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Numerous studies have reported short-term associations between ambient air pollution concentrations and mortality and morbidity. Particulate matter

(PM) was often implicated as the most significant predictor of the health outcomes among the various air pollutants. However, a question remains as to

the potential role played by the relative error of exposure estimation associated with each pollutant in defining their relative strengths of association. While

most of the recent studies on PM exposure measurements have focused on the temporal correlation between personal exposures and the concentrations

observed at ambient air quality monitors (within a few miles from the subjects), there have been few studies that systematically evaluated spatial

uniformity of temporal correlation of air pollution within the scale of a city (several tens of miles) for which mortality or morbidity outcomes are

aggregated in time-series studies. In this study, spatial uniformity of temporal correlation was examined by computing monitor-to-monitor correlation

using available multiple monitors for PM10 and gaseous criteria pollutants (NO2, SO2, CO, and O3) in the nationwide data between 1988 and 1997. For

each monitor, the median of temporal correlation with other monitors within the Air Quality Control Region (AQCR) was computed. The resulting

median monitor-to-monitor correlation was modeled as a function of qualitative site characteristics (i.e., land-use, location-setting, and monitoring-

objective) and quantitative information (median separation distance, longitude/latitude or regional indicators) for each pollutant. Generalized additive

models (GAM) were used to fit the smooth function of the separation distance and regional variation. The intercepts of the models across pollutants

showed the overall rankings in monitor-to-monitor correlation on the average to be: O3, NO2, and PM10, (rB0.6 to 0.8)4CO (ro0.6)4SO2 (ro0.5).

Both the separation distance and regional variation were important predictors of the correlation. For PM10, for example, the correlation for the monitors

along the East Coast was higher byB0.2 than western regions. The qualitative monitor characteristics were often significant predictors of the variation in

correlation, but their impacts were not substantial in magnitude for most categories. These results suggest that the apparent regional heterogeneity in PM

effect estimates, as well as the differences in the significance of health outcome associations across pollutants, may in part be contributed to by the

differences in monitor-to-monitor correlations by region and across pollutants.
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Introduction

Numerous studies have reported short-term associations

between ambient air pollution concentrations and mortality

and morbidity (U.S. EPA, 1996). Particulate matter (PM)

was often implicated as the most significant predictor of the

health outcomes among the air pollutants examined. How-

ever, a question remains as to the potential role played by the

relative error of exposure estimation associated with each

pollutant in defining their relative strength of association. If

one pollutant had larger errors in estimating population

exposure than another pollutant, then the relative importance

of the pollutants’ underlying associations with health out-

comes would be distorted in the regression analysis. Past

time-series epidemiological studies of air pollution health

effects could not take such exposure estimation errors into

consideration because of lack of the information on the

extent and the nature of such errors.

Much of the recent research on the PM exposure

measurements has focused on the investigation of temporal

correlation between personal exposures and the ambient air

pollution. Typically, these studies measure daily personal

exposures of air pollution (most often PM) for a number of

people (B20 persons) for several weeks, and report temporal

correlation between each individual’s personal exposures and

the ambient concentrations of that air pollutant measured at

fixed outdoor monitors located within a few miles. Many of

these studies (e.g., Lioy et al., 1990; Tamura et al., 1996;

Wallace, 1996; Janssen et al., 1998, 1999; Ebelt et al., 2000)

reported modest to reasonably high temporal correlations

(rB0.35–0.8) between personal PM exposures and the PM

concentrations measured at the outdoor monitors. However,

not all individuals had reasonably high correlations. Lioy

et al. (1990) reported that only six of 14 subjects had a
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statistically significant relationship between outdoor and

personal. Wallace (1996) reported a median r of 0.35 and a

range of �0.17–0.76. Ebelt et al. (2000) reported a median r

of 0.48 and a range of –0.68–0.83 for PM, but found that the

ambient to personal correlations for sulfate were much

higher, median r¼ 0.96 and range 0.66–1.00. The high

correlations for sulfate are expected since there are few indoor

sources of sulfate. Thus, it appears that for relatively diverse

groups with reasonably high indoor PM contributions to

their personal exposures, only a fraction of the subjects will

have reasonably high correlations between personal and

ambient concentrations. However, the correlations between

ambient concentrations and personal exposure to PM of

outdoor origin should be reasonably high (Mage et al., 1999).

