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As part of an EPA-sponsored workshop to investigate the use of source apportionment in health effects analyses, the associations between the

participant’s estimated source contributions of PM2.5 for Phoenix, AZ for the period from 1995–1997 and cardiovascular and total nonaccidental

mortality were analyzed using Poisson generalized linear models (GLM). The base model controlled for extreme temperatures, relative humidity, day of

week, and time trends using natural spline smoothers. The same mortality model was applied to all of the apportionment results to provide a consistent

comparison across source components and investigators/methods. Of the apportioned anthropogenic PM2.5 source categories, secondary sulfate, traffic,

and copper smelter-derived particles were most consistently associated with cardiovascular mortality. The sources with the largest cardiovascular mortality

effect size were secondary sulfate (median estimate¼ 16.0% per 5th-to-95th percentile increment at lag 0 day among eight investigators/methods) and

traffic (median estimate¼ 13.2% per 5th-to-95th percentile increment at lag 1 day among nine investigators/methods). For total mortality, the

associations were weaker. Sea salt was also found to be associated with both total and cardiovascular mortality, but at 5 days lag. Fine particle soil and

biomass burning factors were not associated with increased risks. Variations in the maximum effect lag varied by source category suggesting that past

analyses considering only single lags of PM2.5 may have underestimated health impact contributions at different lags. Further research is needed on the

possibility that different PM2.5 source components may have different effect lag structure. There was considerable consistency in the health effects results

across source apportionments in their effect estimates and their lag structures. Variations in results across investigators/methods were small compared to

the variations across source categories. These results indicate reproducibility of source apportionment results across investigative groups and support

applicability of these methods to effects studies. However, future research will also need to investigate a number of other important issues including

accuracy of results.
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Introduction

The published evidence supports an association between

particulate matter (PM) air pollution and increased risk of

mortality (US EPA, 2004). It has been shown that those with

cardiovascular or respiratory conditions and the elderly are

the most susceptible to the adverse effects of PM.

While particles less than 10 m in diameter (PM10), and

especially those less than 2.5 m in diameter (PM2.5), are most

strongly associated with an increased risk of total and cause-

specific mortality, some studies have suggested that coarse

particles (PM10–PM2.5) are also associated with an increase

risk of mortality, as well. (Schwartz et al., 1996; Ostro et al.,

2000).

Although it would be difficult to dispute that PM has a

toxic effect on susceptible populations, it is still unclear as to

the specific chemical component(s) of PM responsible for the

observed health effects. Particulate air pollution is a complex
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mixture of solid particles and liquid droplets, where the

specific chemical composition of the mass varies depending

on emission source, season and atmospheric condition.

To date, only a limited number of studies have investigated

the association between estimated source contributions of

PM and health effects (Ozkaynak and Thurston, 1987;

Laden et al., 2000, Mar et al., 2000, Mar et al., 2003a). In

the Six Cities study, Laden et al. reported that coal

combustion was associated with an increased acute risk of

mortality in Boston. Mar et al. (2000) found that mortality

was associated with regional sulfates and, to a lesser extent,

motor vehicle exhaust.

Recently, there is increasing interest in using source

apportionment data in health effects studies. Conclusions

based on such studies are somewhat limited, since the

estimated source contributions can vary depending on the

method of source apportionment. As discussed in detail in a

companion paper by Hopke et al. (2005), several source

apportionment methods are currently available including

absolute principal components analysis (APCA), positive

matrix factorization (PMF), Unmix, target-transformation

factor analysis, and chemical mass balance (CMB) models.

The variations in some of these approaches may include: the

choice and number of factors to use, the interpretation of

source profiles to identify specific sources, difficulty in

resolving sources that are similar, and issues regarding model

inputs, such as missing data, or data that are below detection.

Thus, it is presently uncertain whether variations in source

apportionments of health effects are due to variations in the

apportionment approach, or variations in the source

components’ respective toxicities.

To systematically investigate the effect of different methods

of source apportionment in a health effects analysis, a

workshop sponsored by the U.S. EPA PM Centers Program

and New York State was held in May 2003 at Harriman,

NY. As discussed in more detail elsewhere (Thurston et al.,

2005), participants of the workshop included PM center

members from Seattle, Rochester, Boston, New York and

U.S. EPA North Carolina. Each participant analyzed air

pollution data from both Phoenix, AZ and Washington, DC

using a source apportionment method of their choosing.

