
Exposure and measurement contributions to estimates of acute air pollution

effects

LIANNE SHEPPARD,a,b JAMES C. SLAUGHTER,b JONATHAN SCHILDCROUT,a L.-J. SALLY LIUb

AND THOMAS LUMLEYa

aDepartment of Biostatistics, University of Washington, Seattle, Washington, USA
bDepartment of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA

Air pollution health effect studies are intended to estimate the effect of a pollutant on a health outcome. The definition of this effect depends upon the

study design, disease model parameterization, and the type of analysis. Further limitations are imposed by the nature of exposure and our ability to

measure it. We define a plausible exposure model for air pollutants that are relatively nonreactive and discuss how exposure varies. We discuss plausible

disease models and show how their parameterizations are affected by different exposure partitions and by different study designs. We then discuss a

measurement model conditional on ambient concentrations and incorporate this into the disease model. We use simulation studies to show the impact of a

range of exposure model assumptions on estimation of the health effect in the ecologic time series design. This design only uses information from the time-

varying ambient source exposure. When ambient and nonambient sources are independent, exposure variation due to nonambient source exposures

behaves like Berkson measurement error and does not bias the effect estimates. Variation in the population attenuation of ambient concentrations over

time does bias the estimates with the bias being either positive or negative depending upon the association of this parameter with ambient pollution. It is

not realistic to substitute measured average personal exposures into time series studies because so much of the variation in personal exposures comes from

nonambient sources that do not contribute information in the time series design. We conclude that general statements about the implications of

measurement error need to be conditioned on the health effect study design and the health effect parameter to be estimated.
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Introduction

The goal of many air pollution epidemiology studies is to

estimate the effect of air pollution on health. One challenging

aspect of this task is that the meaning of the health effect

parameter depends upon the study design, the disease model

(i.e., the assumed relationship between air pollution and

exposure), the approach to analysis, the alignment of

exposure measurements with actual exposure, as well as

many other factors. Thus, there are different parameters that

all can be called health effects. In addition, conditional on the

parameters, in any particular study there are impacts on

estimates due to confounding, measurement error, and the

interplay of the data with the study design and analysis

approach. The goal of this paper is twofold: to point out some

of the factors that affect what parameter is being estimated

based on the design of a health effect study, and to give new

insights into the bias and variance of the estimates actually

achieved in a specific health effect study. For both goals, we

focus on short-term time-varying personal exposure and its

effect on individual health measures. For the first goal, we

discuss the parameterization of various disease models in the

context of the exposure distribution and exposure measure-

ments. To achieve the second goal, we need to add plausible

exposure and measurement models; we use data from Seattle

to guide parameter choice in the hypothesized models. We

also restrict our attention to the time series study design, but

apply it in the context of an underlying individual-level disease

model for time-varying exposure that is generating the data.

Through designed simulation studies, we show the sensitivity

of the health effect estimates to changes in the exposure

distribution and its measurement.

A disease model takes the general form

EðYÞ ¼ f ðX ; b;Z; gÞ ð1Þ
where Y is a disease outcome, X is the exposure, b is the

exposure effect parameter of interest, Z is a vector of other

risk factors or confounders, g is Z’s associated vector of

parameters, and f ( � ) describes their functional relationship.
The definition of b depends upon the disease model since the

functional relationship, f ( � ), and which Z’s are included will
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change its interpretation (e.g., as an additive versus relative

risk, or as an exposure effect when other risk factors are held

constant). It is less well appreciated that the parameter b can

have interpretations that also depend on the exposure

distribution, analysis approach, and study design. We discuss

some examples in the next section.

Time series studies have been the bread and butter of air

pollution epidemiology. In spite of their widespread use,

there has been little work to evaluate what parameters these

studies are actually estimating, or to assess the ability of these

studies to estimate the target parameters in light of the

available exposure data. Measured exposures in air pollution

time series studies are ambient concentrations from fixed-site

ambient monitors. These are treated as fixed and known in

the analysis. As we discuss later, the disconnection between

the exposure measurements and the target exposure (e.g.,

total personal exposure) is an important source of bias. With

a few exceptions, interpretation of the health effects estimated

in the time series study literature has not explicitly addressed

the disconnection between ambient concentration and

personal or population exposure (Dominici et al., 2000;

Sheppard and Damian, 2000).

Models for estimating exposure effects in the presence of

exposure measurement error provide a framework for

clarifying what parameters are being estimated in air

pollution studies such as time series studies. The general

approach to measurement error modeling is to specify three

models: the disease model, the exposure model, and the

measurement model (Clayton, 1991; Gilks and Richardson,

1992). The disease model, for example, (1), relates a disease

outcome to specific exposures. Standard disease model

analyses condition on the exposure X being fixed and known.

Typically, the exposures X are not known or measured; these

are true underlying or latent exposures. The exposure model

specifies the distribution of latent exposures in the popula-

tion. The measurement model relates the measured exposures

to the latent exposures. A necessary assumption for this

formulation is that no additional information about the

disease is contained in the exposure measurements, above

and beyond that contained in the underlying exposures.

While complex, there are measurement error modeling

techniques that can be applied to estimate b in the presence

of exposure measurement error (Carroll et al., 1995).

Measurement error is part of a priority research topic for

airborne particulate matter identified by the National

Research Council Committee on Research Priorities for

Airborne Particulate Matter (1998). The committee defines

measurement error as ‘‘the difference between actual

exposures and measured ambient air concentrations’’ (Na-

tional Research Council Committee on Research Priorities

for Airborne Particulate Matter, 2001). They state that ‘‘the

three sources of measurement error are instrument error (the

accuracy and precision of the monitoring instrument), error

resulting from the nonrepresentativeness of a monitoring site

(reflected by the spatial variability of the pollutant measured),

and differences between the average personal exposure to a

pollutant and the monitored concentration (influenced by

microenvironmental exposures).’’ This follows from work on

measurement error in air pollution time series studies

(Dominici et al., 2000; Zeger et al., 2000). Although these

papers are specific to the time series design, the NRC report

implies that the three sources of measurement error are

important regardless of study design. We believe that the

context of the study F its design, analysis, the outcome, the

available exposure data, and the latent exposure distribution

F will combine to magnify or diminish each of these

measurement error sources.