Some studies also investigated factors that can alter the

correlation between personal exposure and ambient concen-

trations. For example, Suh et al. (1994) found that the

correlation of indoor and outdoor sulfate (a component of

fine particles of outdoor origin) was lower for homes with air

conditioning, presumably due to lower air exchange rates.

Also, Sarnat et al. (2000) reported that, in an analysis of

nonsmoking subjects in Baltimore, personal exposure and

ambient concentrations of PM2.5 were better correlated for

those with better-ventilated homes. These findings collectively

lend support to the epidemiological associations of short-

term health effects with PM of outdoor origin.

However, it should be noted that the distance between the

subjects and the fixed outdoor monitors was, at most, a few

miles in most of these PM exposure measurement studies.

For example, in Janssen et al.’s (1998) study, they reported

that all subjects lived at most 4 km (B2.5 miles) from the

outdoor monitor. In contrast, in a typical time-series analysis

of mortality or morbidity, the daily counts of death or disease

outcome are aggregated for a geographic boundary (usually a

county or a metropolitan area that consists of multiple

counties) that can span many tens of miles. For example, Los

Angeles County, the most populated county in the US, has

an area of 4070 square miles (64 miles� 64 miles, if it were a

square) as well as substantial topographic variation. There-

fore, there are questions regarding the spatial uniformity of

temporal correlation of air pollution across locations within

such a scale, if health outcomes of people residing in such a

boundary are to be aggregated and examined for associations

with air pollution within the boundary. First, what is the

extent of temporal correlation of concentration of air

pollution between points within such a scale? Second, are

there differences in the extent of temporal correlation across

air pollutants? Additional issues include possible regional

variation in spatial uniformity of temporal correlation in the

US, and identification of monitor specific factors (e.g.,

whether a monitor is located in a residential area or industrial

area) that can alter one monitor’s correlation with others.

Resolving these issues should complement the person-to-

monitor correlations reported in recent studies, and

help establish the link between personal exposures and

population-based exposure estimates used in time-series

studies, as well as providing guidance regarding the choice

of monitors for epidemiological purposes.

We have previously reported results from an analysis of

monitor-to-monitor correlations in seven North-Central

States, IL, IN, MI, OH, PA, WI, and WV (Ito et al.,

2001) for the period 1988–1990. In that study, O3, PM10,

and NO2 showed generally higher monitor-to-monitor

temporal correlation (r: 0.8–0.6) than CO or SO2 (ro0.5).

In this study, we extended the study area to the 48 contiguous

US states and covered a longer period (1988–1997). Our

main objective was to determine the difference, on the

average, in the monitor-to-monitor correlation across

pollutants after adjusting for covariates (i.e., a comparison

of the intercepts in the regression across pollutants). Also, the

regional variation of monitor-to-monitor correlation, if any,

is of interest, because this may be a factor in explaining

regional heterogeneity of air pollution health effects reported

in the past analyses of multiple cities’ data. Finally,

identifying monitor characteristic factors that substantially

affect the variation in monitor-to-monitor correlation is

important in evaluating the suitability of a regulatory

monitor for its applicability to epidemiological analyses.

Material and methods

Data
Air pollution data for PM10, SO2, O3, NO2, and CO were

extracted from U.S.EPA’s Aerometric Information Retrieval

System (AIRS) for all the monitors in the contiguous U.S.

states for years 1988–1997. The AIRS working file format

AMP355 (24-h average for PM10 and 1-h average for

gaseous pollutants were available) was used. From the hourly

gaseous pollutant data, daily average values were computed

and used in the subsequent analyses. Since most of the PM10

data were collected on an every-6th-day sampling schedule

(gaseous pollutants data were collected every day) at most

sites, the data analyses were to be conducted for the PM10

sampling days only for all the air pollutants, in order to use

comparable sample sizes.

The AIRS database format AMP355 contained monitor

characteristic data elements associated with each air pollution

monitor. These include: Land Use (Residential, Commercial,

Industrial, Agricultural, Forest, Desert, Mobile, or Not

Reported); Location Setting (Urban, Suburban, Rural, or

Not Reported); and, Monitoring Objective (Maximum Con-

centration, Population Exposure, Background, Source, Objec-

tive Changed, or Not Reported). The AIRS database also

identified each site’s Air Quality Control Region (AQCR). The

AQCRs are EPA-designated regional boundaries that were

established based on jurisdictional boundaries, urban-industrial

concentrations, and other factors such as air sheds, for the
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purpose of providing adequate implementation of National

Ambient Air Quality Standards (NAAQS) (U.S. EPA, 1972).

