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Source apportionment may be useful in epidemiological investigation of PM health effects, but variations and options in these methods leave

uncertainties. An EPA-sponsored workshop investigated source apportionment and health effects analyses by examining the associations between daily

mortality and the investigators’ estimated source-apportioned PM2.5 for Washington, DC for 1988–1997. A Poisson Generalized Linear Model (GLM)

was used to estimate source-specific relative risks at lags 0–4 days for total non-accidental, cardiovascular, and cardiorespiratory mortality adjusting for

weather, seasonal/temporal trends, and day-of-week. Source-related effect estimates and their lagged association patterns were similar across

investigators/methods. The varying lag structure of associations across source types, combined with the Wednesday/Saturday sampling frequency made it

difficult to compare the source-specific effect sizes in a simple manner. The largest (and most significant) percent excess deaths per 5–95th percentile

increment of apportioned PM2.5 for total mortality was for secondary sulfate (variance-weighted mean percent excess mortality¼ 6.7% (95% CI: 1.7,

11.7)), but with a peculiar lag structure (lag 3 day). Primary coal-related PM2.5 (only three teams) was similarly significantly associated with total

mortality with the same 3-day lag as sulfate. Risk estimates for traffic-related PM2.5, while significant in some cases, were more variable. Soil-related PM

showed smaller effect size estimates, but they were more consistently positive at multiple lags. The cardiovascular and cardiorespiratory mortality

associations were generally similar to those for total mortality. Alternative weather models generally gave similar patterns, but sometimes affected the lag

structure (e.g., for sulfate). Overall, the variations in relative risks across investigators/methods were found to be much smaller than those across estimated

source types or across lag days for these data. This consistency suggests the robustness of the source apportionment in health effects analyses, but

remaining issues, including accuracy of source apportionment and source-specific sensitivity to weather models, need to be investigated.
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Introduction

Numerous studies have reported short-term associations

between ambient PM concentrations and mortality/morbid-

ity (e.g., see U.S. EPA, 1996). PM was often implicated as

the most significant predictor of the health outcomes among

the air pollutants in these studies. However, PM is a

chemically non-specific pollutant, and may originate or be

derived from various emission source types. Thus, its toxicity

may well vary depending on its source and chemical

composition. If the PM toxicity could be determined based

on source types, the regulation of PM may be implemented

more effectively. One natural progression of the PM health

effects research is therefore to conduct a source apportion-

ment of PM using chemical speciation data, and to examine

the associations between source-apportioned PM and health

outcomes, rather than with PM mass overall. There have

been only a few studies that conducted such analyses

(Özkaynak and Thurston, 1987; Özkaynak et al., 1996;

Laden et al., 2000; Tsai et al., 2000; (reanalyzed by Schwartz,

2003); Mar et al., 2000 (reanalyzed by Mar et al., 2003)).

These studies have provided some suggestive evidence that

PM from certain combustion sources (i.e., secondary
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aerosols and traffic), but not other sources (e.g., soil), were

associated with daily mortality. However, the results are far

from conclusive, and more analyses of speciation data using

cities with larger populations are needed.

While source apportionment may be a potentially powerful

tool for source-oriented evaluation of PM health effects,

there are several approaches to conduct source apportion-

ment, and their associated model uncertainties have not been

systematically examined. Even for a given source-apportion-

ment approach, there are several options that an investigator

may take: (1) which elements to include; (2) the number of

factors to be specified; (3) the extent of rotation; and (4)

criteria with which the ‘‘best’’ model is chosen. Furthermore,

while the advantage of the multivariate factor analysis-based

receptor modeling is its ability to ‘‘find’’ sources without

prior source profiles, the resulting factors still need to be

‘‘named’’ (i.e., identified) based on the external (and often

prior) knowledge regarding the sources. Thus, it is possible

that, given the same factor solutions, different researchers

may name the factors differently. Despite these options,

which can lead to different results, the results from several

recent studies that compared two source-apportionment

techniques applied to the same sets of data (Huang et al.,

1999; Poirot et al., 2001; Qin et al., 2002; Ramadan et al.,

2003) suggest that the source-apportioned results between

various two sets of methods were not remarkably different.