These cities were chosen because their PM data were similar

to the data being collected by the EPA’s Speciation Trends

Network (STN) data. The Phoenix speciation data were

collected by the National Exposure Research Laboratory

(NERL) at EPA. Dr. Gary Norris from NERL provided us

the Phoenix data (US EPA, 1999). The Washington, DC

data were downloaded from the Interagency Monitoring

of Protected Visual Environments (IMPROVE) network

website.

The speciation data from these cities were sent to each of

the participating research teams to analyze the data for daily

Table 1. Estimated average PM2.5 source contributions, (SD), and [5th-to-95th increment] in mg/m3.

Group/Name

analysisa
IDb Number

of factorsc
Soil/Crustal Traffic (gasoline

and/or diesel)d
Secondary sulfate Biomass/Wood

combustion

Sea salt Cu Smelter

CU/EK, PH

PMF A 12 2.6 (2.2) [6.5] 4.4 (3.6) [10.7] 1.7 (0.9) [2.7] 2.8 (1.9) [6.2] 0.1 (0.3) [0.4] 0.7 (0.7) [1.9]

UW/TL

PMF B 7 1.1 (0.8) [2.5] 6.5 (5.0) [15.5] 3.6 (2.2) [6.9] 2.1 (1.6) [5.0] 0.2 (0.3) [0.6] 0.6 (0.7) [2.2]

USC/RH

UNMIX C 8 2.5 (2.0) [6.4] 5.1 (3.9) [11.7] 1.9 (1.2) [3.8] 0.9 (0.9) [2.6]

GSF Res.Ctr./MS

APCA D 4 1.2 (0.7) [2.0] 5.7 (3.3) [10.3] 3.3 (1.7) [5.2] 2.3 (1.3) [3.7]

NYU/GT, RL, KI

APCA E 9 2.1 (2.5) [7.9] 6.8 (4.9) [14.7] 1.8 (0.9) [2.9] 1.2 (1.3) [4.2] 0.1 (0.3) [0.4] 0.7 (1.3) [3.5]

NYU/GT, RL, KI

PMF F 9 1.2 (1.0) [3.0] 6.4 (5.0) [15.5] 2.9 (1.9) [5.9] 1.8 (1.5) [4.5] 0.1 (0.3) [0.3] 0.2 (0.2) [0.5]

HU/FL, LN

Target FA G 2e 1.8 (1.1) [3.5] 7.7 (5.2) [16.1]

CU/ZR, PH

PMF H 8 1.6 (1.4) [4.1] 5.7 (4.6) [14.8] 2.1 (1.3) [4.1] 1.5 (1.2) [3.3] 0.1 (0.2) [0.3] 0.8 (1.2) [3.2]

CU/ ZR, PH

ME I 7 0.8 (0.7) [2.1] 4.0 (3.3) [10.5] 1.3 (0.8) [2.5] 1.0 (0.8) [2.3] 0.1 (0.1) [0.2] 0.2 (0.3) [0.7]

aInitials of the University or Institute, investigators (see the title page), and the abbreviations of methods (see text) are shown.
bThese ID’s are used in the figures.
cOnly the factors analyzed in mortality regressions are shown in this table. For complete listing, see the companion paper by Hopke et al. (2005).
dMass contributions for gasoline and diesel were combined when they were both reported.
eThe team also provided a five-factor solution (see Hopke et al., 2005) using a different (dichotomous sampler data) data set, but its sample size (available

days) was too small for mortality analysis.
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source apportionments of the fine mass using their appor-

tionment methods of choice. The estimated mass contribu-

tions from each investigator/method for Phoenix, AZ were

then analyzed in a consistent way at the University of

Washington in a time-series daily mortality study. The

mortality analysis of the Washington, DC source-appor-

tioned data was conducted at New York University and

described in a companion paper (Ito et al., 2005).