We suggest that it is valuable to use the measurement error

modeling framework to gain understanding about disease

model parameters in specific contexts. Then under the

assumptions required by the measurement error modeling,

one can assess the impact measurement error and exposure

distribution assumptions have within the context of a

particular study design. After incorporating factors such as

the effect size and analysis approach, one can determine the

consequences of ignoring the measurement error problem.

This is how we approach the second aim of this paper where

we assess the effect of exposure variation and measurement in

the time series design.

Role of exposure, disease model and study design

Personal Exposure Model
We restrict our attention to a (relatively) nonreactive

pollutant (such as particulate matter (PM) or carbon

monoxide (CO)) and assume that total personal exposure

to that pollutant is the relevant exposure for any health

model. We concentrate on relatively nonreactive pollutants

because reactive pollutants (e.g., ozone) will be more sensitive

to the complex interactions that individuals have with their

environments and less likely to satisfy approximately the

assumptions of our proposed model. Our attention on total

personal exposure will give insight into the interpretation of

health effect parameters and the implications of study design.

Most epidemiologic studies rely on ambient (outdoor)

concentration measurements from central site monitors.

Thus, by virtue of the available ‘‘exposure’’ measurement

data, these epidemiologic studies target ambient exposures.

Ambient source exposures are those derived from the

outdoor shared environment. Ambient exposures are also

interesting because policies regulate ambient source pollu-

tants differently than nonambient source pollutants. (Note

that for particulate matter, chemical composition and

dominant sources may be very different for ambient and

nonambient source exposures.)

A model for total personal exposure for individual i at time

t, Xit
P, can be divided into two dominant sources, ambient
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(Xit
A) and nonambient (Xit

N) source exposures:

XP
it ¼ XN

it þ XA
it ¼ XN

it þ aitX
C
it : ð2Þ

Nonambient sources are derived from indoor, personal, or

local environments. Note that Xit
C is ambient concentration

at individual i’s spatial location (and only equals amb-

ient source exposure if the individual spends all their time

outdoors), and ait is the degree of attenuation from the

ambient concentration (Ott et al., 2000; Sheppard and

Damian, 2000; Wilson et al., 2000). We further assume that

Xit
N is independent of Xit

A and ait is independent of Xit
C. Our

model differs from an exposure model that weights the

nonambient source component by (1�ait) (Dominici et al.,

2000; Zeger et al., 2000), which does not coincide with the

mass balance equation interpretation for ait (see below).

With respect to study design, we believe that dividing

exposure into two dominant sources is likely to be the most

important partitioning of exposure. More elaborate partitions

that are based on Duan’s original microenvironmental concept

(Duan, 1991) include the probability- and population-based

exposure model (Burke et al., 2001) and the computational

personal exposure model (Zidek et al., 2000, 2003). Such

microenvironmental models do not distinguish explicitly

ambient and nonambient contributions to personal exposure.

A model for the nonambient source component is

XN
it ¼ ðb0 þ biÞ þ eit ð3Þ

where b0 represents an average nonambient concentration

across all individuals and times in a population, bi is a

subject-specific intercept representing the deviation of an

individual’s usual exposure from the population average, and

eit represents within-person deviations from usual exposure

over time. Typically, one would assume eit to have a normal

distribution with mean zero and variance sit
2, bi to have either

a normal or lognormal distribution, and bi and eit to be

independent. This model can be extended to incorporate

person- or time-specific attributes into the intercept (i.e.

exposure predictors such as type of home heating, cooking

behavior), dependence over time, or other distributional

structures.

The ambient source component of personal exposure has

two parts. The first is an attenuation parameter to adjust the

ambient concentration to an individual’s actual ambient

exposure. The attenuation parameter ait depends upon a

person’s behavior, their microenvironment, and the qualities

of the pollutant. The chemical mass balance equation gives

the underlying structure for modeling ait (Koutriakis et al.,

1992). The key features making up the equation are the

penetration (P), deposition (k) and decay (a) rates of the

pollutant along with human behavior, specifically the fraction

of time an individual spends outdoors (oit). A plausible model

for ait is therefore

ait ¼ oit þ ð1� oitÞ
P

a þ k

(Mage et al., 1999). For particulate matter, this formulation

ignores exposure due to resuspension of ambient PM in the

local environment.

The second part of the ambient source component of

personal exposure is the ambient concentration, Xit
C. This is

known to vary over time because of changes in source

generation, weather, and season. Ambient concentrations

also vary over space as a function of geography (specifically

topography that provides barriers or encourages drainage

flow), weather conditions (that encourage or inhibit environ-

mental mixing), and local sources (both point and mobile

sources). It is reasonable to expect variation over space and

time in ambient concentrations to differ regionally and by

pollutant.

The ‘Exposure data and parameters for health studies’

section summarizes PM2.5 data from Seattle under this model.

Panel Study Disease Model
A traditional panel study enrolls individuals i¼ 1,y,N and

observes them at times t¼ 1,y,T. One possible health

effects model for a continuous outcome is

EðYitjXP
iðt�‘Þ;ZitÞ ¼ g0 þ XP

iðt�‘Þbþ gðZit; gZÞ ð4Þ

where c indicates the lag of the air pollutant, Zit are

confounders, and (g0, b, gZ) are parameters to be estimated.

We assume the pollutant effect b enters linearly in the model,
but there is no such constraint on the confounder effects (i.e.,

g( � ) is an arbitrary function). The linearity assumption is

supported by dose–response modeling in time series studies

(Dominici et al., 2002; Schwartz et al., 2002), although such

studies may not have much power to detect departures from

linearity. We also assume that there is only a single lag for

exposure. Multiple lags or distributed lag alternatives could

be considered as well.