However, this may be in part due to the fact that the same

investigators were applying two different methods (except in

the Poirot et al. study in which two investigators indepen-

dently analyzed the same data), possibly minimizing the

choice of options taken in each method. These issues

motivated several members of the EPA PM Centers to

organize a workshop on source apportionment in which the

same data sets would be analyzed by at least several teams

of investigators so that source apportionment results and

their estimated health impacts would be compared (for

details, see Thurston et al., 2005). This paper will present the

results from the mortality analysis of Washington, DC data.

In addition to the results presented at the workshop, we

present results of additional sensitivity analyses that we

conducted after the workshop. A more detailed comparison

of source apportionment results are presented in Hopke

et al. (2005).

Materials and methods

Data
The PM2.5 speciation data for Washington, DC for the study

period 08/31/1988–12/31/1997 were downloaded from

http://vista.cira.colostate.edu/improve. Detailed descriptions

of the IMPROVE data can be found on the web site, but

briefly, the database contains PM2.5 mass, 24 trace elements

by energy dispersive X-ray fluorescence (EDXRF), anions

(sulfate, nitrate) and cations (particulate ammonium) by ion

chromatograph, and organic and elemental carbon (four and

three levels of fractions from thermal optical analysis,

respectively). The database also included uncertainty for

each observation. The IMPROVE data were collected on

Wednesdays and Saturdays for the study period. In addition

to the IMPROVE data, we retrieved, processed, and

distributed other air pollution data from EPA’s Aerometric

Information Retrieval System (AIRS, now called Air Quality

System, or AQS) for the same period. Average values of

multiple monitors’ data (three or four monitors) for PM10

(available every 6th-day 24-h samples) and daily gaseous

pollutants (24-h average of hourly values), O3, SO2, NO2,

and CO, were computed. Several weather variables from the

Dulles airport were also distributed in this data set, as

extracted from EarthInfo (Boulder, CO, USA) compact

discs, including: daily mean temperature, dew point, relative

humidity, precipitation, pressure, resultant wind speed and

direction. The IMPROVE, AQS, and weather data were sent

on a compact disc to 11 investigators in December 2002. To

allow a consistent intercomparison of results across investi-

gators, participants were requested to submit results in a

standardized format and with a list of items to describe the

details of source apportionment analysis (e.g., type and

extent of rotation, treatment of outliers, criteria used to

include species in the analysis, etc.).

The source apportionment methods used in these analyses

include absolute principal components analysis (APCA;

Thurston and Spengler, 1985), positive matrix factorization

(PMF; Paatero and Tapper, 1993), Unmix (Henry and

Norris, 2002), target-transformation (or specific-rotation)

factor analysis (TTFA; Koutrakis and Spengler, 1987), and

confirmatory factor analysis (Christensen et al., 2005).

Description of these methods are found elsewhere (Hopke

et al., 2005). We note that none of the investigators applied

source profiles-based approach such as the chemical mass

balance (CMB) method. Thus, the variation of the source

apportionment results and corresponding variation in

mortality risk estimates in this analysis is limited to this

particular type (i.e., multivariate factor analysis based) of

source apportionment methods.

These multivariate factoranalysis-based models yield a set

of factors. The investigator then gives each of these factors a

label that is indicative of a source or source type (e.g., ‘‘soil’’)

based on the investigator’s prior knowledge on ‘‘signature

species’’. Thus, these factors could be labeled subjectively.

Nevertheless, several commonly labeled factors were found in

the results submitted by the investigators. At the workshop,

we ascertained the assignment of each investigator’s factors

to commonly named factors. Thus, in the rest of the report,

when we mention, for example, ‘‘soil factor’’, we mean the

factor that was labeled as soil (or something equivalent) by

the investigators. These factors were submitted in the form of

estimated daily source contributions (e.g., via regression of

PM source apportionment and health effects Ito et al.
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PM2.5 on the factors). We call these estimated daily PM2.5

source contribution as ‘‘source-apportioned PM2.5’’ in the

rest of this report.

