True association with personal exposure to PM2.5 of ambient origin

Observed association: Ambient PM2.5 Ambient O3 Ambient NO2

Median b 0.0183 �0.0037 0.0124

95% CI 0.0168, 0.0200 �0.0063, �0.0010 0.0085, 0.0173

Reliability factor 0.366 NA NA

Model scenario: True association with personal exposure to particulate SO4
2�

Observed association with: Ambient PM2.5 Ambient O3 Ambient NO2

Median b 0.0051 0.0035 0.0006

95% CI 0.0036, 0.0065 0.0021, 0.0051 �0.0014, 0.0028

Reliability factor 0.1 NA NA

Model scenario: True association with personal exposure to O3

Observed association with: Ambient PM2.5 Ambient O3 Ambient NO2

Median b 0.0014 0.0010 0.0009

95% CI �0.0005, 0.0035 �0.0007, 0.0024 �0.0011, 0.0034

Reliability factor NA 0.02 NA

Model scenario: True association with personal exposure to NO2

Ambient PM2.5 Ambient O3 Ambient NO2

Median b 0.0015 0.0009 0.0010

95% CI �0.0006, 0.0036 �0.0008, 0.0025 �0.0014, 0.0036

Reliability factor NA NA 0.02

CI, confidence interval; NA, not available; PM, particulate matter.

All simulations assume a true b-coefficient of 0.05.

Effects of exposure measurement error on PM epidemiologySchwartz et al.
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exposure to the estimate of PM2.5 of ambient origin was also

included in the covariance matrixes, and the simulations were

conducted with this variable.

An important feature of the simulations was that we

separately calculated covariances from the winter and

summer samples. Since the correlation between ambient

PM2.5 and ambient O3, for example, is positive in the

summer but negative in the winter, season-specific analyses

seemed more reasonable than calculating one covariance for

each subject and averaging over the two seasons.

Finally, because much of the published PM epidemiologic

literature relates to PM10 rather than PM2.5, we also conducted

simulations to examine what one might expect to find using

ambient PM10 concentrations as the exposure metric, assuming

a true association with exposure to PM2.5 of ambient origin,

CM of ambient origin, or both. The estimates of exposure to

CM and PM10 of ambient origin were based on an approach

by Wilson derived from the steady-state solution to the particle

mass balance equation. A complete discussion of this method

and its assumptions is described in Wilson and Brauer (2006)

and Ebelt et al. (2005).

Results

Table 1 shows descriptive statistics of the ambient concentra-

tions and personal exposures for the subjects from the

Baltimore panel study (Sarnat et al., 2001). Mean personal

exposure to ambient particles (10.9 mg/m3) was appro-

ximately half the mean total personal PM2.5 exposure

(20.9 mg/m3). Mean personal SO4
2� exposure (3.1mg/m3)

comprised approximately one-seventh of the total personal

PM2.5 exposures and about one-third of the exposure to

PM2.5 of ambient origin. Results from the single-pollutant

simulations showed that PM2.5 was the only pollutant where

a true association with its total personal exposures resulted in

a significant observed association with its ambient concentra-

tions (b¼ 0.0143, 95% CI: 0.0097, 0.0177; Table 2). Since

the true, assumed coefficient was set at 0.05, the observed

coefficient using ambient PM2.5 concentrations is biased from

0.05 to 0.014 or biased low by roughly 70%. The bias is

slightly lower (B60%) when the true association is assumed

to be with personal exposure to PM2.5 of ambient origin.

In this case the association of the ambient concentration of

PM2.5 with the health risk is given by b¼ 0.0183, 95%

CI: 0.0168, 0.0200. Similarly, a true association with

personal exposure to SO4
2� resulted in a significant observed

association with ambient PM2.5 (b¼ 0.0051, 95% CI:

0.0036, 0.0065).

The simulated results also showed that true health risks

associated with personal exposure to O3 and NO2 would

result in no significant observed associations with any of their

respective ambient concentrations. Conversely, a true asso-

ciation with PM2.5 would result in a significant, observed

association with NO2 (b¼ 0.0115, 95% CI: 0.0056, 0.0185)

and a true association with exposure to SO4
2� would result in

an observed significant association with O3 (b¼ 0.0035, 95%

CI: 0.0021, 0.0051) given the covariance of the ambient

pollutant concentrations.

Finally, the simulated findings showed that a true associa-

tion with personal exposure to PM2.5 of ambient origin would

result in an observed association with both ambient PM10 and

CM (b¼ 0.016, 95% CI: 0.0147, 0.0174; b¼ 0.0208, 95%

CI: 0.0164, 0.0257, respectively; Table 3). The relatively large

coefficient for the association with ambient CM is expected

due to the fact that the mean and standard deviation of CM of

ambient origin is almost an order of magnitude lower than for

PM2.5 (Table 1). Thus, the modest correlation coefficient

induces a large regression coefficient. Accordingly, the CI for

this estimated coefficient is broader. Results for simulations

where the reverse was true (i.e., personal exposure to CM of

ambient origin was assumed to be the causal agent), showed

that significant associations existed with ambient PM10 and

ambient CM but not with ambient PM2.5. This would be

expected because of the low correlation between ambient CM

and ambient PM2.5.