The comparable models for binary outcomes are

EðYitjXP
iðt�‘Þ;ZitÞ ¼ expfg0 þ XP

iðt�‘Þbþ gðZit; gZÞg ð5Þ

for a rare event, and

EðYitjXP
iðt�‘Þ;ZitÞ ¼ expfg0 þ XP

iðt�‘Þbþ gðZit; gZÞg
=ð1þ expfg0 þ XP

iðt�‘Þbþ gðZit; gZÞgÞ
ð6Þ

for a common outcome.

Types of Effects
The parameterization of the exposure effect described

above can be expanded. Most commonly in panel studies,

we recommend summarizing the average exposure for

each individual, XP
i ¼ ST

t¼1XP
it =T and allowing this term

to have a separate parameter in the model. For instance,

(5) becomes

EðYitjXP
iðt�‘Þ;ZitÞ ¼expfg0 þ ðXP

iðt�‘Þ � XP
i ÞbWp

þ XP
i bBp

þ gðZit; gZÞg
ð7Þ
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where bWp
is the effect of exposure as it varies within a

person, and bBp
is the effect of average exposure as it varies

between people. The assumption that bBp
equals bWp

is the

assumption of no contextual effects (Firebaugh, 1978;

Sheppard, 2003), which is often reasonable for environ-

mental exposures (Sheppard, 2002). However, even when the

underlying parameters are identical, their estimates can be

very different due to differential effects of uncontrolled

confounding and exposure measurement error (Sheppard,

2003).

This is an example where study design and exposure data

can restrict the parameters that can be estimated. In a

traditional panel study, all individuals are observed over the

same time period. Furthermore, because all subjects are

observed simultaneously and when only ambient concentra-

tion measurements are used for the exposure (i.e. substitute

Xt
C for Xit

P), XC
i will not vary across individuals. Without

variation in XC
i , bBp

cannot be estimated separately, but

rather becomes absorbed into the intercept. Alternatively,

when the time period of observation varies for each member

of the panel, there is variation in XC
i with which to estimate

bBp
. However, all the variation is due to the time period

under which that person was studied and therefore bias due

to seasonal confounding will likely be present. We have

argued for estimating but not reporting bBp
due to the

likelihood of residual confounding. (see, e.g., Yu et al.,

2000).

Another partition separates population temporal variation

from the rest of the exposure by defining XP
t ¼ SN

i¼1XP
it =N.

The associated model is given by

EðYitjXP
iðt�‘Þ;ZitÞ ¼expfg0 þ ðXP

iðt�‘Þ � XP
ðt�‘ÞÞbWt

þ XP
ðt�‘ÞbBt

þ gðZit; gZÞg
ð8Þ

where bWt
is the effect of a person’s deviation in exposure

from the shared temporally varying population exposure,

while bBt
is the effect of the shared population exposure as it

varies over time. In a panel study the population is defined as

all members of the panel.

This is another example where the exposure data will have

a large impact on what parameters are possible to estimate.

Again, substituting a single ambient exposure concentration

measurement for total personal exposure in the model, the

difference ðXC
iðt�‘Þ � XC

ðt�‘ÞÞ will always be 0, resulting in no

information with which to estimate bWt
. While the assump-

tion of no contextual effects implies b ¼ bWt
¼ bBt

¼ bWp
¼

bBp
, the presence of exposure measurement error and residual

confounding will make it likely that the estimates of all these

parameters differ.

Role of Analysis

Fixed and Mixed Models Analysis approach can play a

crucial role in what information enters into the parameter

estimates. For instance, (5) can be expanded to include an

individual susceptibility term hi:

EðYitjXP
iðt�‘Þ;ZitÞ ¼hiexpfg0 þ XP

iðt�‘Þb

þ gðZit; gZÞg:
ð9Þ

Suppose this is the model to be estimated while the true

model is

EðYitjXP
iðt�‘Þ;ZitÞ ¼ hiexpfg0 þ ðXP

iðt�‘Þ � XP
i ÞbWp

þ XP
i bBp

þ gðZit; gZÞg ð10Þ

Analysis of (9) can treat each hi as separate fixed effects

(stratified analysis). Alternatively, we can allow hi to have a

distribution with mean 1 and variance sh
2 (random effects

analysis). When sh
2¼ 0, all individuals are constrained to

have the same intercept and we have (5). Sheppard and

Prentice (1995) discuss how the model for hi affects the

estimate of b. In a model that does not partition effects (e.g.

(9)) and in the absence of any confounding, the parameter

estimated in the stratified analysis is purely bWp
, while for

random effects analyses it is a weighted average of bWp
and

bBp
with relative weights determined by sh

2 and the between

versus within group variation in exposure (Piantadosi et al.,

1988; Sheppard and Prentice, 1995).

Aggregation Aggregation can be done in the exposure

alone, in the outcome and associated disease model, or both.

It can be viewed as an aspect of study design or the analysis

approach. Sheppard (2003) discusses the role of aggre-

gation in exposure versus the disease model and the

implications for estimation of exposure effects in the typical

setting where individuals are nested within areas. For acute

effect studies, disease models (4), (5) or (6) can be aggregated

by summing or averaging over all individuals in the

population on each day, for example, considering a model

for E(Yt) where Yt ¼ SiYit or Yt ¼ SiYit=N. This is the

conceptual basis for time series studies. In an aggregate

model, the model for E(Yit) is specified at the individual level

and then aggregated. It is obtained from directly aggregating

disease models over individuals in the population.

Aggregation of the panel study model is different from

other aggregate study models because individuals are not

nested within time periods. Instead, individuals are crossed

with time and thus have their exposure represented within

each of the aggregates.

