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We modeled the intraurban distribution of nitrogen dioxide (NO2), a marker for traffic pollution, with land use regression, a promising new exposure

classification technique. We deployed diffusion tubes to measure NO2 levels at 39 locations in the fall of 2003 in San Diego County, CA, USA. At each

sample location, we constructed circular buffers in a geographic information system and captured information on roads, traffic flow, land use, population

and housing. Using multiple linear regression, we were able to predict 79% of the variation in NO2 levels with four variables: traffic density within

40–300m of the sampling location, traffic density within 300–1000m, length of road within 40m and distance to the Pacific coast. Applying this model

to validation samples showed that the model predicted NO2 levels within, on average, 2.1 p.p.b for 12 training sites initially excluded from the model.

Our evaluation of this land use regression model showed that this method had excellent prediction and robustness in a North American context. These

models may be useful tools in evaluating health effects of long-term exposure to traffic-related pollution.
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Introduction

Leading researchers have identified the development of

models for assessing air pollution exposure within cities as a

priority for future research (Brunekreef and Holgate, 2002;

National Research Council, 2002; Brauer et al., 2003). This

paper reports on the first stage of a multiyear study

sponsored by the National Cancer Institute to compare

and evaluate different models for assigning within-commu-

nity or intraurban air pollution exposures. Our goal is to

model the intraurban distribution of nitrogen dioxide (NO2),

a marker for traffic pollution, with the land use regression

method developed by Briggs et al. (1997). Although this

method has performed well in European contexts, no studies

have used this method to estimate criteria air pollutant

exposures in the United States, and a need exists to

understand whether the method will perform adequately in

a US setting, where land use, traffic and climate patterns

differ from those in Europe. Land use regressions have cost

and implementation advantages over dispersion models, and

they arguably model pollution concentrations more accu-

rately than proximity measures that use distance from source

to approximate exposures (Jerrett et al., 2005). In future

research, we will compare assigned exposures from these land

use regression models with those from proximity models,

geostatistical kriging and ADMS urban dispersion models.

Recent studies have shown that within-community or

intraurban exposure gradients may be associated with larger

health effects than the between-community exposures used in

the earlier studies (Krewski et al., 2000; Pope et al., 2002).

For example, Hoek et al. (2002) reported a near doubling of

cardiopulmonary mortality (relative risk¼ 1.95, 95% CI

1.09–3.52) for Dutch subjects living near major roads in a

cohort of 5000 people, where control was available for many

confounding variables. Recent cohort studies from Canada

have also discerned large, significant health effects at the

intraurban scale (Finkelstein et al., 2003, 2004). Although

these findings may be robust, the basic exposure models used

in these analyses may misclassify exposure because they treat

the continuous air pollution field as a discrete entity, that is,
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either within or outside a specified distance from a road. With

the high probability of errors in exposure estimates from these

studies, questions remain about the validity of results from

health effect studies that use exposure surrogates such as road

buffers. This scientific uncertainty impedes efforts by policy-

makers to protect public health. Studies comparing different

exposure models in relation to each other and observed health

effects will reduce some of the these uncertainties.

Methods

Study Site
San Diego County, a region of 2.8 million people, was chosen

as the study site due to concerns about high levels of traffic-

related pollutants and the availability of traffic and other spatial

data. Expanding trade and truck traffic and population growth

throughout the region due to the North American Free Trade

Agreement has placed strain on the local airshed. Local

evaluation of a traffic pollution model is a high priority in this

region in order to develop maps of long-term exposure to air

pollutants for use in epidemiologic studies.

Monitoring Site Selection
We used public buildings such as police stations, libraries and

religious institutions as locations for NO2 monitoring. We

selected from approximately 1300 potential monitoring

locations based on (1) terciles of estimated diesel particulate

matter concentrations at the census tract level (United States

Environmental Protection Agency (USEPA), 2001); (2) the

number of potential subjects within 200m of the location for

various epidemiological studies; (3) proximity to freeways

and (4) location within the western part of San Diego

County, the more populated area, due to field work time

constraints. We identified 61 potential monitoring sites that

agreed to participate based on the above criteria. For

comparison purposes, we included three locations where the

San Diego Air Pollution Control District continuously

monitors for NO2 using chemiluminescence analyzers

(Model 42, Thermo Environmental Instruments Inc.). We

also included a background site at a field office used by the

Environmental Health Investigations Branch (EHIB) of

the Department of Health Services near the San Diego

coast. While in the field, we found that a number of eligible

sites were not suitable for NO2 monitor placement (due,

for example, to lack of safe space to place a monitor).