This paper will present the association between mortality

and the estimated source contributions of PM2.5, as obtained

via each research group’s source apportionment proce-

dure(s). A previous study of PM and mortality in Phoenix,

had shown that cardiovascular mortality was associated with

PM2.5, PM10 and the coarse fraction (PM10-PM2.5) and

several source factors derived from an Unmix model (Mar

et al., 2003b). In this work, we seek to determine which

sources contribute to the previously documented PM2.5-

mortality associations in this city, and to assess the extent to

which variations in source apportionment methods across

researchers affects those conclusions.

Methods

Data
The Phoenix, AZ PM2.5 speciation data were sent to each

team for source apportionment analysis. We received nine

source apportionment results usable for the health effects

analyses. These teams/investigators were: Philip Hopke and

Eugene Kim (Clarkson University), Pentti Paatero (Uni-

versity of Helsinki) and Philip Hopke (Clarkson University),

Timothy Larson (University of Washington), Ronald Henry

(University of Southern California), Mathias Stölzel (GSF-

University of Rochester PM Center), George Thurston

and Kazuhiko Ito (New York University), Francine

Laden (Harvard University) and Ziad Ramadan (Clarkson

Figure 1. Time-series plots of estimated daily PM2.5 source contributions, averaged across investigators/methods.
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University) (Ramadan et al., 2000, 2003) with some groups

submitting several solutions. Details are described in Hopke

et al. (2005). We note that all the source apportionment

methods applied by the participants were multivariate factor

analysis based receptor models. None of the participants

applied source profiles based approach such as the CMB

method. Thus, the variation of the source apportionment

results and corresponding variation in mortality risk

estimates in this analysis is limited to this particular type of

source apportionment methods.

Note that these multivariate factor analysis based models

yield a set of factors. The investigator then gives each of these

factors a label that is indicative of a source or source type

(e.g., ‘‘soil’’) based on the investigator’s prior knowledge on

‘‘signature species’’ that is identified with a certain source. As

such, these factors could be labeled subjectively. Never-

theless, several commonly labeled factors were found in the

results submitted by the investigators. At the workshop, we

ascertained the assignment of each investigator’s factors to

commonly named factors. Thus, in the rest of the paper,

when we mention, for example, ‘‘soil factor’’, we mean

the factor that was labeled as soil (or something equivalent)

by the investigators.

Mortality data from 1995 to 1997 were obtained from the

Arizona Center for Health Statistics. In this analysis, we

included only mortality counts for residents X65 from zip

code regions thought to be most represented by the EPA

monitoring platform (see Mar et al., 2003a). We evaluated

total nonaccidental mortality (ICD-9 codes o800.00) and

cardiovascular mortality (ICD9 codes 390.00–448.99) from

2/9/95 to12/31/97. From 1995 to 1997 there were a total of

9081 cases of total nonaccidental deaths and 4109 cases of

cardiovascular deaths.

Temperature and relative humidity were also included in

the mortality model, as measured at the Phoenix NERL air

monitoring platform. Missing values for temperature were

estimated using data from Phoenix Sky Harbor Airport and

missing relative humidity data were calculated from the dry

bulb temperature at the NERL site and the Sky Harbor dew

point temperature (Mar et al., 2003b).

Figure 2. Relative risk and 95%CI of cardiovascular mortality associated with estimated PM2.5 source contributions. Y-axis: relative risk per 5th-
to-95th percentile increment of estimated PM2.5 source contribution. X-axis: the alphabet denotes investigator/method shown in Table 1; lagged
PM2.5 source contribution for lag 0 through 5 days, left to right, are shown for each investigator/method.
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Statistical Methods
Associations between source contributions and cardiovascu-

lar and total nonaccidental mortality were analyzed using

Poisson generalized linear models (GLM) in SPLUS 2000

(Insightful Inc., Seattle, WA). The same mortality model was

applied to all group’s source apportionment analyses in order

to provide a consistent basis for comparison across source

components and investigators/methods (i.e., to eliminate

model specification variability from the analysis). The base

model controlled for confounding by including an indicator

variable for extreme temperatures (values greater than the

95th percentile and those less than the 5th percentile were

indicated with a 1, and 0 was used otherwise), a day of week

variable, and smoothing terms for time trends, temperature,

and relative humidity. Natural spline smoothers were used

for time trends, temperature and relative humidity. We used

12 degrees of freedom (df) for the smoothing of time trend.