Aggregation of the disease model is another way to focus

how the information in the exposure is used in estimating the

health effect parameter. In this section, we use (5) because a

model for rare events is the appropriate one for eventual

application to air pollution time series studies. It also allows

us to show the issues that arise when the link function is not

linear. Linear models (e.g., (4)) are simpler to aggregate while

logistic models (e.g., (6)) pose greater challenges after

aggregation (Salway and Wakefield, in press). Using (5),

Exposure and measurement for air pollution effects Sheppard et al.
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the aggregate model is

EðYtÞ ¼
X

i

expfg0 þ XP
itbþ gðZit; gZÞg: ð11Þ

Alternatively, aggregation can be confined to just the

exposure variable. A semi-individual model is still an

individual-level model, but in this case the exposure

represents a population-level exposure. For instance, sub-

stituting the within-population, temporally averaged compo-

nent of exposure in (5) yields the semi-individual model

EðYitjXP
ðt�‘Þ;ZitÞ ¼ expfg0 þ XP

ðt�‘Þbþ gðZit; gZÞg: ð12Þ

When the disease model does not have a linear link function,

aggregation of the exposure without regard for the disease

model can be a source of bias called specification bias

(Sheppard, 2003). The bias comes from not using within-day

exposure variation in estimating b and it occurs because

E(exp{Xb})aexp{E(X)b}). Common wisdom suggests that

there is no bias because the measurement XP
ðt�‘Þ has Berkson

error structure (Kunzli and Tager, 1997; Zeger et al., 2000).

However, in the case of a nonlinear disease model where the

variance of the unmeasured part of the exposure is correlated

with the mean (as would be common for a lognormally

distributed exposure), there can be specification bias due to

using an average of the exposure in the disease model

(Sheppard, 2003). Specification bias will be small when b is

small; this is often true for air pollution health effect studies.

Unlike the semi-individual study, an ecological study

design uses population-level exposures and confounders. It

also does the analysis on (a version of) the aggregated disease

model. Once all variation at the individual level has been

removed from the model predictors, the aggregation does not

change the disease model. Thus modifying the confounders

to only be included at the population level and then

aggregating (12) gives an ecological time series model:

EðYtjXP
ðt�‘Þ;ZtÞ ¼ expfge

0 þ XP
ðt�‘Þb

e þ gðZt; ge
ZÞg: ð13Þ

Here, XP
ðt�‘Þ is the average personal exposure on each day for

the entire population. In practice, X̂X
C

ðt�‘Þ, an exposure

measurement from an ambient monitor, is substituted for

XP
ðt�‘Þ in this model. The time-varying confounders most

often included are smooth functions of time (to control for

season, trends, and epidemics), day of week indicators, and

smooth functions of weather variables, specifically tempera-

ture, dew point, and relative humidity. While these are not

population average confounders, they are believed to capture

the risk factors that are correlated with pollution exposure.

Specification of the model at the individual level and then

introducing aggregation allows us to highlight several research

directions, including: implications of substituting the ecologic

for the aggregate model, and what is the impact of using

ambient monitor measurements for total personal exposure.

We explore these more in the following section and consider

them from a practical point of view in the penultimate section.

Incorporating a measurement error model

Under the assumption that the underlying exposure is Xit
P,

and only time-varying ambient concentration Xit
C is mea-

sured, analysis can still be done by specifying a model for

the distribution of Xit
P|Xt

C. Under the disease model (5), the

model of interest is

Eðexpfg0 þ XP
iðt�‘Þbþ gðZit; gZÞgjXC

ðt�‘ÞÞ

It is necessary to specify g( � ) and a model for the joint

exposure measurement and confounding distribution to

simplify this expectation. In order to concentrate on the

effect of exposure measurement error in isolation of its effects

on confounding, we consider the simpler model:

Eðexpfg0 þ XP
iðt�‘ÞbgjXC

ðt�‘ÞÞ

Since (5) is not linear, it is necessary to specify E(Xit
P|Xt

C) and

var(Xit
P|Xt

C). These are needed for an approximation to the

expectation of a moment generating function when Xit
P|Xt

C is

not normally distributed. (The result is exact when it is

normally distributed.) It simplifies to

expfg0 þ mXPjXC
t
bþ s2

XPjXC
t
b2=2g ð14Þ

Under the assumptions for the exposure model in the first

section and for E(ait)¼ a,

mXPjXC
t
¼b0 þ aEðXC

it jXC
t Þ

s2
XPjXC

t
¼varðbÞ þ varðeÞ

þ varðXC
it jXC

t Þ½a2 þ varðaitÞ�
þ EðXC

it jXC
t Þ

2varðaitÞ:

Determining E(Xit
C|Xt

C), the components of s2
XPjXC

t
, and

their correlation is the first step in assessing the impact

of merely substituting Xt
C for Xit

P in a health effects

model.

These results can be combined with model (11) from the

‘Role of exposure, disease model and study design’ section to

show how spatial variation in the ambient concentration in

air pollution time series studies affects the parameter

estimates. When there is pure spatial variation in ambient

concentration, E(Xit
C|Xt

C) will depend on space only through

a spatially varying intercept, for example, E(Xit
C|Xt

C)¼
d0iþd1Xt

C. The same would hold for the conditional vari-

ance, for example, var(Xit
C|Xt

C)¼ d0i
* þ d1

*var(Xt
C). Under the

additional restrictions that var(b)¼ t1, var(e)¼ t2, var(ait)¼
t3 and there are no confounders, aggregating the disease

model (14) as for (11) yields

EðYtÞ ¼
X

i

expfg0 þ ðb0 þ aðd0i þ d1XC
t ÞÞb

þ ðt1 þ t2 þ ðd�0i þ d�1varðXC
t ÞÞ½a2 þ t3�

þ ðd20i þ 2d0id1XC
t þ d21ðXC

t Þ2Þt3Þb2=2g:
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Collecting terms that do not depend on time into g0i
* and

simplifying, we obtain

EðYtÞ ¼
X

i

expfg�0i þ ad1XC
t b

þ ððd�1varðXC
t Þ½a2 þ t3�

þ ð2d0id1XC
t þ d21ðXC

t Þ2Þt3Þb2=2g
¼ expfad1XC

t bþ ½d21ðXC
t Þ2t3

þ ½a2 þ t3�d�1varðXC
t Þ�b2=2g


X

i

expfg�0i þ d0id1XC
t b2g:

The last term aggregates a function of concentration over

space. Time and space are separable here, so it is only the

nonlinearity in the function exp( � ) that induces any temporal
variation in the spatial variance. Thus, the spatial variability

only induces specification bias into the disease model.