The AQCRs can be intra- or inter-state, and consists of

multiple county boundaries. There were 225 AQCRs in this

data set. These characteristics were used in the data analysis as

group indices or indicator variables, or to stratify the data.

The database also contained the longitude and latitude of

each monitor. The longitude/latitude information was used

to compute the separation distance between each pair of

monitors, as well as to characterize the resulting monitor-to-

monitor correlation as a function of geographic location. In

addition to longitude/latitude, the resulting monitor-to-

monitor correlations were also classified according to the

seven regional divisions that were used by health researchers

(EPA, 1996b; Samet et al., 2000; Krewski et al., 2000).

These regional divisions were used in order to facilitate

comparison of the results of this study with those (exposure

characterization and time-series health effects analyses) used

in other studies. The seven regional divisions are shown in

Figure 1, superimposed on the US map with the location of

all the air pollution monitors used in the analysis.

Statistical Analysis
The data analysis consisted of: (1) computation of monitor-

to-monitor temporal correlation; and, (2) regression of the

median correlation of each monitor (with other monitors) on

monitor characteristic variables. These analyses were con-

ducted separately for each of five criteria air pollutants, that

is, PM10, SO2, O3, NO2, and CO.

Since the main interest was the monitor-to-monitor

temporal correlation in the geographic scale of the metropo-

litan area (to match time-series health effects analyses) or

larger area (to examine measurement error for monitors that

are ‘‘too far’’ from the population center), the temporal

correlation was computed for all the pairs within a given

AQCR. This restriction also made the computation of

correlation feasible. Prior to computing monitor-to-monitor

temporal correlation, the air pollution time-series from each

monitor was detrended using smoothing splines of time, with

a period corresponding to approximately 1 month and

longer, in order to eliminate the influence of seasonal and

longer-term cycles. Also, the temporal correlation was

computed only when the pair of monitors had at least 60

Southern
California

Southwest Southeast

NortheastIndustrial
Midwest

Upper MidwestNorthwest

Figure 1. The seven regions and the location of all the air pollution monitors analyzed.
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days of observations (approximately 1 year of every-6th-day

samples). Once temporal correlation was computed for all the

pairs of monitors within the same AQCR, the median

correlation was computed for each monitor (that is, the

median of a monitor’s correlation with other monitors).

To quantitatively describe factors that explain the variation

in monitor-to-monitor correlation, we next conducted

regression analyses. The distribution of the median correla-

tion was somewhat skewed to the right. However, the results

from preliminary regressions indicated that the residuals of

regressions with the monitor characteristic covariates were

approximately normally distributed. Therefore, we then

conducted regression analyses of the median monitor-to-

monitor correlation (dependent variable) on monitor char-

acteristic variables using a generalized additive model (GAM)

(Hastie and Tibishirani, 1992). The GAM model allowed

potentially nonlinear relationships between the median

correlation and the explanatory variables. Local smoothing

functions (e.g., Cleveland, 1979) were included in the GAM

models. The statistical package, Splus (Insightful, 2001), was

used for all the data analyses. To assure convergence of the

GAM’s iterative estimation procedure, the convergence

criteria parameters were set as suggested by Dominici et al.

(2002) as follows: epsilon¼ 10�14; back-fitting

epsilon¼ 10�14; maximum iteration¼ 1000; and, back-fitting

maximum iteration¼ 1000. The explanatory variables in-

cluded qualitative monitor characteristic, the median separa-

tion distance for each monitor with others, ‘‘large’’ (the

largest five percentile) or ‘‘small’’ (the smallest five percentile)

variance of the monitor’s data, and one of two ways to model

regional variation in monitor-to-monitor correlation. Model

specifications of these variables are described in the following.