Altogether, we monitored for NO2 at 39 sites (Figure 1).

NO2 Monitoring and Analysis
We sampled for NO2 using passive diffusion tubes (Gradko

International Ltd., P/N: DIF100RTU-R). NO2 travels by

diffusion from the bottom of the acrylic tubes (7 cm

long� 1 cm diameter) and is collected on metal mesh screens
coated with triethanolamine at the top of the tubes (Palmes

et al., 1976). We determined the mass of nitrite as NO2 from

each tube using ion chromatography (Dionex Corp., 500 IC/

AS9 Analytical Column). We placed duplicate tubes at each

monitoring site inside a plastic shelter to protect the diffusion

tubes from oversampling at high wind speeds. The NO2
concentration used in this analysis was the average of the two

tubes. We used cable ties to mount the shelters to drain pipes,

fence posts, trees or plastic stakes with the diffusion tubes

perpendicular to the ground. We attempted to place the tubes

at breathing zone height (1.5–2m) but the ultimate height of

the sampler was determined by the availability of a safe

attachment site and ranged from 1.2 to 8.2m, with the

majority between 1.5 and 3m. The tubes were exposed for

13–16 days in early October 2003. Due to logistic

constraints, not all of the samples could be deployed on the

same day but were deployed over a 3-day period (October

1–3).

NO2 concentrations vary throughout the year, with the

lowest levels in June–August and the highest levels in

December and January. NO2 levels in October are slightly

above the average annual levels for most recent years but are

more representative of average annual concentrations than

the summer and winter extremes.

Buffering

For each sample location, we constructed a series of

concentric circle buffers with radii of 40, 300, 500 and

1000m, using ArcGIS version 8.3. All geographic informa-

tion system (GIS) layers were then clipped to these buffers.

Although an examination of dispersion models suggests that

80–90% of the decay of pollutants occurred within 150 and

200m, research in Toronto, a city of similar size to San

Diego, found that a detectable effect could be identified at

higher distances necessitating the inclusion of wider buffers

(Jerrett et al., in press). In particular, they found that both

traffic counts within 500m and location within 1500m

(downwind) of an expressway were statistically significant

predictors of NO2 concentration.

Traffic Data
The roads and traffic data were developed by EHIB based on

publicly and nonpublicly available data. Road lines come

from the San Diego Association of Governments (SAN-

DAG). Single freeway lines were replaced with more accurate

double lines based on SANDAG’s transportation planning

layer. On-ramps and off-ramps were added using linework

from Navigational Technologies (2002).

We obtained average daily traffic (ADT) count data for

2000 from SANDAG and the California Department of

Transportation (CALTRANS). ADT is defined as the

annual average number of cars traveling in both directions

per weekday. These values are based on traffic counters and
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are collected for nearly all highways and major roads in the

county. A smaller proportion of local roads was also

measured. Nonattributed roads were assigned default values

based on the number of lanes as well as ADT for roads

nearby. ADT values range from a minimum of 400 to more

than 250,000 vehicles per day. In all cases, the ADT was

multiplied by the length of the road segment and divided by

24,000 representing vehicle-kilometers per hour.

Candidate predictor variables were derived from the

buffered road layer and traffic data. Road- and traffic-

related variables included the total length of road (km),

traffic density derived from ADT� length of road (vehicle-
kilometers per hour), length of interstate highways (km) and

a traffic variable weighted by road class.

Land Use Data
Land use data were obtained from SANDAG. The 2003

land use layer was derived by SANDAG from aerial imagery,

SanGIS landbase and other sources (SANDAG, 2004). Each

polygon in the land use layer has been assigned a land use

code representing the type of land use. There are approxi-

mately 30 major land use categories and many of these major

land use categories have been subdivided into minor land use

categories. Candidate land use-related predictor variables

included total area (square meters) covered by industry,

heavy industry, freeways and multifamily residential housing.

