Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Use of stable isotopically labeled benzene to evaluate environmental exposures

Abstract

The use of stable, isotopically labeled compounds in controlled exposure experiments at environmentally relevant levels allows for the distinguishing of urinary metabolites associated with known exposure from background levels generally present in the urine. Exposures of volunteers to 13C-benzene for 2 h at 40±10 p.p.b. were conducted after obtaining informed consent, and urinary phenol, catechol, hydroquinone and trans,trans- muconic acid were measured. Each isotopically labeled urinary metabolite was determined in the presence of significantly higher concentrations of the unlabeled metabolite. Following exposure, free and acid hydrolyzed phenol, acid hydrolyzed catechol and hydroquinone, and free trans,trans-muconic acid were determined by GC/MS. The percentage of trans,trans-muconic acid excreted was higher than reported following exposure at occupational levels. The use of isotopically labeled compounds has the potential to investigate the metabolism of common environmental contaminants for validation of toxicokinetic models and improve risk extrapolation from high concentration occupational exposures and animal studies to environmentally relevant pollutant levels.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  • ACGIH. TLVs and BEIs Threshold Limit Values for Chemical Substances and Physical Agents. American Conference of Governmental Industrial Hygienist, Cincinnati, OH, 1998.

  • Balikova M., and Kohlicek J. Gas chromatography of simple phenols in biological fluids. J Chromatogr 1989: 497: 159–167.

    Article  CAS  PubMed  Google Scholar 

  • Bechtold W.E., Lucier G., Birnbaum L.S., Yin S.N., Li G.L. and Henderson R.F. Muconic acid determinations in urine as a biological exposure index for workers occupationally exposed to benzene. Am Ind Hygeine Assoc 1991: 52: 473–478.

    Article  CAS  Google Scholar 

  • Bois F.Y., and Paxman, D.G. An analysis of exposure rate effects for benzene using a physiologically based pharmacokinetic model. Regulatory Toxicol Pharmacol 1992: 15: 122–136.

    Article  CAS  Google Scholar 

  • Boogaard P.J., and van Sittert, N.J. Suitability of s-phenyl mercaputric acid and trans,trans-muconic acid as biomarkers for exposure to low concentrations of benzene. Environ Health Perspect 1996: 104 (Suppl 6): 1151–1158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brambilla P., Lanbert G.H., Cazzaniga M., Needham L.I., Ferrari E., Patterson Jr. D.G., Gerthoux P., Signorini, S., and Mocarelli P. Caffeine breath test in subjects exposed to dioxin at Seveso: preliminary results. Clin Chem 1995: 41(12): 1926–1927.

    Google Scholar 

  • Chan C.-C., Lin S.-H., and Her G.-R. Student's exposure to volatile organic compounds while commuting by motorcycle and bus in Taipei City. J Air Waste Manage Assoc 1993: 43: 1231–1238.

    Article  CAS  Google Scholar 

  • Chan C.-C., Spengler J.D., Ozkaynak H., and Befkopoulou M. Commuter exposures to VOCs in Boston, Massachusetts. J Air Water Manage Assoc 1991: 41: 1594–1600.

    Article  CAS  Google Scholar 

  • Ducos P., Gaudin R., Bel J., Maire C., Francin J.M., Robert A., and Wild, P. Trans, trans-muconic acid a reliable biological indicator for the detection of individual benzene exposure down to the ppm level. Occup Environ Health 1992: 64: 309–313.

    Article  CAS  Google Scholar 

  • Eastmond D.A., Smith M.T., and Irons R.D. An interaction of benzene metabolites reproduces the myelotoxicity observed with benzene exposure. Toxicol Appl Pharmacol 1987: 91: 85–95.

    Article  CAS  PubMed  Google Scholar 

  • Fitzgerald E.F., Brix K.A., Deres D.A., Hwang S.-a., Bush B., Lambert G., and Tarbell A. Polychorinated biphenyl (PCB) and dichlorodiphenyl dichloroethylene (DDE) exposure among Native American men from contaminated Great Lakes fish and wildlife. Toxicol Ind Health 1996: 12(3/4): 361–368.

    Article  CAS  PubMed  Google Scholar 

  • Gist G.L., and Burg J.R. Benzene — a review of the literature from a health effects perspective. Toxicol Ind Health 1997: 13(6): 661–713.

    Article  CAS  PubMed  Google Scholar 

  • Gobba F., Rovesti S., Borella P., Vivoli R., Caselgrandi E., and Vivoli G. Inter-individual variability of benzene metabolism to trans, trans muconic acid and its implications in the biological monitoring of occupational exposure. Sci Total Environ 1997: 199: 41–48.

    Article  CAS  PubMed  Google Scholar 

  • Goldstein B.D., and Witz G. Benzene. In: Lippmann, M. (Eds.). Environmental Toxicants: Human Exposures and Their Health Effects. John Wiley & Sons Inc., New York, 2000, pp. 121–149.

    Google Scholar 

  • Henderson R.F. Species differences in the metabolism of benzene. Environ Health Perspect 1997: 104 (Suppl 6): 1173–1175.