We obtained nine sets of source-apportioned PM2.5 data

that could be analyzed for mortality associations. The

Clarkson University team submitted two sets, and the New

York University team submitted three sets of solutions using

different methods. Thus, these nine sets are not from nine

independent investigators, and therefore, we call this group-

ing as ‘‘investigators/methods’’.

Death records were extracted from the National Center for

Health Statistics database for the period 8/31/88–12/31/97,

and daily counts were aggregated for District of Columbia

and the surrounding six counties: Montgomery Co., MD,

USA; Prince George’s Co., MD, USA; Fairfax Co., VA,

USA; Alexandria city, VA, USA; Fairfax city, VA, USA;

and, Falls Church city, VA, USA. Three categories of deaths

were analyzed: (1) total non-accidental; (2) cardiovascular;

and (3) cardiovascular plus respiratory. The total population

of the area included was approximately 2.4 million. The

IMPROVE-operated monitoring site was located in Wa-

shington, DC (longitude �77.0343; latitude 38.8761) near

the Potomac River, approximately in the center of the

geographic area covered (a 30-mile radius from the monitor

contains essentially all of the study population).

Statistical Analysis
The nine source-apportioned PM2.5 datasets were each used

in the mortality analysis conducted at NYU. One source-

apportioned PM2.5 time series was included in the model at a

time. We developed our ‘‘base’’ mortality model as a function

of season and other temporal trends, day-of-week (note the

data collections on Wednesdays and Saturdays only) and

weather variables in Poisson Generalized Linear Models

(McCullagh and Nelder, 1989). First, we fit a smooth

function of time, using natural splines, to mortality to adjust

for seasonal trend and unmeasured seasonal confounders

including influenza epidemics. In addition to this epidemio-

logical reasoning, the inclusion of a smooth function of time

also has statistical benefit in that it removes or reduces

residual autocorrelation and overdispersion in the mortality

regression. Thus, the choice of the degrees of freedom for

smoothing of time was based on the inspection of the fitted

mortality series (to see if it captured broad peak influenza

epidemics that vary from year to year) and based on the

extent of autocorrelation of the residuals. We used natural

splines with 38 degrees of freedom (approximately 4 degrees

of freedom per year). To examine the sensitivity of estimated

PM2.5 mortality risks, we also ran the model using 2, 8, and

16 degrees of freedom per year. We then considered weather

terms to be added to this model along with the day-of-week

variable. The weather model specifications were in part based

on the pattern observed in crosscorrelation function results,

and in part based on the literature. We chose a relatively

parsimonious weather model that included: (1) natural

splines of the same-day temperature with 4 degrees of

freedom to fit immediate temperature effects; (2) natural

splines of the average of lag 1–3 days lagged temperature

with 4 degrees of freedom to fit delayed temperature effects;

and (3) an indicator for ‘‘hot’’ (daily mean temperature

above 80 degrees) and ‘‘humid’’ (daily relative humidity

above 70%) days to fit the interaction. Thus, our base model

included these weather terms, a temporal trend term

(described above), and a day-of-week indicator (1 degree of

freedom).

To the base model, we added PM2.5 or estimates of source-

apportioned PM2.5 from each of the investigators/methods.

Lags between 0 and 4 days were examined. Note that,

because the PM2.5 speciation data at the Washington, DC air

monitoring site were collected on Wednesdays and Saturdays,

each lag corresponds to different sets of mortality days (e.g.,

0-day lag effect: Wednesday and Saturday mortality only; 1-

day lag effect: Thursday and Sunday mortality only, etc.). As

these lags could induce complications in the lag structure of

PM–mortality associations, for PM2.5, we also ran separate

regression models using Wednesdays mortality only and

Saturdays mortality only.

Relative risks for the mortality series were computed for

two types of mass increment: (1) per 5–95th percentile

increment of source-apportioned PM2.5 and (2) per 10 mg/m3

increment of source-apportioned PM2.5. The former would

be useful for evaluating a relative risk increase for ‘‘low’’ vs.