The degrees of freedom (df) for the natural splines for time

trends were selected so as to minimize autocorrelation in the

residuals and the Akaike Information Criterion (AIC). For

the analysis of cardiovascular mortality, we employed 5 df

for the smoothing spline and 2 days lag for temperature,

based on past experience with models of PM2.5 and mortality

in this city (Mar et al., 2003a, b). For the total mortality

analysis, we used 5 df for the smoothing spline and 1 day lag

for temperature. We used 2 df for the smoothing of relative

humidity with 0 days lags for both the cardiovascular and

total mortality analyses. The df and the lags were chosen to

minimize the AIC.

To this base model, we added, in turn, the various

investigators’ respective estimated source contributions as the

pollution variable. The relative risk associated with a 5th-to-

95th percentile increase in the source estimate is computed for

lag days 0 to 5 for each of the source apportionment

analyses. This consistent mortality analysis approach across

source apportionments allows a direct comparison of the

source components’ impacts on daily mortality effect

estimates across the various submitted source apportionment

analyses.

We further summarized the results across investigators/

methods in two ways. First, we computed variance-weighted

average risk estimates for each lag and estimated source type

Figure 3. Relative risk and 95%CI of total nonaccidental mortality associated with estimated PM2.5 source contributions. Y-axis: relative risk per
5th-to-95th percentile increment of estimated PM2.5 source contribution. X-axis: the alphabet denotes investigator/method shown in Table 1; lagged
PM2.5 source contribution for lag 0 through 5 days, left to right, are shown for each investigator/method.
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across investigators/methods. Second, we attempt to explain

the variation in the estimated risks as a function of lag,

estimated source type, and investigators/methods. This was

done by regressing the percent excess deaths as the dependent

variable and indicator variables for estimated source types (5

df), investigators/methods (8 df) and lags (5 df) in a general

linear model, yielding an analysis of variance (ANOVA)

table.

Results

Descriptive Statistics
Table 1 shows the mean, standard deviation and the 5th-to-

95th percentiles of the fine mass estimates for the source

components most consistently reported for this city by the

various investigators/methods. All of the investigators listed a

soil or crustal particle factor as well as a traffic (gasoline and/

or diesel) factor. Total traffic was either originally listed by

the investigator as ‘‘total traffic’’, or was subsequently

summed by us from the gasoline and diesel traffic source

contributions to give directly comparable estimates across

groups. Six teams listed a marine or sea salt factor. The

biomass/wood combustion factor was either listed as

biomass, vegetative, or wood burning by the investigator.

The time-series plot of the daily average estimated fine

mass contributions (averaged across all of the investigators)

for each source category is presented for this city in Figure 1.

The average mass contribution of soil was higher for 1995

and 1996 than for 1997. The average diesel and sea salt

contributions were higher in 1995 than in 1996 and 1997.

As described by Hopke et al. (2005); some of these

estimated source contributions (e.g., soil, traffic, secondary

sulfate) correlated better across investigators/methods than

others (e.g., biomass/wood combustion).

Mortality time-series analyses

The cardiovascular mortality relative risks associated with

a 5th-to-95th percentile increase in the most consistently

identified source components are presented for each of the

Figure 4. Relative risk and 95%CI of cardiovascular mortality associated with estimated PM2.5 source contributions, (variance-weighted) averaged
across investigators/methods. Y-axis: relative risk per 5th-to-95th percentile increment of estimated PM2.5 source contribution. X-axis: lag 0 through
5 days. The dotted 95%CI’s are the confidence bands based on the average regression standard errors. The solid 95%CI’s are the confidence bands
based on the variance of point estimates across investigators/methods.
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investigators/methods (A-I) for lags 0–5 days (i.e., for same

day and for each of the prior 5 days of pollution) in Figure 2.