Census Data
We used the US Bureau of the Census Summary File 1

(2000) at the block group level to calculate population and

housing density for buffers. Similar to the road and land use

layers, the Census block group layer was clipped to the

buffers discussed above. We estimated Census characteristics

such as population in each buffer by computing the

proportion of a block group’s total area located in that

buffer and multiplying the variables by that proportion. This

Figure 1. Sampling locations.
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assumes an even distribution of these variables within a block

group, but this unrealistic assumption is difficult to avoid due

to limitations on publicly available population data. Candi-

date Census predictor variables included population, popula-

tion by race, housing units and households.

Additional Variables
We also included several additional variables that showed

promise in previous analyses. These include minimum

distance to a major road (defined as those with ADT of at

least 50,000 vehicles), altitude and sampler height (Brauer

et al., 2003).

There was also some concern that proximity to major

urban areas could have some residual effect on NO2 levels.

While suburban areas may have significantly lower traffic

density and lower density road networks, NO2 levels may be

influenced by nearby urban areas. In order to test this effect,

we included as a potential predictor minimum distance to a

large urban area (4100,000 people).
Coastal winds can have a significant effect on air pollutant

levels. The prevailing daytime winds in San Diego County

generally drive coastal pollutants inland. We, therefore,

included distance (due west) to the Pacific coast (in meters)

as a potential predictor variable.

Statistical Modeling
For the initial modeling, a random sample of 12 monitoring

locations stratified by quadrant (NW, NE, SW, SE) was

removed for subsequent validation. Three samples were

removed from each quadrant.

Initial modeling was conducted on the remaining 27

measured concentrations. Candidate predictors were evalu-

ated using primarily exploratory data analysis and manual

forward selection procedures. Stepwise and all-subsets

procedures were also used to identify strong models that

would not otherwise be identified using forward selection. All

variables above were considered both independently of other

variables in the forward selection process and in combination

with other variables in both stepwise and all-subsets

procedures.

Variables were included based on an assessment of their

explanatory power (sums of squares), Mallow’s Cp value,

statistical significance and collinearity with other added

variables. The best model based on 27 samples was then

used to predict the 12 samples removed for validation. The

variables from the best model were also included in a model

using the full set of 39 samples to test the sensitivity of the

coefficients.

We evaluated residual spatial autocorrelation to assess the

independence assumption (which spatially autocorrelated

errors violate). We used a lattice approach to evaluate

residual spatial autocorrelation. Using the 39 sample points,

we constructed a Thiessen polygon theme and then calculated

Moran’s I and Geary’s C values (measures of spatial

autocorrelation) using a Queen’s adjacency neighborhood

structure.

The sensitivity of the model parameters to the selection of

samples was evaluated with a bootstrap. In each iteration,

five randomly selected samples were removed, the final model

was run and the coefficients were recorded. The five samples

were returned to the pool and a new randomly selected group

of five was removed. This procedure was repeated 20,000

times.

Finally, for visualization purposes, we used both regression

and kriging to generate a continuous map of NO2. Although,

in an epidemiologic setting, regression would be used to

predict NO2 concentrations at point locations (e.g., case/

control residences), a smooth, region-wide map of concen-

trations enables a visual assessment of model results. In order

to generate a continuous surface, we applied the final

regression model at 500 randomly selected sample locations

and then kriged these 500 predictions.

Statistical models and variograms were calculated using S-

PLUS statistical software (version 6.1, Insightful Corpora-

tion, Seattle, WA). Kriging was performed with the

ArcGIS Geostatistical Analyst (version 8.3, ESRI, Red-

lands, CA, USA).

Results

Laboratory Results
We recovered diffusion tubes from 100% of the monitoring

sites, although one tube cracked during removal from the

plastic shelter and was discarded. At all other sites, we

calculated the 2-week average NO2 concentration (p.p.b)

from the duplicate tubes. For the one site without a duplicate

tube, the single measured concentration was used in place of

an average. NO2 concentrations at the 39 sites ranged from

8.08 to 28.74 p.p.b. The mean concentration was

14.84 p.p.b, with a median of 15.25 p.p.b and a standard

deviation of 4.70 p.p.b, indicating a fairly normal distribu-

tion. There was good agreement (72 p.p.b) between the
average NO2 concentrations measured by the diffusion tubes

and San Diego Air Pollution Control District’s chemilumi-

nescence analyzers for the 2-week monitoring period. The

interclass correlation coefficient for the collocated tubes was

0.97 and the mean coefficient of variation was 3.3%,

indicating good reproducibility of the diffusion tubes.