‘‘high’’ pollution, while the latter may be useful to evaluate

the relative toxicity of PM from different source types per

equal mass basis. The former also ‘‘adjusts’’ for potential bias

of a given monitor that may consistently measure higher or

lower levels of pollution compared to the average levels

across the metropolitan area due to the influence of local

sources. Thus, we mainly focus on our results using the

5–95th percentile increment.

We further summarized the results across investigators/

methods in two ways. First, we computed variance-weighted

average risk estimates for each lag and estimated source type

across investigators/methods. Second, we attempt to explain

the variation in the estimated risks as a function of lag,

estimated source type, and investigators/methods. This was

done by regressing the percent excess deaths as the dependent

variable and indicator variables for estimated source types (8

degrees of freedom), investigators/methods (8 degrees of

freedom), and lags (4 degrees of freedom) in a general linear

model, yielding an analysis of variance (ANOVA) table.

Owing to the concern about the rather peculiar lag

structure of association between PM2.5 and mortality (lag 3

day association) found in this dataset, we also conducted,

after the workshop, a sensitivity analysis using five alternative

weather models (models a–e) to examine if weather models

affected the lag structure of associations. The first two models

were similar to those used in recent multi-city time-series

PM source apportionment and health effectsIto et al.
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studies: (a) four smoothing terms including natural splines of

same-day temperature (df¼ 6), natural splines of the average

of lag 1–3 day temperature (df¼ 6), natural splines of same-

day dewpoint (df¼ 3), natural splines of the average of lag

1–3 day dewpoint (df¼ 3); and (b) two smoothing terms

including one with natural splines of same-day temperature

(df¼ 3) and another with natural splines of same-day

dewpoint (df¼ 3). Model (a) is similar to that used in the

mortality analyses of the National Morbidity and Mortality

Air Pollution Study, or NMMAPS (Samet et al., 2000;

Dominici et al., 2003). Model (b) is similar to that used in the

Harvard Six Cities time-series analyses (Schwartz et al.,

1996; Schwartz, 2003; Klemm et al., 2000; Klemm and

Mason, 2003). In addition, to compare results with those

from the other workshop data set, Phoenix, AZ, the model

used by Mar et al. (2005) was used. This model, model (c),

included a natural spline term of 1-day lag temperature with

5 degrees of freedom and a natural spline term of the same-

day relative humidity with two degrees of freedom. We also

considered model (d) with interaction terms of temperature

and relative humidity at lag 0 and lag 2, in natural splines,

both with 4 degrees of freedom. Finally, a model without any

weather adjustment, model (e), was also examined.

Results

Descriptive Statistics
Detailed descriptions of the source apportionment results for

this city can be found in a separate companion paper by

Hopke et al. (2005). This paper will focus on the comparison

of the mortality analysis results and will present the source

apportionment results only to the extent that they will help to

interpret the mortality analyses. Table 1 shows the means,

standard deviations, and 5–95th percentiles for the source-

apportioned PM2.5 mass concentrations by source types

identified and by investigators/methods. The mean, standard

deviation, and 5–95th percentile for the observed total PM2.5

were 17.8, 8.7, 28.7mg/m3, respectively. Four sources/

pollution types, soil, traffic, secondary sulfate, and nitrate,

were most commonly identified, and together explained more

than 80% of the PM2.5 on the average. The estimated

secondary sulfate associated PM2.5, identified in all investi-

Table 1. Estimated average PM2.5 source contributions, (SD), and [5–95th increment] in mg/m3.

Group/name

analysisa
IDb Number of

factorsc
Soil Traffic (gasoline

and/or diesel)d
Secondary

sulfate

Nitrate Residual

oil

Wood

smoke

Sea salt Incinerator Primary

coal

BYU/DE A 6 0.8 (0.6) 2.0 (1.6) 8.4 (7.3) 6.7 (5.6) 0.2 (0.5) 0.3 (0.4)

UNMIX [1.3] [5.4] [21.4] [17.9] [0.6] [0.7]

BYU/WC B 8 0.5 (1.0) 3.7 (2.5) 5.1 (4.3) 6.7 (3.5) 1.9 (1.9) 0.9 (0.9)

Confirmatory FA [2.7] [8.0] [10.4] [10.4] [5.7] [2.7]