Discussion

Epidemiologists have made substantial progress establishing

exposure to PM as an environmental health concern and

quantifying the magnitude of this risk. The questions for

future PM research now focus on the specific component/s

responsible for the observed effects. These questions are

made more difficult due to the fact that (a) the components

are frequently correlated with each other and with other

gaseous pollutants, (b) relationships between ambient con-

centrations and personal exposures are often not well

understood, and (c) that particulate matter, unlike its gaseous

co-pollutants, does not represent a single chemical. Total

personal exposures to PM2.5 are comprised of particles from

both indoor sources (e.g., cooking and cleaning) as well as

particles from the outdoor sources (e.g., from traffic and

power plants). Ambient PM2.5 particles vary in their sources

and chemical composition. This leads to several subsidiary

questions. If true health effects are associated with exposures

to PM2.5 of ambient origin, as opposed to total personal

PM2.5 exposures, how would that affect the expected health

risk estimates when using ambient concentrations in a health

study? In addition, if observed health risk estimates were

associated with only a component of the particles of ambient

origin, such as SO4
2�, how would that affect the associations

when using ambient concentrations as the exposure metric?

A goal of our analysis was to examine these questions in our

simulations.

The pattern of results in these simulations based on the

Baltimore panel study is quite informative. For example, our

Effects of exposure measurement error on PM epidemiology Schwartz et al.
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results suggested that if there were a true health risk

associated with total personal PM2.5 exposures, one would

expect to see a corresponding significant association using

ambient PM2.5 concentrations, albeit biased low relative to

the real association. Moreover, if a true causal association

existed with personal exposure to PM2.5 of ambient origin,

similar results would be seen using ambient PM2.5 concen-

trations, with a more modest reduction in the attenuation

factor. However, in this latter case, the negative health risk

estimate also observed to exist with ambient O3 becomes

stronger and more significant. Based on the regressions

presented in Sarnat et al. (2001), this is likely driven by the

negative correlations between ambient O3 and ambient PM2.5

concentrations during the winter in Baltimore. These

associations would be expected to result in a stronger

negative association between ambient ozone and daily events

if the events were truly associated with the personal exposure

to particles of ambient origin than if the events were

associated with all particle exposure, since particles of indoor

origin are not correlated with ambient ozone.

The results involving SO4
2� were particularly interesting

and suggest that if only a small component of ambient PM2.5,

such as SO4
2�, were responsible for an observed health effect,

we would still expect to see an association with ambient

PM2.5. Obviously this result may differ for a component less

well correlated with ambient PM2.5. The magnitude of the

association of health effects with the component can be

calculated from the value of the association found with

ambient PM2.5 if the slope and coefficient of determination of

the regression of PM2.5 on the component are known.

In the eastern US, SO4
2� is present in greater concentra-

tions during the summer, and produced by the same

photochemistry and long-range transport that produces high

summertime O3 levels in Baltimore. Hence, O3 is more

strongly correlated with SO4
2� during the summer than with

total ambient PM2.5. If there were a true association just

with the SO4
2� particles, our results indicated that one would

also expect to see positive observed associations between

O3 and daily events.

These results suggest that in some locations, observed

associations with O3 should be interpreted with caution, as

they may be reflecting associations with PM or one of its

chemical components. In the Baltimore simulation, observed

O3 associations could have reflected true health association

with SO4
2� particles, which are created by the same secondary

photochemistry processes that produce O3. This can be

assessed using models that control for SO4
2� particles, but

these data are not generally available. There is an added

reason to interpret the O3 health risk carefully, given that our

simulations showed that a true association with personal

exposure to O3 did not result in an observed association with

any ambient pollutant concentration.

Conversely, our results show that a true association with

PM2.5 of ambient origin would lead to a finding of associations

with NO2, whereas if the association were with SO4
2� exposure

only, no NO2 association would be seen. This is probably

due to fact that NO2 is more strongly correlated with PM

from traffic sources and not secondary SO4
2�. Were the

true association only with the traffic particles, the pattern

would likely be opposite, and NO2 would remain significant,

Table 3. Distribution of coefficients observed in regressions against ambient particle measures, given a true association with personal exposure to

either fine or coarse PM, based on the covariance of personal and ambient exposures in Baltimore.