However, because b2 will be quite small in air pollution

applications, there will be limited specification bias. Thus

there will be little effect of the spatial variability of

concentration on the disease model. Note that the parameter

b in this aggregated induced model differs from the parameter

bein the related time series model

EðYtÞ ¼ expfge0 þ XC
t b

eg:

In contrast, when there is spatiotemporal variation in the

exposure, models for E(Xit
C|Xt

C) and var(Xit
C|Xt

C) will vary

over time by location. This exposure distribution will have a

greater impact on the time series model. Many more terms in

the disease model will be affected by the spatial variability.

Then the practical question becomes how large is the

spatiotemporal variation and thus how much will it affect

the health effect estimate. If it is large, it may be possible to

identify predictors such as weather that may explain much of

this source of variation.

We now extend this analytic exercise into a practical one by

simulating a variety of exposure and measurement scenarios.

The following section sets the stage for the simulations

discussed in the subsequent penultimate section by using data

to suggest reasonable assumptions for the exposure and

measurement distributions. In the penultimate section, we

simulate data under an individual-level model for total

personal exposure and its effect on health. We ignore this

structure in the analysis and analyze the data using the time

series study design. Our goal is to understand the implica-

tions in practice of the interplay between exposure distribu-

tion, measurement error distribution, and study design to

health effect estimates from time series studies.

Exposure data and parameters for health studies

Example: Data on PM2.5 in Seattle
We used information from a panel study being conducted in

Seattle to estimate the heterogeneity of ambient concentra-

tion, the local ambient exposure, the attenuation of the

ambient exposure, and variability in the nonambient

exposure. All data were collected between October 1999

and June 2001. For the personal exposure model we used

data on 133 elderly or children subjects residing in 117

locations who were monitored for exposure to particulate

matter beginning in February 2000. Harvard personal

environmental monitors (HPEMs) measured personal ex-

posure to PM2.5 and Harvard impactors (HIs) located

outside of a subject’s residence estimated local ambient

concentration. A HI run concurrently at a central site

estimated ambient exposure. Measurements were taken

during 22 10-day sessions (average of seven subjects per

session) with some subjects monitored twice or three times

(Liu et al., 2002). For assessing spatial heterogeneity of

ambient concentration we used nephelometers from 65 home

sites over 24 10-day sessions. In addition, we included

measurements from nephelometers located at two fixed

locations throughout the entire period of panel study

observation. All measurements for this analysis were for a

study day (from 1600 hours of a day to 1600 hours of the

following day; nephelometers measured continuously and

readings were averaged). Liu et al. (2002) show daily average

nephelometer light scattering data are highly correlated with

gravimetric PM2.5, so we converted nephelometer values

to the same gravimetric scale used for the HPEMs and HIs

(mg/m3) using their regression model.

Estimates of Instrument Error
Sampler evaluation parameters for mass-based samplers such

as HPEMs, HIs, and the Federal Reference Method (FRM)

monitors include detection limit, size cut, and inaccuracy

(bias and imprecision). Personal exposures are difficult to

measure accurately due to the size and noise limitations of the

samplers and pumps. Factors potentially influencing sampler

performance include temperature, relative humidity, analysis

(weighing) errors, sampler application (e.g., stationary versus

personal), and sample handling. From the Seattle panel study

we estimated the imprecision to be 1.2mg/m3 (or 8%) for HIs

and 2.2 mg/m3 (or 17%) for HPEMs. The bias based on

comparisons with the FRM method is 1.1 mg/m3 (or 10%)

for HIs and 1.5 mg/m3 (or 18%) for HPEMs (Liu et al.,

2002).

Personal PM2.5
We. have measurements for Xit

P, Xit
C and Xt

C in mg/m3 from

personal, home outdoor and central site monitors, respec-

tively. We restrict our dataset to person-times with no missing

measurements. We fit the random component superposition

(RCS) model (Ott et al., 2000) to (2) under the strong

assumption that ait¼a and using Xt
C as the predictor. In this

case we obtain a¼ 0.49 (95% CI: 0.36, 0.62), and also using

(3) to model Xit
N, b0¼ 5.4, var(bi)¼ 20.7, and var(eit)¼ 20.5.

RCS analysis using Xit
C as a predictor yielded nearly identical
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results with a slightly smaller estimate of an estimate of

var(bi) (19.7). It is important to note that this analysis does

not account for instrument error. Instrument error in Xit
P

(estimated at 4.84) is incorporated into the estimate of var(eit)

while instrument error in Xit
C and Xt

C has the effect of

attenuating the estimate of a. Using method of moments

approach and a classical measurement error model with

measurement error variance of 1.44 (HI imprecision2), the

corrected estimate of a is 0.53 (95% CI: 0.40, 0.67). Further

exploration of the data indicated that a lognormal assump-

tion for the distribution of bi was more plausible than

normality, but that eit could reasonably be assumed to behave

like a normally distributed variable. Using our data and the

RCS model assumptions, we estimate that 10–12.5% of the

variation in personal exposure in the panel study is due to

ambient exposure (the higher estimate is after removing

estimates of instrument error). Improved estimates of a may
revise this percentage. Related work suggests the constant a
assumption in the RCS model is too strong: a varies

considerably across individuals and is higher during the

nonheating rather than the heating season (Allen et al.,

2003).

Ambient PM2.5: Role of Spatial Heterogeneity
We fit an analysis of variance model to the daily average

ambient nephelometer data from 67 locations (65 homes plus

two central site locations) over 238 days of observation.