CU/EK, PH C 10 0.3 (0.5) 4.1 (3.1) 10.6 (7.1) 1.6 (1.6) 0.3 (0.4) 0.4 (0.4) 0.7 (0.5)

PMF [0.9] [8.0] [21.1] [5.0] [0.9] [1.1] [1.4]

CU/XHS, PH D 8 0.5 (0.7) 1.6 (1.2) 8.4 (6.5) 3.5 (3.0) 0.6 (0.8) 0.6 (0.5) 1.0 (0.6) 1.7 (1.1)

PMF [1.3] [3.2] [19.0] [9.8] [2.0] [1.6] [1.6] [3.6]

HU/FL, LN E 3 3.7 (2.0) 4.6 (2.0) 7.6 (4.0)

TTFA: [4.8] [5.7] [12.2]

NYU/GT, RL, KI F 10 1.0 (1.5) 4.2 (2.8) 9.6 (7.1) 0.6 (1.2) 0.2 (0.4) 0.9 (1.4) 0.6 (0.7)

APCA [2.8] [8.2] [22.0] [3.3] [0.6] [4.3] [1.4]

NYU/GT, RL, KI G 10 0.5 (0.7) 2.5 (1.4) 10.7 (6.9) 2.5 (2.5) 0.3 (0.4) 0.3 (1.1) 0.2 (0.2)

PMF [1.4] [4.2] [21.5] [8.4] [1.0] [0.8] [0.7]

NYU/GT, RL, KI H 7 1.1 (1.3) 3.5 (1.3) 9.8 (6.3) 2.1 (1.9) 0.4 (0.4) 0.6 (0.7) 2.1 (1.2)

Multiple regressione [2.0] [3.8] [18.5] [6.1] [1.2] [0.9] [3.8]

USC/RH I 8 0.7 (1.1) 4.7 (3.5) 7.8 (6.8) 2.5 (2.6) 0.3 (0.3) 1.2 (1.0)

Unmix [1.8] [9.7] [20.2] [8.8] [0.9] [3.2]

aInitials of the University or Institute, investigators (see the title page), and the abbreviations of methods (see text) are shown.
bThese IDs are used in the figures.
cOnly the factors analyzed in mortality regressions are shown in this table. For complete listing, see the companion paper by Hopke et al. (2005).
dMass contributions for gasoline and diesel were combined when they were both reported.
e‘‘Signature element or species’’ for each source was chosen a priori, and PM2.5 was regressed on them to apportion mass concentrations.
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gators/methods’ results, was generally the largest estimated

constituent of PM2.5, explaining up to 60% of the PM2.5

mass on average. Soil associated PM2.5 was estimated to be

much smaller fraction of PM2.5 (2–20%), but was identified

by all the investigators/methods. Every investigator/method

identified traffic-related PM2.5, but two teams clearly

separated diesel-associated PM2.5 and gasoline-associated

PM2.5, while another team, using two methods, identified

two traffic-associated PM2.5 without clearly specifying diesel

or gasoline. Therefore, to facilitate a comparison of risk

Figure 1. Time-series plot of source-apportioned PM2.5 averaged across investigators/methods.

PM source apportionment and health effectsIto et al.
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estimates for the estimated traffic PM2.5, we conducted

mortality analysis using the combined traffic PM2.5 (i.e.,

diesel plus gasoline). Figure 1 shows the daily source-

apportioned PM2.5 mass concentrations averaged across

investigators/methods. The secondary sulfate tends to be

higher in summer, while traffic, nitrate, and residual oil tend

to be higher in cold seasons. We also compared the mean

values for the weekday (Wednesday) vs. weekend (Saturday)

using t-test for these source-apportioned PM2.5. We found

that PM2.5 apportioned to traffic, soil, and incinerator to

have higher averages (21, 20, and 9%, respectively) on

Wednesdays than on Saturdays.