Buffering and Potential Predictors
Although all the sample points are located in the Census-

defined San Diego ‘‘urbanized’’ area, there is significant

diversity in the traffic and population patterns in sample

buffers (Table 1). The samples are located in areas ranging

from heavily urbanized, high-traffic areas to areas with few

people or roads. Total population within the 1000m buffers,

for example, ranged from approximately 400 to 29,000.

NO2 prediction with land use regression Ross et al.
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Traffic density within the 1000m buffers also varied

substantially among sample points, ranging from approxi-

mately 1800 to 31,000 vehicle-kilometers per hour. All of the

four locations with the highest traffic density within 1000m

are located within 15 km of the San Diego city center.

Statistical Modeling
The approximately normal distribution of the samples

permitted us to use multiple linear regression with the

standard Gaussian assumptions. Traffic density within the

300m buffer (traffic300) was consistently the strongest

predictor of NO2 levels explaining over 50% of the variation

in the 27 samples. A plot of traffic300 against NO2 reveals a

strong linear relationship with some indication of a slight

curvature (not shown). We explored accounting for the

curvilinear relationship with a second-order polynomial term,

but found that it was insignificant.

Distance to the coast was, independent of other variables,

the second strongest predictor (after removing from con-

sideration collinear variables). Distance to the coast was also

the strongest predictor after adding traffic300. Traffic300 and

distance to the coast together accounted for 64% of the

variation in the NO2 concentrations.

After adding both traffic300 and distance to the coast,

heavy industry within the 1000m buffer becomes the

strongest predictor. While this association is consistent with

previous work (Briggs et al., 1997), just two of the 27

samples had any heavy industry within 1000m. Further-

more, the results from a model with the heavy industry

variable included reveal an extremely high Cook’s distance

value (7.4) for one of these two samples. When this one

sample is removed, heavy industry becomes nonsignificant,

suggesting an unstable relationship. Heavy industry, there-

fore, was excluded.

The next most important variable, after removing from

consideration collinear variables and heavy industry within

the 1000m buffer, was traffic density within the 1000m

buffer. To ensure that we did not ‘‘double count’’ roadways,

we subtracted traffic in the 300m buffer from traffic within

the 1000m buffer producing a doughnut-shaped buffer of

traffic 300–1000m (traffic300–1000). This variable remained

the next most important predictor. These three variables,

traffic300, distance to the coast and traffic300–1000,

accounted for 70% of the variation in the 27 samples.

The last variable to be included was the length of road in

the 40m buffer. Again, to ensure that we did not double

count roads, the 40m portion of the 300m buffer was

removed. This reduced buffer (buffer 40–300) was still the

strongest NO2 predictor when added to the model with three

other variables. This model with four variables (Table 2)

explained 79% of the variation. Model diagnostics suggested

that the model conformed to underlying assumptions of the

regression model.

The model with four predictors was then applied to the 12

validation samples and performed well. It predicted, on

average, to within 2.1 p.p.b (with a maximum residual of

5.6 p.p.b) (Figure 2). The model overpredicts nine of the 12

samples, resulting in a fractional bias (2(AvgPred�AvgObs)/
(AvgPredþAvgObs)) of 11.9%.
The 12 validation samples were then returned to the pool

and a new regression equation was calculated using the same

predictors. This model also performed well (Table 3),

accounting for 77% of the variation in the 39 samples. In

all cases, variance inflation factors were below 1.3, indicating

acceptable levels of collinearity. Diagnostic plots reveal no

major problems, although two samples show relatively higher

Cook’s distances (0.35 and 0.26). The model F-statistic was

27.94 on 4 and 34 degrees of freedom (Po0.00005).
A bootstrap to evaluate the sensitivity of the parameters to

the actual samples included in the modeling suggests that the

intercept, road length (40m), traffic density (300–1000m)

and distance to the coast variables are resistant to the sample

Table 1. Summary statistics for NO2 and selected potential predictor variables.