Using a separate estimate for each date and location, we

estimate that 87% of the variation in this dataset can be

explained by time, 7% by spatial location, and 6% is

unexplained. The low amount of unexplained variation

suggests very little spatiotemporal variation in PM2.5 in

Seattle. The square root of the residual variation is 2.2 mg/m3.

Since we fit the sums of squares sequentially beginning with

time and allow each date to be fit separately, our estimate

that 87% of the variation is explained by time is optimistic.

Alternatively, assuming the average of the two central sites is

a good measurement of Xt
C, we find that Xt

C explains 84% of

the variation in Xit
C across the 67 sites in a regression analysis.

The estimate of residual error from that analysis is 3.1.

We use the regression of Xit
C on Xt

C (where Xt
C is measured

by the average of two central sites) further to quantify

E(Xit
C|Xt

C) and var(Xit
C|Xt

C). Assessing the residuals from the

regression analysis, we find that there is strong evidence

of a mean-variance relationship in these data such that

var(Xit
C|Xt

C)6(0.037) E(Xit
C|Xt

C)2. We estimate E(Xit
C|Xt

C) to

be 0.9Xt
C–1.6mg/m3.

Consequences for estimation in time series studies

The goal of this section is to determine the impact of a range

of variants in the PM distribution on the ability to estimate

the health effect parameter in an ecologic time series study.

This is accomplished through a series of simulation studies.

We consider the role of various distributional assumptions for

the exposure under a specified model for the outcome. We do

not directly address the effects of aggregation in our analysis.

However, any bias due to aggregation will be manifested in

the health effect parameter estimates we report.

Simulation Structure
For the foundation of these studies, we focus on the type of

data that would generally be available for an ecologic time

series analysis. Typically, these are routinely reported health

events that are rare for individuals in the population. For

feasibility reasons, we restrict the time period to three years

(T¼ 1000 days) and the population size to N¼ 100,000

individuals. We scale the event rates so approximately 6

events are expected per day.

In the basic simulation structure we first simulate N

individual exposures over T days according to the hypothe-

sized exposure distribution. This gives us realized data from

our exposure model. We then use these simulated exposures

and a model for the outcome to simulate binary responses for

each day. This gives us realized data from the individual-level

outcome model. The outcomes are then aggregated by day.

Then we estimate the health effect parameter b by fitting the

ecologic time series model that most closely corresponds to

the aggregate model we derived, given the realities of the

available exposure data. We use some version of the exposure

as the predictor. We consider the latent ambient concentra-

tion (known in simulations) as well as monitor and personal

measurements. This whole process is repeated 500 times in

order to allow us to summarize properties of b̂b. We address in

sequence issues with the ambient versus nonambient source

exposures, the distribution of the fraction of ambient

concentration an individual is exposed to, and the effect of

personal exposure variation (both spatial variation in

ambient concentrations and use of personal exposure

measurements in the time series model).

Contribution of Nonambient Source Exposure
For the first set of simulations we assume a constant

attenuation, a¼ 0.5, and that the ambient concentration is

constant over all individuals in the population, that is,

Xit
C¼Xt

C. We used measured ambient values from a fixed site

in Seattle for the period 1997–1999 for our known ambient

source data. We use model (3) for the nonambient source

exposure (Xit
N) with bi and eit allowed to have either normal

or lognormal distributions. The parameters sb
2, and se

2 vary

across simulations, while the parameters b0, me and mb are

set so E(Xit
N)¼ 39.25 regardless of whether bi or eit were

normally or lognormally distributed. We set g0¼ ([var(bi)þ
var(eit)]b

2/2�b0*b�10.64) to induce a constant event rate

across simulations.

Table 1 gives the results of these simulations averaged over

500 replications. The true value for b is ln (1.2)/10¼ 0.0182.
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This was selected to be slightly larger than but consistent with

the health effect estimates obtained in time series studies.

Note that the health effect estimates from the simulations are

all approximately half the true value for b. The attenuation
parameter a is not identifiable from only the time series

model. Since no accommodation for a has been made, the

model estimates the quantity be¼ab¼ 0.0091. This is

reflected in the very low coverage probabilities for

b¼ 0.0182. It is also noteworthy that the variance estimates

are constant across the range of distributional assumptions

for parameters making up Xit
N and that the two approaches to

estimating the variability in ab give approximately the same

results.

These first simulations show that when ambient and

nonambient source exposures are independent, changes in

the distribution of the nonambient exposure have no impact

on the health effect parameter estimate for the ecologic time

series design. This shows that the well-known Berkson

measurement error result holds, even though the nonlinear

disease model allows for the possibility that specification bias

may affect the estimates. In this particular example specifica-

tion bias is absent because all the unmeasured variability

in Xit
P is independent of the measured exposure Xt

C. Thus

there is no correlation between var(Xit
P|t) and Xt

C. Additional

simulations with nonzero correlation (not shown) did not

show notable evidence of specification bias, likely because of

the near linearity of the health effect in this situation.

Role of the Attenuation Parameter ait
The second set of simulations allows variation in the fraction

of ambient concentration an individual is exposed to, ait.

Table 2 gives the results. The first two rows show the effect of

ait varying across the population with a constant mean of 0.5

on each day. The estimate of be and its standard error are

unchanged with the added variation in ait for both the

uniform and normal distributions. For the remaining results

we allow aitBN(at, 0.15) and then specify a function for at.

(Note that the concentration series Xt
C is characterized by

higher values in the winter and lower in the summer.) In the

next set of three results, at varies over time as defined by

k cos(180þ t/(365/p/2)�0.056)þ 0.5 where t indexes day of

year and k¼ 0.1, 0.2, 0.45, respectively. This constrains at to

be low in the winter with progressively larger seasonal

variation. The result is an estimate of be that is biased low

with greater bias as the variation in at over time increases.