Time-Series Daily Mortality Analyses
Figure 2 shows the estimated relative risks for PM2.5 at lags

0–4 using the base model, as well as using the model without

adjustment for weather effects. Note that a significant

association is seen only at lag 3 day. This is rather a peculiar

lag structure in that it is not ‘‘distributed’’ (i.e., positive

coefficients at consecutive lags). However, examining asso-

ciations at real consecutive days is not possible with this data

set because of the Wednesday and Saturday sampling

schedule. Thus, each lag represents the correlation of the
Figure 2. Lag structure of PM2.5 associations with total mortality and
the influence of weather model.

Figure 3. Estimated total non-accidental mortality relative risk per 5–95th percentile increment in source-apportioned PM2.5 by source type and
investigators/methods. See Table 1 for alphabetical keys. The four consecutive estimates are for lags 0–4 days.

PM source apportionment and health effects Ito et al.
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pollution data with an entirely different set of mortality days,

which may well add instability to the lag structure. However,

as also shown in Figure 2, restricting the data to Wednesday

only or Saturday only also resulted in the strongest

association at lag 3 day. In the model without adjustment

for weather, PM2.5 risk estimates remained most significant

for lag 3, but were also nearly significant at lag 0 day. Thus,

the weather model does affect the lag structure of association

and pollution risk estimates somewhat, but it is not inducing

the association.

In the sensitivity analysis of PM2.5 risk estimates to

varying extents of temporal trend adjustment, the lag

structure and magnitude of estimates were essentially

unaffected. For example, the percent excess risk estimates

for total non-accidental mortality at lag 3 were 7.9% (95%

CI: 3.3, 12.6), 8.3% (95% CI: 3.7, 13.1), 8.3% (95% CI:

3.7, 13.2), and 8.1% (95% CI: 3.1, 13.2), for 2, 4 (the base

model), 8, and 16 degrees of freedom per year, respectively.

Therefore, the rest of the analyses using source-apportioned

PM2.5 were conducted using the base model with 4 degrees of

freedom per year.

Figures 3 and 4 show the relative risk estimates per 5–95th

percentile of source-apportioned PM2.5 by source types

across investigators/methods for total (non-accidental) and

cardiovascular mortality series, respectively. The results for

cardiorespiratory mortality were similar to those for

cardiovascular mortality (results not shown). Risk estimates

per 10 mg/m3 of source-apportioned PM2.5 were more

variable across investigators/methods as well as across

estimated source types, likely due to the differences in mean

values across these groupings (results not shown). Interest-

ingly, the lag structure of associations varies from source type

to source type, and is generally consistent across the

investigators/methods, as follows: the soil factor has mostly

positive, although not significant, coefficients at multiple lags;

the secondary sulfate factor shows the strongest association

at lag 3 day in all the investigators/methods’ results; the

nitrate factor shows mostly negative coefficients except at lag

3 day; the residual oil factor shows its strongest association,

although never significant, at lag 2 days; the wood-burning

factor shows generally increasing association with increasing

lag time (not significant); the incinerator factor consistently

shows significantly negative associations at lag 0 day; and the

primary coal factor, identified by three investigators, shows

the same lag structure as the secondary sulfate, with a

significant association at lag 3 day. In general, the variations

in risk estimates across the lags are greater than the variations

across investigators/methods.

Figure 4. Estimated total cardiovascular mortality relative risk per 5–95th percentile increment in source-apportioned PM2.5 by source type and
investigators/methods. See Table 1 for alphabetical keys. The four consecutive estimates are for lags 0–4 days.

PM source apportionment and health effectsIto et al.
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To further summarize the variability of the risk estimates,

we computed variance-weighted average risk estimates at

each lag across investigators/methods, as shown in Figure 5

for total mortality. Also shown are the 95% CI from the

variability across investigators/methods and the average 95%

CIs from regressions (based on the average of standard errors

of regression across investigators/methods). The variability

of the estimated source-specific risk estimates due to

investigators/methods is much smaller than that due to

regression standard error with only one exception, the risk

estimate for the incinerator factor at lag 3 day. Again, the

differences in lag structure of associations among some of the

source factors are seen. Figure 6 shows the variance-weighted

mean risk estimates result for cardiovascular mortality. The

pattern of risk estimates for cardiovascular mortality is

similar to that for total mortality.