The qualitative monitor characteristic variables were

modeled using a smoothing spline function (as implemented

in Splus as a function, ‘s’) of a group of indicators, rather

than with separate individual indicator variables. For

example, the eight possible categories of the Land Use

(described above) could be arbitrarily labeled from one to

eight, and a smoothing spline of these levels were fitted using

seven degrees of freedom. Likewise, the Location Setting

(four categories) and Monitoring Objectives (six categories)

were fit using smoothing splines with degrees of freedom of

three and five, respectively. A smoothing function of median

separation distance was included in the regression with locally

estimated smoothing (as implemented in Splus as the

function ‘lo()’). The correlation was assumed to decline

uniformly as a function of a separation distance, and

therefore, a relatively wide span of 0.4 was chosen for all

the air pollutants. Based on our previous analysis using a

smaller geographic coverage of North-central states (Ito et al.,

2001), having a very large or small variance of temporal

fluctuations was a significant predictor of a low correlation.

Therefore, indicator variables for the monitors with the

largest and smallest variance in the five percentiles were also

included in the regression model.

Regional variation, or heterogeneity, of the monitor-to-

monitor correlation was modeled using two alternative

approaches: (1) using the seven regional categories; (2)

applying a smooth function of longitude/latitude. As with the

qualitative monitor characteristic variables, the seven regio-

nal categories were arbitrary numbered and modeled as a

group using the smoothing spline function with six degrees

of freedom. Since the regional differences in the distribution

of median separation distance may influence the estimate of

regional variation, even with the simultaneous inclusion of

median distance in the model, the analysis was also repeated

using the data stratified by the separation distance. The data

were split in half at the median, and also in fourths at quartile

values. In the model using smoothing function of longitude/

latitude (‘loess’ in Splus), a series of spans (0.4, 0.3, 0.2, 0.10,

0.05, 0.02, and 0.01) were used because we did not have

strong assumptions regarding the pattern and smoothness of

the regional variation pattern. The span for the final model

was chosen for each air pollutant based on: (1) a visual

inspection of the spatial pattern of the predicted values; (2)

distribution of the predicted values; and (3) the generalized

cross-validation values (Hastie and Tibshirani, 1990) com-

puted for each of the spans. Thus, the variables described in

the previous paragraphs were simultaneously included in the

regression model with either of these two geographic

variables separately.

Results

Table 1 shows the number of monitors used in the

computations of monitor-to-monitor temporal correlation

(number of observations more than 60 days). PM10 had the

Table 1. Number of monitors used in the computations of temporal correlation by region.

Pollutant Northeast Industrial midwest Southeast Upper midwest Southwest Southern California Northwest Total

PM10 299 414 325 129 124 81 520 1892

O3 181 290 265 34 72 110 181 1133

SO2 199 330 166 73 26 74 101 969

NO2 68 79 42 15 19 58 71 352

CO 100 122 98 37 52 56 167 632

Air pollution in the contiguous US Ito et al.
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largest number of monitors and NO2 the least. The number

of monitors in these seven regions were not evenly

distributed, with the upper Midwest and Southwest regions

containing the two smallest numbers of monitors. As can also

be seen in Figure 1, the density of monitors varies from

region-to-region. It should be noted that the monitor-to-

monitor correlation was computed only for those pairs within

the same AQCR, limiting the scale of separation distance

within the region. The medians of the within-AQCR median

separation distance for PM10, SO2, O3, NO2, and CO were

26, 19, 26, 18, and 11 miles, respectively.

Figure 2 shows the individual correlation coefficients of all

the pairs of monitors (within the same AQCR) vs. their

separation distance, as well as smoothed lines of these points.

It can be seen that, overall, PM10, O3, and NO2 appear to

have similar extent of monitor-to-monitor correlation (B0.8)

when separation distance is very short (o10 miles), whereas

SO2 and CO showed generally smaller correlation. SO2 had
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Figure 2. Monitor-to-monitor temporal correlation vs. separation distance for all the pairs of monitors analyzed.
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the widest range of correlation. All the pollutants show

declining correlation as the separation distance widens, but

the apparent slopes seen here may be misleading as they are

not adjusted for regional variation in correlation. From these

individual correlation coefficients, the median was computed

for each monitor, and used in the regression models as

described in the following. It should be noted that the

apparent slopes of correlation vs. separation distance in

Figure 2 are not adjusted for site-specific variables and

regional indicators. Such adjustments are conducted in the

subsequent regression models.