Similarly for the last set of three results at varies over time as

k cos(t/(365/p/2)þ 0.056)þ 0.5. Here, at is high in the winter

with progressively larger seasonal variation. The resulting

estimates of be are biased high with increasingly more bias

when at has the strongest seasonal structure. Our results show

that variation in ait matters in time series studies only to the

Table 1. Estimates of be¼ab under independence of ambient and nonambient source exposures and a range of distributional assumptions for the

nonambient source exposure.

bi eit 95% Coverage

Distribution var(bt) Distribution var(eit) cababa
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðcababÞ

q
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffid
varðcababÞvarðcababÞ

q
a ab b

F 0 Normal 107 9.3 2.9 3.0 0.93 0.13

F 0 Normal 161 8.9 3.0 3.0 0.95 0.11

F 0 Lognormal 74 8.8 2.6 2.7 0.95 0.05

F 0 Lognormal 134 9.0 2.5 2.6 0.96 0.05

Normal 49 Normal 68 9.0 2.9 3.0 0.97 0.12

Normal 49 Normal 102 9.0 3.0 3.0 0.95 0.11

Normal 74 Normal 68 9.2 3.0 3.0 0.95 0.15

Normal 74 Normal 102 9.0 2.9 3.0 0.96 0.12

Lognormal 46 Normal 68 9.0 3.1 3.0 0.95 0.13

Lognormal 46 Normal 101 9.0 2.9 3.0 0.96 0.11

Lognormal 117 Normal 68 9.0 2.9 3.0 0.96 0.11

Lognormal 117 Normal 101 9.2 3.1 3.0 0.94 0.14

a 103; ab 103¼ 9.1.

Table 2. Estimates of be¼ab under variable ait.

ait, correlation with PM cababa ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffid
varðcababÞvarðcababÞ

q
a

95% Cov.

U (0.15, 0.85), none 9.4 2.9 0.95

N (0.5, 0.15), none 9.2 3.0 0.96

Low winter, weak 8.4 3.0 0.96

Low winter, mod 7.4 3.1 0.92

Low winter, strong 5.4 3.1 0.80

High winter, weak 10.3 3.0 0.95

High winter, mod 11.1 3.0 0.89

High winter, strong 13.5 2.9 0.65

a 103; ab 103¼ 9.1.
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degree that it is temporally correlated with ambient

concentration.

Impact of Exposure Measurements
The third set of simulations evaluates which properties of an

ambient measurement are important for ecologic time series

studies. Since there will be some systematic differences within a

geographic area of ambient concentrations, the common

practice of using a single ambient monitor from a fixed location

to represent population exposure needs study. As discussed in

incorporating a measurement error model; the addition of a

constant to the ambient concentration for each individual will

not have much impact on the health effect estimate. With

respect to random variation in the monitor measurements, in

the first part of Table 3 we assume that there is some

spatial variation in the ambient monitors and assess the

effect of using only one monitor or the average of several

monitors. The spatial variation is randomly distributed and

relatively small (see previous section), adding error with

variance 4 to the population ambient concentration, Xt
C.

The strength of association between
c
XC

tXC
t and Xt

C is described by

corrðcXC
tXC
t ;XC

t Þ. Using a single monitor (m¼ 1) in the health

effects analysis results in a small but noticeable attenuation.

This disappears as the number of monitors over space increases.

In the second part of Table 3, we continue to assume that

total personal exposure is the relevant exposure, and

therefore use it directly in the time series regression model.

The nonambient source variation is as given in (3) with both

bi and eit normally distributed with variances 34, 100,

respectively. We use one or the average of up to m¼ 100

individual exposures to represent the population exposure.

(Note that XP
t ¼ b0 þ aXC

t so in the absence of measurement

error attenuation b can be recovered directly from analysis of

the time series model with XP
t as the exposure. For

comparability with estimates in the previous section of the

table, we actually use ðcXP
tXP
t � b0Þ=a, in the analysis.) We

describe the relationship between the personal exposure

measurement and Xt
C as corrððcXP

tXP
t � b0Þ=a;XC

t Þ. For

comparison we also include the daily average of the personal

exposures on all 100,000 members of the population. Note

that there is a great deal of attenuation in the health effect

estimate for small samples of personal exposure measure-

ments on each day. To obtain a reasonably unbiased estimate

of the exposure effect parameter, one would need a minimum

of 100 personal exposures each day in this design, even

though nonambient source exposure also drives the health

effect. This study points out that for an aggregated exposure,

exposure variation that is not associated with the aggregated

outcome behaves like classical measurement error in the

analysis. This is the case even though error in an aggregated

exposure would typically be called Berkson error. In group-

level studies, components of exposures that vary on the same

scale as the outcome may be the most suitable exposure

measurements for producing unbiased exposure effect

estimates. Averaging can remove the noise associated with

other sources of variation, but when these sources are quite

variable, it is important to average over a large number of

measurements in order to avoid attenuation bias.

Implications of the Measurement Error Model in Time
Series Studies
The simulation studies in this section indicate that the size of

the population- and time-averaged attenuation parameter a
affects the health effect estimates obtained and that by using

Xt
C, time series studies estimate ab. However, significant

variation in nonambient exposure, or in ambient source

exposure that is independent of ambient concentration does

not bias the effect estimate cabab when Xt
C is the exposure

measurement. Thus, random variation in ait across the

population has no effect on the estimation of ab. In contrast,
shared population seasonal variation in ait has a big impact

on estimation of ab. Since it is likely that ait varies over time

and across populations, it will be essential to better

characterize this parameter. For instance, Janssen et al.

(2002) discuss how city-specific estimates of ab vary by

prevalence of air conditioning use, an important determinant

of population-average ambient attenuation.