As expected, the source factors that were correlated across

investigators/methods tended to show more similar risk

estimates. For each source type factor, the lag structures of

associations and the magnitude of risk estimates were similar

across investigators/methods. However, the lag structure of

associations varied across estimated source factors. For

example, the largest estimates for the secondary sulfate factor

was consistently found at lag 0 day (and nearly mono-

tonically decreasing for longer lags), whereas for the traffic

factor, it was lag 1 day, and for the sea salt factor, it was lag 5

days. The magnitude of relative risk per 5th-to-95th

percentile increment was greatest for secondary sulfate factor

Figure 5. Relative risk of cardiovascular mortality associated with estimated PM2.5 source contributions, (variance-weighted) averaged across
investigators/methods. Y-axis: relative risk per 5th-to-95th percentile increment of estimated PM2.5 source contribution. X-axis: lag 0 through 5
days. The dotted 95%CI’s are the confidence bands based on the average regression standard errors. The solid 95%CI’s are the confidence bands
based on the variance of point estimates across investigators/methods.

Table 2. Analysis of variance results: variation in cardiovascular mortality percent excess risk estimates as a function of source type, investigators/

methods, and lag days in a general linear model

Source of variation Degrees of freedom Sequential sum of squares Adjusted sum of squares Adjusted mean squares F–value P-value

Pollution source type 5 2069.04 2076.76 415.35 14.35 o0.001

Investigators/methods 8 87.93 87.93 10.99 0.38 0.931

Lag days 5 450.99 450.99 90.20 3.12 0.009

Error 251 7262.93 7262.93 28.94

Total 269 9870.88

PM source apportionment and health effects Mar et al.
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(median percent excess risk estimate is 16.0% at lag 0 day

among eight investigators/methods), followed by traffic

(median percent excess risk estimate¼ 13.2% at lag 1 day

among nine investigators/methods), and copper (Cu) smelter

factor (median percent excess risk estimate¼ 12.0% at lag 0

day among five investigators/methods). While the magnitude

of estimated risks for the sea salt factor were smaller (median

percent excess risk estimate¼ 10.2% at lag 5 day among six

investigators/methods), their statistical significance was high-

er than other factors. The biomass/wood combustion factor

had less consistent lag structure of associations (median

percent excess risk estimate¼ 8.6% at lag 3 day among eight

investigators/methods). The soil factor showed no associa-

tions with no consistent lag structure of associations.

The relative risks for total nonaccidental mortality

associated with a 5th-to-95th percentile increase of the most

consistently identified sources are presented for each

investigator/method (A-I) in Figure 3. In these analyses,

we found fewer statistically significant associations between

PM impacts and total mortality, as compared with

cardiovascular mortality in this city. The Cu smelter and

sea salt factors showed some significant associations with lag

structures of associations similar to those for cardiovascular

mortality but with smaller effect sizes.

To further summarize the variability of the risk estimates

across investigators/methods, we computed variance-

weighted average risk estimates at each lag across investiga-

tors/methods, as shown in Figure 4 for cardiovascular

mortality. Also shown are the 95%CI from the variability

across investigators/methods and the average 95%CI’s from

regressions (based on the average of standard errors of

regression across investigators/methods). It is clear from this

figure that the variability of the estimated source-specific risk

estimates due to investigators/methods is much smaller than

that due to regression standard error. The differences in lag

structure of associations across the estimated source type

factors are clearly seen. Figure 5 shows the variance-weighted

mean risk estimates result for total mortality. Again, very

weak or no associations were seen except for sea salt and Cu

smelter factors.

Table 2 shows ANOVA results showing variance break-

down of cardiovascular risk estimates by estimated source

types, investigators/methods, and lag days, from a general

linear model. The pollution source types and lag days

significantly explained the variation in risk estimates, whereas

the investigators/methods did not. Note that the way we

modeled lag days (index for lag days 0–5) was not very efficient

because, as seen in Figures 4, the lag structure of associations

were different across source types, but this variable still

significantly explained the variation in risk estimates. Table 3

shows ANOVA results for total mortality risk estimates.

Similar to the results for cardiovascular risk estimates, the

pollution source types and lag days significantly explained the

variation in risk estimates, whereas the investigators/methods

did not. These results suggest that the variation in risk

estimates due to investigators/methods were not as important

as that due to source types or that due to lag days.