Figure 3 shows the fitted monitor-to-monitor correlations

and their 95% confidence intervals for all the explanatory

variables (fitted simultaneously) from the PM10 regression

model in which regional variation was modeled with seven

regional indicators. Note that, while some of the qualitative

monitor characteristic variables (i.e., Land Use, Location

Setting, and Monitoring Objectives) showed significant
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Figure 3. Fitted median correlation in the regression model with all the covariates for PM10.
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differences (e.g., ‘‘residential’’ is higher than ‘‘industrial’’ in

Land Use), their magnitude of impacts were mostly not

substantial (less than 0.1 difference in correlation). The wider

confidence bands in some of the categories reflect their

relatively small number of observations in those categories,

and therefore do not contribute substantially to the overall

variance. The pattern of these qualitative monitor character-

istic variables in other pollutants were generally similar to

those for PM10 (e.g., lower correlation for ‘‘desert’’, etc.), or

did not show a distinct pattern (results not shown). The

exception was the pattern in Location Setting for NO2 and

CO, where ‘‘rural’’ monitors showed significantly low

correlation (B0.1 lower). Both very large and small variance

of temporal fluctuations explained lower correlation for

PM10. For NO2, SO2, and CO, the small variance of

temporal fluctuations also explained lower correlation. The

separation distance, as modeled with a smooth function, was

an important predictor of reduction in correlation for all the

pollutants. The reduction in correlation in 30 miles, as

computed as the difference between the predicted correlation

at 5 and 35 miles, were 0.06, 0.12, 0.06, 0.06, and 0.13 for

PM10, SO2, O3, NO2, and CO, respectively. Note that these

slopes are considerably shallower than the apparent slopes

observed in the raw data in Figure 2, suggesting that at least

some of the slope could be explained by the site-specific

variables.

Table 2 shows the intercepts in the regression results for the

five pollutants using the two alternative regional variation

models. It can be seen that the two alternative models can

make a difference of as much as 0.1. In both models,

however, SO2 and CO were the two pollutants with the

lowest correlations.

Table 3 summarizes the relative variance contribution from

each of the fitted explanatory variables for regressions with

two alternative regional variation models. Note again that

the regional variation and the median separation distance are

the two important explanatory variables for all the pollu-

tants, except for NO2, for which Location Setting was also

an important explanatory variable. The amount of variance

explained by the two alternative regional variation models

was somewhat different for PM10 and O3. For PM10, the

smooth function of longitude and latitude fitted better than

the seven-region indicator model. For O3, the seven-region

indicator model explained more variance than the smooth

function model. For CO, the two regional variation models

showed comparable fits but affected the variance explained

by the separation distance. These results do not seem to

suggest any overall preference of one regional variation

model over the other. Overall, about 30–40% of the variance

in the median monitor-to-monitor correlation could be

explained by these regression models.

Figure 4 shows the fitted regional pattern of correlation

(adjusted for other covariates via regression) across

pollutants using the seven regional indicators. Note that an

overall evaluation of correlation across pollutants requires

adding intercepts for each pollutant to these values. For

example, in Northeast, the monitor-to-monitor median

correlation is approximately 0.08 higher than the baseline

(intercept). Since the intercept is 0.74 for PM10, (from

Table 2), the ‘‘average’’ correlation of PM10 is about 0.82 in

this region. The largest regional variation was observed for

SO2, with a difference in correlation of 0.4 between

Northeast and Upper Midwest or Southwest. PM10, O3,

and SO2 showed a similar pattern in that Northeast had a

higher correlation than Western regions (Southwest, South-

ern California, and Northwest).

Although the effects of separation distance was modeled in

the regression, it was still possible that the higher monitor-to-

monitor correlation in eastern regions for PM10, O3, and SO2

may have been due to the relatively high density of monitors

in that region. Therefore, the regression analysis with the

seven regional indicators was repeated using data stratified by

the median separation distance in halves (at the median), and

in fourths (at quartiles). Figure 5 shows the PM10 results for

which the data were split in half at the median of the median

separation distance. The pattern of higher values in eastern

regions and lower values in western regions are seen in both

subsets, but more so in the subset with larger separation

distance. In the results for subsets stratified by quartiles of the

separation distance (not shown), a similar pattern was seen,

but most pronounced in the subset with the largest quartiles

of separation distance. Thus, the contrast between eastern

regions and western regions does not appear to be due to the

difference in monitor density.