In contrast to time series studies that use ambient monitor

measurements, it is not practical to use average personal

exposure in time series studies when there is no shared

variation in nonambient source exposure across the popula-

tion over time. While average personal exposure allows the

parameter directly estimated in the time series model to be b,
unless there are measurements on hundreds of individuals on

each day, the large variation in nonambient source exposure

and its independence of ambient exposure effectively induces

a huge amount of classical measurement error when average

personal exposure is used as the predictor in the time series

Table 3. Estimates of be¼ab when exposure is estimated from
multiple monitors or people.

M Corr w/Xt
C cababa ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffid

varðcababÞvarðcababÞ
q

a
95% Cov.

c
XC

tXC
t

1 0.95 8.4 2.9 0.94

3 0.98 9.0 3.0 0.93

10 0.99 9.2 3.0 0.93

ðcXP
tXP
t � b0Þ=a

1 0.29 0.9 0.9 0.00

3 0.47 2.2 1.5 0.01

10 0.69 4.8 2.2 0.48

50 0.91 7.7 2.5 0.95

100 0.95 8.5 2.7 0.96

100,000 0.99 9.3 2.8 0.96

a 103; ab 103¼ 9.1.
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design. Zeger et al. (2000) suggest that risk-weighted average

personal exposure is the desired exposure measurement in

time series studies. Our work supports that conclusion from

the perspective of directly estimating the target parameter b,
but differs by further showing that the nonambient source

exposure variability will induce a large amount of classical

measurement error into the analysis (unless the daily samples

for estimating XP
t are huge). Using the average of multiple

ambient monitor measurements in the time series regression

gives estimates of ab that are less biased from classical

measurement error than risk-weighted measurements of XP
t

give for b.

Discussion

Understanding the interplay between exposure, the para-

meters of interest, and the study design is a necessary part of

study planning to achieve the goal of estimating the health

effects of environmental exposures. Meaningful progress in

estimating environmental exposure effects is possible when

the properties of the exposure effect parameters are under-

stood and estimable. Key study design components include:

identifying the exposure metric and its main sources of

variation, the target population, the level of analysis, and the

sampling plan.

A panel study design with exposure variation both within

and between individuals allows one to estimate separate

effects of exposure that can have different interpretations.

While the assumption of no contextual effects means the

underlying parameters are identical, their estimates can be

different due to influences of exposure measurement error

and confounding. Sources of exposure variation that are

collapsed (or nearly collapsed) in an aggregated analysis will

provide little, if any, information for estimation.

The impact of study design or the loss of information due

to aggregation depends upon how exposure varies for a given

disease model. Understanding exposure variation in the

context of the specific study is necessary even when the

exposure is treated as fixed in the statistical analysis. For air

pollution exposure, the assumed independence of ambient

and nonambient exposure sources and the ready availability

of ambient concentration measurements have important

implications for selection of designs that are most effective

for estimating health effects.

Our simulation studies of the effect of exposure and

exposure measurements in the time series design are based

upon assumptions supported by the published literature and/

or our analyses of a large multi-year panel study in Seattle.

While we believe these assumptions are reasonable, some are

not fully evaluated or replicated. One of our key assumptions

is that the ambient and nonambient source exposures are

independent. When this assumption holds, the time series

design only uses information about the ambient source

exposure. We found that time series studies recover a function

of the relative risk parameter fairly well in practice because

the ambient concentration measurements do a reasonable job

of summarizing time-varying population average concentra-

tion, which forms the basis of ambient source exposure, and

the design can take advantage of an entire population of a

geographic area.

For time series studies, the sources of measurement error

can be quantified as follows. The first is random variation in

the concentration measurement from the ambient concentra-

tion for the population on a day. Our simulations showed

that (at least for PM2.5) much of the effect on the health

effect estimates due to the first source of error can be

corrected by using the daily average of a few monitors. A

second important source of error has to do with the temporal

variation in the population average fraction of ambient

exposure (at). This can result in strong positive or negative

biases, depending on how at is correlated with seasonal trends

in ambient concentration. As a third source of error, the

difference between average personal exposure and ambient

measurements is important only to the degree that one is

interested in estimating the relative risk parameter b directly

from the time series studies. Time series studies estimate ab.
Since DXt

Cab¼DXt
Ab (where D means change), the same

relative risk parameter b is incorporated regardless of

whether the model is parameterized in terms of ambient

exposure or ambient concentration. When XP
t is used as the

exposure measurement, b can be estimated directly. How-

ever, when only a few individuals provide data to estimate

XP
t , the model will suffer from severe classical measurement

error bias. Under the assumption of independence of ambient

and nonambient source exposures, time series studies target

ambient source exposure effects and thus do not need to

incorporate average personal exposure measurements. Inter-

pretation of these studies would benefit from better under-

standing of whether and how the attenuation of ambient

concentration (at) covaries with concentration (Xt
C) and

whether this covariance varies across areas.

Air pollution time series studies have been very successful

because they use routinely collected data, including ambient

air pollution monitoring and health surveillance measures.

These data are publicly available and thus inexpensive and

fairly easy to obtain. The nature of variation of pollution

exposure, particularly PM2.5 (which has relatively little

variation over space), means that the time series design can

estimate the health effect due to PM2.5 exposure even though

ambient source exposure is a small component of the

variation due to total personal exposure.

We suggest multiple research paths to better understand

the role of exposure, measurements, and study design on

estimating health effects. Attention should be broadened to

other study designs, particularly designs that target the the

health effects of chronic exposures. Within any single study

design, much more work is needed to assess the validity of the
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basic exposure model and understand how exposure varies

with respect to it. For PM2.5 we need to continue to assess

the validity of the assumption that ambient and nonambient

source exposures are independent. We need to characterize

the distribution of ait and determine how it varies over time.

Further work to assess the spatial and spatiotemporal

distribution of ambient exposure is also necessary. This

research should be repeated for other PM size fractions and

gaseous pollutants. Comparisons across pollutants, for

instance in the degreee of spatial heterogeneity in the ambient

source or the degree of attenuation of ambient concentration

for personal exposure, may give good insight into the relative

performance of the time series estimates for these pollutants.
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