Variable Mean Median Minimum Maximum First quartile Third quartile

Nitrogen dioxide (p.p.b.) 14.84 15.25 8.08 28.74 10.78 17.47

Sampler height (m) 2.41 1.85 1.21 8.15 1.26 2.46

Elevation (m) 96 94 7 234 40 129

Industrial land use, 300m (m2) 11,801 F F 133,071 F 568

Industrial land use, 1000m (m2) 113,806 8201 F 1,236,896 F 55,927

Length of road, 40m (m) 71 76 F 153 F 115

Length of road, 300m (m) 3431 3436 192 5728 2738 4115

Traffic density, 300m (vehicle-km/h) 1061 769 38 4920 399 1148

Traffic density, 1000m (vehicle-km/h) 11,408 8814 1831 31,202 5416 16,500

Total population, 1000m 8437 7917 392 28,743 4569 10,854

Total housing units, 1000m 3220 2862 133 9193 1837 4414

Distance to the coast (m) 11,079 10,758 315 23,974 7075 15,000

Distance to nearest high-traffic road (m) 1228 892 48 5947 426 1703

Note: Summary statistics are for complete buffers. In order to avoid collinearity, internal buffers have been subtracted from larger buffers for the final models.
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choice (Figure 3). Traffic density (40–300m) appeared to be

somewhat affected. In particular, the histogram for this

variable shows a modest bimodal shape. Further investiga-

tion revealed that the inclusion of a single sample (located

in Escondido) resulted in a 30% change in the parameter.

This sample location has the highest traffic density in the

40–300m buffer and the second highest NO2 value. Overall,

however, the parameter shift has little overall effect on

predictions. Replacing the current coefficient value (0.017)

with the mean value of the right tail (0.022) yields predictions

that are, on average, just 3% different.

The full model accounts for a significant proportion of the

autocorrelation in NO2 concentrations. NO2 values them-

selves are highly spatially autocorrelated with statistically

significant Moran and Geary coefficients of 0.37 (Po0.0005)
and 0.57 (Po0.0005), respectively. (For positive spatial
autocorrelation, Moran ranges from 0 to 1 with 1

representing perfect autocorrelation and Geary ranges from

1 to zero with zero representing perfect autocorrelation.)

Under the full model, the Moran and Geary values become

0.17 (P¼ 0.04) and 0.77 (P¼ 0.03), respectively. While the
autocorrelation levels remain statistically significant at the

0.05 level, the modest levels observed would not be expected

to have a significant effect on model results.

We were able to apply this final regression model and

generate predictions for 499 of the 500 random locations

(one fell just outside the boundaries of the road layer). An

exponential variogram function fit the variogram based on

these 499 points well and yielded a range of approximately

5 km, a nugget of 4.90 and a partial sill of 12.41. The final

kriged surface is shown in Figure 4.

Discussion

We used field monitoring data in San Diego County, CA, to

build and evaluate a land use regression model. Traffic within

a 300m buffer of the sampling location was the most

consistent predictor of NO2 levels, accounting for over 54%

of the variation. When combining this variable with three

Table 2. Final model results based on 27 sample locations (the 12 validation samples were excluded).

Coeff. SE Scaled coeff. Scaled SE t P VIF

Intercept 5.7423 1.4231 15.47 0.47 4.04 0.0006 F
Road length (40m) 28.4658 8.7174 1.64 0.50 3.27 0.0035 1.10

Traffic volume (40–300m) 0.0020 0.0005 2.37 0.56 4.25 0.0003 1.36

Traffic volume (300–1000m) 0.0002 0.0001 1.51 0.50 3.04 0.0060 1.08

Distance to coast 0.0003 0.0001 2.10 0.56 3.75 0.0011 1.38

R2¼ 79%. Variables scaled to mean¼ 0 and standard deviation¼ 1.

Predicted Nitrogen Dioxide (ppb)
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Figure 2. Predictions for 12 samples withheld for validation.