In the models with a smooth function of longitude/

latitude, the fitted regional patterns of correlation were

generally consistent with those observed in the models using

the seven regional indicators. Figure 6 shows the fitted and

interpolated regional pattern in monitor-to-monitor correla-

tion for the five air pollutants, adjusting for other covariates.

In these models with smooth functions of longitude/latitude,

the span of 0.05 was chosen for PM10, O3, SO2, and CO;

and, span of 0.2 was chosen for NO2. For all the pollutants,

there appears to be some influence from factors related to

topographical features.

Table 2. Intercepts of the median correlation regression models.

Pollutant Model with seven region

indicators Intercept

(95% CI)

Model with smooth

function of longitude/

latitude Intercept

(95% CI)

PM10 0.74 (0.71, 0.76) 0.64 (0.62, 0.66)

O3 0.82 (0.80, 0.84) 0.71 (0.69, 0.72)

SO2 0.48 (0.44, 0.51) 0.38 (0.35, 0.41)

NO2 0.69 (0.64, 0.74) 0.71 (0.66, 0.75)

CO 0.49 (0.44, 0.53) 0.57 (0.53, 0.60)
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Discussion

The results of this analysis of the entire contiguous US data

show some patterns similar to our earlier analysis of data for

a smaller geographic coverage (seven North-Central US

states): (1) CO and SO2 showed, on the average, lower

monitor-to-monitor correlation than PM10, O3, and NO2;

(2) the separation distance was an important predictor of

drop in correlation; and, (3) the influence of the qualitative

site characteristics such as location setting on correlation was

not substantial for common categories. In this study, regional

variation of monitor-to-monitor correlation was also in-

vestigated, and was found to be an important feature. For

example, while SO2 may have poor monitor-to-monitor

correlation in general, it may have correlation comparable to

PM10, O3, or NO2 in some of the Northeast cities. The
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difference in monitor-to-monitor correlation between North-

east and upper Midwest for SO2 was as large as 0.4, likely

explaining a major fraction of the scatter seen in the raw

monitor-to-monitor correlation. Thus, the results of this

study show that the overall difference in monitor-to-monitor

correlation across the air pollutants, but also show their

regional variation, both of which may be important in

assessing the apparent heterogeneity of air pollution effects

across cities in the US.

The differences in monitor-to-monitor correlation across

the pollutants and regions observed in this analysis can, to

some extent, be explained by the difference in nature and

sources of these pollutants. CO and SO2 are both primary

pollutants, and the impacts from local sources are expected to

be greater than the secondary pollutants formed in the

atmosphere like NO2 or O3, which are likely more uniformly

distributed within a city. Some of the PM10 can be from local

sources, but it also contains regional secondary sulfate and

organic fine particles. Since the larger influence of the

regional secondary aerosol would increase the monitor-to-

monitor correlation, the regions where secondary aerosol is

prevalent should also find generally high monitor-to-monitor

PM correlation. In fact, the pattern of the regional variation

of correlation for PM10 (north- and south-eastern regions

having higher monitor-to-monitor correlation than western

regions) found in this study is consistent with such

speculation. The regional variation in monitor-to-monitor

correlation for other gaseous pollutants may in part be

related to their concentration levels and their variability. For

example, the relatively higher monitor-to-monitor correlation

for SO2 in the Northeast may be due to its relatively high

concentrations (B7 ppb as annual average of daily values) as

well as smaller variability of mean levels across monitors

within the region. A related issue is the differential influence

of the signal-to-noise ratios (i.e., observed levels vs. detection

limits) across pollutants on the corresponding monitor-to-

monitor correlations. For example, according to the

information retrieved from AIRS database, the minimum

detection limit for CO was 0.5 ppm for 24-h average

measurements, which is above the mean levels for many of

the CO monitors in this data set. Also, in our results, the

small variation of CO (i.e., low levels) was a significant

predictor (though its magnitude was not substantial) of low

monitor-to-monitor correlation. Thus, the lack of signal (in

relation to the detection limit) alone may explain some of the

low correlations. For other pollutants, the mean levels were

mostly above their detection limits.