We also estimated risks for the total PM2.5 mass

concentrations using the data from both gravimetric and

Tapered Element Oscillation Microbalance (TEOM) sam-

plers. The PM2.5’s magnitude and lag structure of associa-

tions for cardiovascular mortality were similar to those for

the combined traffic factor, with the largest estimate at lag 1

day (14.3% [95%CI: �1.0, 32.0] and 15.0% [95%CI: 1.5,

30.3] per 5th-to-95th percentile increment for the gravimetric

and TEOM samplers data, respectively). We found no

associations with total mortality. The PM2.5 results were very

similar to those reported previously (Mar et al., 2003a) using

a slightly different model.

Discussion

Of the anthropogenic PM2.5 air pollution source categories,

sulfate (lag 0), traffic (lag1), and Cu smelter (lag 0) were

found to be the most consistently associated with cardiovas-

cular mortality across the various Phoenix source apportion-

ment analyses. In these analyses, the largest cardiovascular

mortality effect size per comparable distributional increment

(i.e., the 5th-to-95th percentile) was found for secondary

sulfate and traffic. For total mortality, the associations were

weaker and quite different, with Cu smelter (lag 0) and sea

salt factors (lag 5 days) showing the most consistently

significant associations across investigators.

Table 3. Analysis of variance results: variation in total mortality percent excess risk estimates as a function of source type, investigators/methods,

and lag days in a general linear model

Source of variation Degrees of freedom Sequential sum of squares Adjusted sum of squares Adjusted mean squares F-value P-value

Pollution source type 5 529.91 516.88 103.38 7.47 o0.001

Investigators/methods 8 56.03 56.03 7.00 0.51 0.852

Lag days 5 241.94 241.94 48.39 3.49 0.005

Error 251 3475.38 3475.38 13.85

Total 269 4303.25

PM source apportionment and health effectsMar et al.
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The time lag of the time-series mortality associations

varied across the various PM2.5 source components. This

was especially clear in the associations for cardio-

vascular mortality. The secondary sulfate showed consis-

tently largest risk estimates at lag 0 day with a decreasing

trend with increasing lag time. The largest risk estimates

for the combined traffic were seen at lag 1 day most

consistently. The total PM2.5 mass concentration also

showed the largest (and most significant) estimate at lag 1

day. This is not surprising considering the estimated

combined traffic-related PM2.5 mass explained the largest

fraction of total PM2.5.

Sea salt was also found to be associated with both total

and cardiovascular mortality, but strangely so, with a nearly

significant negative association at lag 0 and a statistically

significantly positive association at lag 5. The sea salt effect

size estimates for lag 5 were also consistently smaller

than those for sulfate or motor vehicles. This sea salt

factor’s consistently negative (though not large in magnitude)

associations raise some concern about potential

residual confounding. Since the covariates (e.g., temperature)

are also likely correlated with some of these source-

apportioned PM2.5, the negative estimates may also be an

indication of over-fitting or sharing of the effects by

correlated variables.

We found in this city that the fine particle soil and biomass

burning factors were not associated with an increased risk of

cardiovascular mortality or total mortality. These results may

suggest that fossil fuel and industrial emissions-related

particles are more toxic than the ‘‘pre-Industrial Revolution’’

sources these analyses identified (i.e., vegetative burning and

crustal-derived soil particles).

The variations in the maximum effect lag day between

source categories may suggest that different mechanisms of

effect are at work for the various types of PM2.5. This may

indicate that past analyses looking only at a single lag of

PM2.5 may have missed some source impact contributions at

different lags. Further research is needed to investigate the

possibility that different PM2.5 mass source components have

different effect lag structure.

Overall, we found reasonably consistent health effects

results across source apportionment methods and research-

ers, with similar sources being identified and similar effect

estimates and lag structures across analyses, despite indepen-

dent efforts and differences in approaches. Furthermore, the

variability in source-specific effect estimates across investiga-

tors/methods was found to be relatively small, as compared

to the variability between particle source categories. The

variability due to investigators/methods was also found to be

smaller compared to that from regression uncertainty (i.e.,

standard error of regression coefficients). Although the use of

source contribution estimates in the time-series models may

have potential for bias, these results are reasonably consistent

between different investigators using different multivariate

receptor models (note that no CMB type models were used)

and thus provide some support for the contention that

today’s source apportionment approaches are reliable enough

to be useful in the investigation of source-specific health

effects. Future research will also need to investigate a number

of other important issues including accuracy of results.
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