Table 2 shows the ANOVA result with the variance

breakdown of total mortality percent risk estimates by

estimated source types, investigators/methods, and lag days,

from a general linear model. The pollution source types and

lag days significantly explained the variation in risk estimates,

whereas the investigators/methods did not. Table 3 shows the

ANOVA result for cardiovascular mortality risk estimates,

which was similar to that for total mortality. These results

suggest that the variation in risk estimates due to investiga-

tors/methods was not as important as those due to source

types and lag days.

The varying lag structure of associations across source

types made it difficult to compare source-specific effect sizes

in a simple manner. One approach, while this may bias the

estimates upwards, was to compare the risk estimates across

source types at the most consistently significant lag for each

source type. For total mortality, the largest (and most

significant) estimated relative risks (RR) per 5–95th percentile

increment of source apportioned PM was found for

secondary sulfate (variance-weighted mean percent excess

mortality¼ 6.7% (95% CI: 1.7, 11.7)) at lag 3 days. The

second largest estimated risks were found for primary coal-

related PM2.5, identified by only three teams, with the same

lag structure as sulfate (mean percent excess mortality

¼ 5.0% (95% CI: 1.0, 9.1). Residual oil factor showed the

most consistent positive estimate at lag 2 days (mean percent

excess mortality ¼ 2.7% (95% CI: �1.1, 6.5)). Risk

estimates for traffic-related PM2.5, while significant in some

Figure 5. Relative risk and 95% CI of total mortality associated with estimated source-apportioned PM2.5 (variance-weighted), averaged across
investigators/methods. Y-axis: relative risk per 5–95th percentile increment of estimated source-apportioned PM2.5. X-axis: lag 0–5 days. The dotted
95% CIs are the confidence bands based on the average regression standard errors. The solid 95% CIs are the confidence bands based on the
variance of point estimates across investigators/methods.
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Figure 6. Relative risk and 95% CI of cardiovascular mortality associated with estimated source-apportioned PM2.5 (variance-weighted), averaged
across investigators/methods. Y-axis: relative risk per 5–95th percentile increment of estimated source-apportioned PM2.5. X-axis: lag 0–5 days. The
dotted 95% CIs are the confidence bands based on the average regression standard errors. The solid 95% CIs are the confidence bands based on
the variance of point estimates across investigators/methods.

Table 2. Analysis of variance results: variation in total mortality percent excess risk estimates as a function of source type, investigators/methods,
and lag days in a general linear model.

Source of variation Degrees of freedom Sequential sum of squares Adjusted sum of squares Adjusted mean squares F-value P-value

Pollution source type 8 219.3 230.5 28.8 8.19 o0.001

Investigators/methods 8 23.9 23.9 3.0 0.85 0.560

Lag days 4 458.2 458.2 114.6 32.56 o0.001

Error 264 928.9 928.9 3.5

Total 284 1630.4

Table 3. Analysis of variance results: variation in cardiovascular mortality percent excess risk estimates as a function of source type, investigators/

methods, and lag days in a general linear model.

Source of variation Degrees of freedom Sequential sum of squares Adjusted sum of squares Adjusted mean squares F-value P-value

Pollution source type 8 312.6 309.0 38.6 5.29 o0.001

Investigators/methods 8 28.6 28.6 3.6 0.49 0.863

Lag days 4 592.1 592.1 148.0 20.28 o0.001

Error 264 1926.9 1926.9 7.3

Total 284 2860.3
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cases, were more variable across investigators (mean percent

excess mortality ¼ 2.6% (95% CI: �1.6, 6.9)). Soil-related

PM2.5 showed smaller effect size estimates (mean percent

excess mortality¼ 2.1% (95%CI: �0.8, 4.9), but they were

more consistently positive at multiple lags. Figure 7 shows

these mean percent excess deaths for all the estimated source

categories as well as the distribution of point estimates from

the sensitivity analysis that examined the effects of alternative

weather models. It is not surprising that the estimated effect

size per 5–95th percentile for the sulfate-related PM2.5 is

similar to that for the total PM2.5, as the sulfate-related

PM2.5 explain more than half of the total PM2.5 in this city.