Examining the relationship between the monitor-to-

monitor correlation and the short-term risk estimates

obtained in time-series studies is not straightforward because

the spatial heterogeneity of temporal fluctuations of an air

pollutant is only one component of exposure measurement

error for the population. The other components include the

discrepancy between personal exposure and ambient

concentrations. A development of conceptual framework

and a systematic evaluation of this type of error were

conducted by Zeger et al. (2000). In their model, the

pollution measurement difference between personal exposure

and the average of multiple monitor measurements was

decomposed into three components: (1) the error due

to having aggregate rather than individual exposure data;

(2) the difference between the average personal exposure and

the true ambient pollutant level; and, (3) the difference

between the true and the measured ambient concentration.

They then illustrated that the first and the third compo-

nents are of the Berkson-type error, and therefore are likely

to have relatively small effect on risk estimates. However, the

Zeger et al. model assumed, as mentioned in their paper, that

a high degree of spatial homogeneity in ambient levels

existed, and, for the ‘‘measured ambient concentration’’, the

average of multiple monitor measurements was assumed to

be available. Thus, the component of exposure error, as

exhibited in poor monitor-to-monitor correlation, was not

examined, and the relative importance of these different

components of exposure error has not, to date, been

systematically evaluated.

Table 3. Percent variance contributions from the fitted covariates in the regression model.

Pollutant Regional modela Land use Location setting Monitoring objective Regional variation Separation distance Large variation Small variation

PM10 A 1.8 0.8 1.7 10.5 12.0 0.9 0.2

B 1.8 0.6 1.7 16.3 10.7 1.1 0.1

O3 A 2.9 0.3 1.6 25.3 13.9 0.1 0.0

B 3.0 0.3 1.9 14.8 18.8 0.5 0.0

SO2 A 1.0 1.0 1.2 35.7 3.3 0.1 0.6

B 0.6 1.7 1.2 29.7 4.5 1.0 0.1

NO2 A 1.6 12.2 1.1 12.3 7.6 0.5 0.7

B 1.1 12.3 0.5 10.8 7.8 0.1 1.1

CO A 0.8 5.1 1.0 19.9 17.3 0.1 1.4

B 1.1 4.7 0.9 19.2 8.3 0.1 1.9

aNote: Model A: seven regional indicator variables; Model B: loess smooth function of longitude and latitude.
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There has been an attempt to examine the effect of

monitor-to-monitor correlation on the PM10 mortality

relative risk estimates. Samet et al. (2000) explored the

potential effect modification of PM10 relative risks by

regressing the PM10 coefficients from 90 largest US cities

on the city-specific explanatory variables in their second-stage

regression models. The explanatory variables included the

mean levels of PM10 and gaseous pollutants, the median of
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the monitor-to-monitor correlation, the number of monitors,

mortality rate, sociodemographic variables such as median

household income, etc. While the median monitor-to-

monitor correlation was one of the variables remained in

the best-fitting models, the only statistically significant

explanatory variables were the mean PM10 levels (negatively

associated with PM10 risk estimates) and mean NO2 levels

(positively associated with PM10 risk estimates). Samet et al.

concluded that the largest PM10 effect was evident in the

Northeast, but they did not identify any factors that could

explain the heterogeneity of PM10 effects across cities. It

should be noted, however, that the PM10 and gaseous

pollutants’ data were averaged across multiple monitors for

each city, and the number of available monitors varied from

one to 30 in these cities. If each monitor has an associated

error in representing the citywide temporal fluctuations of air

pollution, and if averaging across monitors reduces the error,

then the reduction in error in the averaged data would

depend on the number of monitors. Therefore, examining the

effects of error on the estimated PM10 risk estimates (that

were computed from the multimonitor-averaged data) would

require modeling the interaction of the median monitor-to-

monitor correlation and the number of monitors. Thus,

including the number of monitors and the median monitor-

to-monitor correlation in the second stage regression in the

Samet et al. study may not have detected the possible effect

of exposure error. An alternative (and more direct) approach

would be to estimate the pollution risk from each individual

Figure 6. Fitted and interpolated surface of regional variation in monitor-to-monitor correlation.
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monitor, and then to evaluate the relationship between the

estimated risks and the estimated exposure error. We are

currently applying this approach using the nationwide

database developed in this project.

The differences in monitor-to-monitor correlation across

pollutants observed in this study also have some implications

in the interpretation of air pollution epidemiological studies.