Table 3. Final model results after 12 validation samples are returned to the pool of samples (39 total sample locations).

Coeff. SE Scaled coeff. Scaled SE t P VIF

Intercept 5.3051 1.1039 14.84 0.38 4.81 0.0000 F
Road length (40m) 29.4083 7.0382 1.67 0.40 4.18 0.0002 1.05

Traffic volume (40–300m) 0.0017 0.0004 1.87 0.44 4.23 0.0002 1.29

Traffic volume (300–1000m) 0.0002 0.0001 1.51 0.41 3.72 0.0007 1.08

Distance to coast 0.0003 0.0001 2.01 0.44 4.62 0.0001 1.25

R2¼ 77%. Variables scaled to mean¼ 0 and standard deviation¼ 1.
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other variables (traffic in the 300–1000m buffer, length of

road in the 40m buffer and distance to the coast), the model

explains 79% of the variation in the model.

When applying this four variable model to our validation

samples, we found that the model predicted NO2 levels very

well, predicting levels on average within 2.1 p.p.b and all of

the predicted estimates were within a factor of 1.5 times the

range of the observed levels. Briggs et al., in applying a

similar model in four urban areas of the UK, found that their

model gave estimates of the mean NO2 concentrations within

70–90% of a factor of 1.5 of the observed mean (Briggs

et al., 2000). In general, residuals from the model were less

than 20% of the measured values. The residuals exhibit a

somewhat bimodal form, which is likely explained by the

bimodal shape of the NO2 concentrations themselves.

While most previous studies did not incorporate wind or

coastal influences in their models, we found strong coastal

effects. In San Diego, distance to the coast may be acting as a

proxy for the background NO2 concentration. The wind

blows predominantly from the west, so locations near the

coast receive relatively clean ocean air while the more inland

locations receive air with emissions that occurred along the

coast. We did not evaluate the effect of local wind speed or

direction in the regression model due to lack of data at the

monitoring sites, but this information would likely improve

the overall model prediction.

This study focuses on a 2-week period in October to

demonstrate the utility of land use regression for NO2

prediction. As such, the predictions and kriged surface

should only be seen as representative of fall conditions in the

study area, not annual averages. It should be noted that,

unlike the current study, previous studies using the same

approach (e.g., Briggs et al., 1997) attempted to model

annual average concentrations by taking multiple samples (2–

4) at the same locations over the course of the year. Although

applying this approach to the current study would result in

different NO2 concentrations, we would expect that the

relative differences of sample locations would be preserved

(e.g., areas of relatively high NO2 concentrations would

continue to have relatively high NO2 concentrations) and

that the same variables would continue to be predictive.

The exposure assessment methods used to estimate levels

of traffic-related pollutants are a critical component of health

effect studies. Unfortunately, the exposure assessment piece

of these studies is often the weakest. Simple models such as

proximity of households to roadways have been used in

epidemiologic studies (English et al., 1999; Wilkinson et al.,

1999; Hoek et al., 2002). Although NO2 levels in households

have been found to correlate with distance to roadways and

traffic density (Rijinders et al., 2001), the proximity method

has been criticized due to a high potential for exposure

misclassification (Jerrett et al., in press). Assigning exposure

based solely on proximity measures ignores other traffic, land

use and topographical factors that may influence exposure.

On the other hand, the most sophisticated dispersion models

that integrate meteorological data and atmospheric chemistry
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Figure 3. Histograms of parameter values after a bootstrap with 20,000 iterations.
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require many data inputs and months of training. The land

use regression approach is attractive, as it predicts well, is not

nearly as data intensive as dispersion modeling but can

improve upon proximity methods by incorporating a wider

range of factors that influence exposure.

In summary, we were able to evaluate a land use regression

method to predict levels of NO2 from traffic sources in a

California urban area using field measurements. We found, in

general, that the model produced good predictions, was

robust and was relatively simple in terms of data inputs

required and analysis. To our knowledge, this research

represents the first application of the land use regression

method for a criteria pollutant in a large US city. The

method performed as well or better in the US than in the

other study locations. This model should be further evaluated

in additional locations and with other pollutants but appears

to have great promise for use in evaluating chronic exposures

to traffic exhaust in epidemiologic studies.
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