The point estimates from the base model were mostly close to

the median of the estimates from all the six weather models,

except for sulfate, in which other models tended to yield

somewhat smaller estimates than the base model.

Discussion

This analysis of source-apportioned PM2.5 provided useful

insights into the effects of PM source apportionment method

variations on source apportionment health effects modeling,

but also raised several issues. The ultimate goal of the

application of source-apportionment to the PM health effects

analysis is to identify component(s) of PM that may be

especially harmful. However, as observed in this analysis,

comparing the risk estimates across various source-appor-

tioned PM2.5 is not always straightforward.

First, the results of this study suggest that the lag structure

of associations appears to vary across source types. For

example, in this data set, the strongest associations for

sulfate-related PM2.5 were found at lag 3 day. In contrast,

the risk estimates for soil-related PM2.5 were more con-

sistently positive across the four (0–4) lag days examined,

although their effect size estimates were smaller than those for

sulfate-related PM2.5. The Wednesday/Saturday sampling

schedule did not allow us to examine the distributed lag

model, and therefore we could not compare the risk estimates

across source types using the sums of the effects over several

days. Thus, the use of PM2.5 mass on one time lag may

obscure the individual source components’ lag effects, likely

underpredicting the sum of the individual source’s PM2.5

effects.

Another complication is that the difference in lag structure

of associations may be caused in part by the difference in the

correlation between the source-apportioned PM and weath-

er/temporal trend adjustment terms. Varying degrees of

correlation with regression covariates across source types

make it difficult to perform a ‘‘fair’’ comparison of source-

specific PM effects, especially if these estimates are sensitive

to alternative weather models. This issue needs to be

examined using multiple cities where source types vary. An

interesting implication of the possible difference in lag

structure of health effects associations across source types is

that, depending on the dominant source type(s) of the city,

the lag structure of PM–health outcome associations may

also vary across cities. Again, analyses of PM2.5 speciation

data in multiple cities should shed light on this factor.

In this data set, sulfate-related PM2.5, the largest estimated

fraction of PM2.5, was most significantly associated with

mortality (and with the largest effect size per the same

distributional increment increase). Sulfate, being a secondary

transported PM, tends to be uniformly distributed within the

metropolitan Washington, DC area, and thus likely has

relatively small exposure characterization error. In contrast,

we expect the source types such as traffic, incinerator, and

residual oil to be more locally influenced and therefore have

larger exposure characterization error, which could have

attenuated mortality associations. To evaluate the relative

importance of source-specific PM health effects, we need to

take into account these (possible) differential exposure errors

across source types. We did not have quantitative informa-

tion on these errors in this data set. A recent analysis of

speciation data from three monitors in New York City

suggests that PM2.5 components vary spatially across source

types (Ito et al., 2004). Interpretations of source-apportioned

PM may need to incorporate such information.

While the risk estimates were reasonably consistent across

investigators using different multivariate receptor models

(note that no CMB type models were used), this does not

guarantee the accuracy of the apportioned PM2.5, or risk

estimates that were apportioned to each of the estimated

source types. Further research is needed in validating the

accuracy of the apportioned mass concentrations.

Given the limitations and issues discussed above, our

analysis still provided a great deal of useful information.

Figure 7. Total non-accidental mortality relative risks (RR) per 5–95th

percentile of source-apportioned PM2.5. The point estimates (except
the total PM2.5) are the variance-weighted average across investigators/
methods, and the 95% CI bars are based on the average of standard
error across investigators/methods at the most consistently significant
lag for each source type, both are from the base model. The Box plots
show the distribution of point estimates across investigators/methods
using all of the six alternative weather models.
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Despite the variety of source-apportionment techniques

employed and the number of investigators involved, the

variation of estimated risks across source types were larger

than the variation of risks across investigators/methods. The

lag structure and effect size of mortality associations appears

to vary across source types, and they were generally

consistent across investigators/methods. Sulfate-related

PM2.5, a major fraction (over 50%) of total PM2.5, showed

the largest excess risk estimates per 5–95th percentile

increment among the source types identified. Analyses of

PM2.5 speciation data from multiple cities should resolve

some of the issues raised in this study.
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