The difference in relative significance of associations with

health outcomes across pollutants may in part be explained

by the differences in the relative error of exposure estimates

across pollutants, as exhibited in monitor-to-monitor corre-

lation. Reviews of past epidemiological studies in the US

(e.g., U.S. EPA, 1996a, b) suggest that generally stronger

health outcome associations were found for PM indices than

for SO2 or CO, which is consistent with the higher monitor-

to-monitor correlation found for PM10 than for SO2 or CO.

It should be noted, however, that the differences in person-

to-monitor correlations across pollutants might also influence

mask or distort the pollutants’ associations with health

outcomes. In a recent study (Sarnat et al., 2001) in

Baltimore, MD, in which ambient concentrations and

personal exposures were compared for PM2.5, O3, NO2,

and SO2, they found that ambient concentrations were not

associated with their corresponding personal exposures for

any of the pollutants except PM2.5. They also reported that

ambient concentrations of gaseous pollutants were associated

with personal PM2.5 exposures, suggesting that the ambient

gaseous pollutants may distort the PM2.5 effects in time-series

epidemiological models with multiple pollutants. However,

complex intercorrelations among the ambient concentrations

and personal exposures of PM and gaseous pollutants may

vary regionally due to the regional differences in ventilation

rates and levels of pollutants. Therefore, a more comprehen-

sive assessment of the relative influence of person-to-monitor

correlation and monitor-to-monitor correlation on health

effects analysis will need exposure measurement data from a

range of locations and regions.

The findings from this study also provide some insights

into the design of air quality monitor network that considers

epidemiological investigations as well as compliance with

ambient air quality standards. The lower monitor-to-monitor

correlations observed for the pollutants with stronger local

impacts such as CO or SO2 suggest that more monitors may

be required to obtain the same level of precision in exposure

estimates as for other pollutants. Conversely, in cities where

very high monitor-to-monitor correlations were observed for

PM or O3, the available monitoring network may contain

redundant monitors. We note, however, that in this study, we

considered only temporal monitor-to-monitor correlation,

which ignores the difference in absolute levels of pollutants.

The absolute levels of pollutants can be important in

comparing the resulting health risk estimates obtained from

individual monitors. For example, in the Lippmann et al.

(2000) analysis of Detroit mortality data, it was reported

that, while the risk estimates obtained from each of 14 TSP

monitors were comparable if the risk estimates were

computed per comparable distributional increment (i.e.,

5th-to-95th percentile) of TSP at each monitor, the estimated

risk estimates varied by a factor of two when they were

computed per same mass basis because the absolute mean

levels of TSP among the 14 TSP monitors varied by a factor

of two. Thus, evaluating the error in exposure estimates using

monitor-to-monitor temporal correlation can depict only the

factors that affect significance of associations with health

outcomes, but not the size. A more comprehensive evaluation

of exposure error related to ambient concentrations may also

need to incorporate representativeness of monitors (Chan

and Hwang, 1996), or redundancy of monitors (Hwang and

Chan, 1997).

The monitor-to-monitor correlations found in this study,

on the average, ranged from B0.4 to B0.8, across

pollutants. These correlations were also influenced by the

separation distance and by regional variation. For PM10, the

monitor-to-monitor correlations were on the average B0.6–

0.7 depending on the model. The person-to-monitor PM10

correlations found in recent human exposure studies were

(for nonsmokers) approximately B0.6–0.8. Thus, the

monitor-to-monitor correlations of ambient PM concentra-

tions at separate locations within a metropolitan area may be

in the same order of magnitude as the person-to-monitor

correlations. Therefore, an overall assessment of the link

between personal exposure and the health effects of air

pollution found in aggregate time-series studies need to take

in to consideration both types of these variables.

In summary, the results from this study of nationwide air

pollution data suggest that the apparent regional hetero-

geneity in PM effect estimates, as well as the differences in the

significance of health outcome associations across pollutants,

may in part be explained by the differences in monitor-to-

monitor correlations by region and across pollutants.

However, to achieve more comprehensive understanding of

the link between personal exposure and ecologic level health

effects in nationwide basis, more information is needed

regarding the person-to-monitor correlation for a range of

climate and locations. Also, more work is needed to develop

a framework for designing of air quality network for

epidemiological studies for both short-term and long-term

health effects. Since such designs will need to consider the

relative importance of local and regional pollution, the newly

available data from the PM2.5 chemical speciation network

(U.S. EPA, 1997) should help evaluate their relative impacts,

monitor representativeness, and redundancy.
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