Model scenario: True association with personal exposure to PM2.5 of ambient origin

Observed association with: Ambient PM2.5 Ambient CM Ambient PM10

Median b 0.0183 0.0208 0.0160

95% CI 0.0168, 0.0200 0.0164, 0.0257 0.0147, 0.0174

Reliability factor 0.366 NA NA

Model scenario: True association with personal exposure to CM of ambient origin

Observed association with: Ambient PM2.5 Ambient CM Ambient PM10

Median b 0.0007 0.0050 0.0008

95% CI �0.0004, 0.0018 0.0020, 0.0077 0.0000, 0.0017

Reliability factor NA 0.1 NA

Model scenario: True association with personal exposure to both PM2.5 and CM of ambient origin

Observed association with: Ambient PM2.5 Ambient CM Ambient PM10

Median b 0.0198 0.0239 0.0167

95% CI 0.0185, 0.0211 0.0197, 0.0278 0.0155, 0.0180

Reliability factor NA NA 0.334

CI, confidence interval; CM, coarse-mode PM mass; NA, not available; PM, particulate matter.

All simulations assume a true coefficient of 0.05.
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while the association with O3 would disappear or become

negative.

Given these results, a two-pollutant model can be viewed

as a form of a source apportionment model, since in

some locations ambient O3 is a better predictor of

exposure to SO4
2� than of exposure to all particles (or to

O3) (Sarnat et al., 2001). Likewise, ambient NO2 may be a

better predictor of exposure to traffic particles than of

exposure to all particles (or to NO2). Therefore, in a model

with both O3 and PM2.5, one might interpret an O3

coefficient as representing the effect of secondary particles,

and the coefficient of particles as representing the effect of

PM2.5 exposure that is independent of SO4
2�, which will

mostly be primary particles. In a two-pollutant model with

PM2.5 and NO2, the interpretation would be reversed from

above.

It should be strongly noted that we do not interpret the

results of our simulation as indicative of the lack of adverse

effects associated with exposures to either O3 or the other

gaseous pollutants. The results do indicate that in Baltimore

during this study period, ambient O3 concentrations may not

have been adequate surrogates for corresponding personal O3

exposures to allow the question to be investigated using

ambient monitors. This may not be true in other locations or

for other population cohorts. For example, recent analyses

from our Boston exposure assessment study showed that

ambient O3 was significantly associated with corresponding

personal exposures (Sarnat et al., 2005). Similarly, ambient

O3 concentrations were shown to be good surrogates for

exposure to O3 for children spending considerable time

outdoors during summer camp (Brauer and Brook, 1997).

Even in the summer camp studies, however, it may be

difficult to separate O3 effects from SO4
2� effects. Indeed, any

study using ambient O3 that did not consider ambient SO4
2�

as an alternative explanation of any observed association

will need to be interpreted with caution, particularly in the

eastern US.

The results observed for models using NO2 also suggest

caution in interpreting significant associations with ambient

NO2 in epidemiology studies. A true association with exposure

to NO2 may not be expected to result in an observed

association with ambient NO2, whereas a true association with

PM2.5 exposure may result in an observed association with

ambient NO2. Once again it should be noted that, as in the

case of O3, the Sarnat et al. (2001) study observed that

personal exposure to NO2 was not well correlated with

ambient concentration of NO2 in Baltimore. For cities with

exposure patterns like those of Baltimore, these results again

suggest that associations with ambient NO2 are much more

likely to represent the results of a true association with

exposure to PM2.5 than with exposure to NO2. This makes the

use of two-pollutant models highly suspect in this case as well.

Finally, our results showed that a true association of health

risk with either exposure to PM2.5 of ambient origin or

exposure to CM of ambient origin would also likely result in

an observed significant association with PM10. This is a

useful finding in interpreting health risks associated with

PM10. Of equal interest was the result showing that a true

association with exposure to PM2.5 of ambient origin would

result in an observed association with ambient CM, but a

true association with CM of ambient origin would not result

in an observed association with ambient PM2.5. In fact,

PM2.5 was the only pollutant examined for which a false

health association would not be observed, given a causal

association with another pollutant. Also, because exposure to

CM of ambient origin is correlated with ambient PM2.5, but

has a much lower mean, a true association with PM2.5 can

actually result in a larger regression coefficient for CM than

for PM2.5.

There are several limitations to our methodology, includ-

ing the issue of differential measurement error among the

personal samplers used in the Baltimore panel study. This is

especially true for O3, where a majority of personal exposure

measurements were below the analytical limits of detection

(Koutrakis, 2005). Our results indicated that ambient gas

monitors were generally poor surrogates of personal gas

exposures for a 24-h integrated period. It is likely that some

of the simulation results for the gases may also be reflecting

differential measurement error, (i.e., the personal exposure

samplers may not have provided as accurate a measure of

true personal exposure for the gases as they did for PM2.5).

Finally, it is worth emphasizing that our results are based on

simulations from a relatively few number of individuals in a

single location. Using results from exposure assessment

studies conducted in other locations with different pollutant

mixtures, meteorology and exposure factors will produce

covariance matrices that may differ substantially from those

observed in Baltimore during this study. We therefore believe

that repeating this and similar simulations are necessary to

validate the robustness of our reported findings and attain a

clearer understanding of the effects of measurement error in

air pollution epidemiologic findings.
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