    Article  Google Scholar 

  • Henderson R.F., Sabourin P.J., Bechtold W.E., Griffith W.C., Medinsky M.A., Birnbaum L.S., and Lucier G. The effect of dose, dose rate, route of administration and species on tissue and blood levels of benzene metabolites. Environ Health Perspec 1989: 82: 9–17.

    Article  CAS  Google Scholar 

  • Inoue O., Seiji K., Kashara M., Nakatsuka H., Wantabe T., Yin S.-G., Li G.-L., Cai S.-X., Jin C., and Ikeda M. Determination of catechol and quinol in the urine of workers exposed to benzene. Br J Ind Med 1988: 45: 487–492.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Inoue O., Seijl K., Kasahara M., Nakatsuka H., Watanabe T., Yin S.G., Li G.-l., Jin C., Cai S.-X., Wang X.-Z. et al. Quantitative relation of urinary phenol to breathzone benzene concentrations: a factory survey. Br J Ind Med 1986: 43: 692–697.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Inoue O., Seiji K., Nakatsuka H., Watanabe T., Yin S.N., Li G.-L., Cai S.X., J.C, and I.M. Excretion of 1,2,4-benzenetriol in the urine of workers exposed to benzene. Br J Ind Med 1989a: 46: 122–127.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Inoue O., Seijl K., Nakatsuka H., Watanabe T., Yin S.-N., Li G.-L., Cai S.-X., Jin C., and Ikeda M. Urinary t,t muconic acid as an indicator of exposure to benzene. Br J Ind Med 1989b: 46: 122–127.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kline, S.A., Robertson J.F., Grotz V.L., Goldstein B.D., and Witz G. Identification of 6-hydroxy-trans,trans-2,4-hexadonic acid, a novel ring-opened urinary metabolite of benzene. Environ Health Perspect 1993: 101(4): 310–312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lambert G.H., Schoeller D.A., Humphrey H.E.B., Kotake A.N., Lietz H., Campbell M., Kalow W., Spielberg S.P., and Budd M. The caffeine breath test and caffeine urinary metabolite ratios in the Michigan cohort exposed to polybrominated biphenyls: a preliminary study. Environ Health Perspect 1990: 89: 175–181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lawryk N. Lioy P.J., and Weisel C.P. Exposure to volatile organic compounds in the passenger compartment of automobiles during periods of normal and malfunctioning operation. J Exposure Anal Environ Epidemiol 1995: 5(4): 511–531.

    CAS  Google Scholar 

  • Lovern M.R., Cole C.E., and Schlosser P.M. A review of quantitative studies of benzene. Crit Rev Toxicol 2001:31(3): 285–311.

    Article  CAS  PubMed  Google Scholar 

  • Mathews J.M., Etheridge A.S., and Matthews H.B. Dose-dependent metabolism of benzene in hamsters, rats and mice. Toxicol Sci 1998: 44: 14–21.

    CAS  PubMed  Google Scholar 

  • Medeiros A.M., Bird M.G., and Witz G. Potential biomarkers of benzene exposure. J Toxicol Environ Health 1997: 51: 519–539.

    CAS  PubMed  Google Scholar 

  • Medinsky M., Sabourin P., Lucier G., Birnbaum L., and Henderson R. A physiological model for simulation of benzene metabolism by rats and mice. Toxicol Appl Pharmacol 1989: 99(2): 193–206.

    Article  CAS  PubMed  Google Scholar 

  • Medinsky M.A., Kenyon E.M., and Schlosse P.M. Benzene: a case study in parent chemical and metabolite interactions. Toxicology 1995: 105: 225–233.

    Article  CAS  PubMed  Google Scholar 

  • Morgan M.S., Dills R.L., and Kalman D.A. Evaluation of stable isotope probes in the study of solvent pharmacokinetics in human subjects. Int Arch Occup Environ Health 1993: 65: S139–S142.

    Article  CAS  PubMed  Google Scholar 

  • Mueller G., Koelbel M., Heger M., and Norpoth K. Urinary S-phenylmercapturic acid and phenylguanine as indicators of benzene exposure. Biological Monitoring of Exposure to Chemicals. Organic Compounds. In: Ho, M. H., and Dillon, H. k. (Eds.). John Wiley and Sons, New York, 1987: pp. 91–98.

    Google Scholar 

  • Nihlén A., Sumner S.C.J., Lof A., and Johanson, G. 13C 2- Labeled methyl tert-butyl ether: Toxicokinetics and characterization of urinary metabolites in humans. Chem Res Toxicol 1999: 12(8): 822–830.

    Article  PubMed  CAS  Google Scholar 

  • Ong C.-N., and Lee B.-L. Determination of benzene and its metabolites: Application in biological monitoring of environmental and occupational exposure to benzene. J Chromatogr B 1994: 660: 1–22.

    Article  CAS  Google Scholar 

  • Ong C.N., Lee B.L., Ong H.Y., and Hong L.E. Determination of urinary phenol by acid hydrolysis and capillary gas chromatography. J Anal Toxicol 1988: 12: 159–161.

    Article  CAS  PubMed  Google Scholar 

  • Ong C.N., Lee B.L., Shi H.Y., and Lee H.P. Elevated levels of benzene-related compounds in the urine of cigarette smokers. Int J Cancer 1994: 59: 177–180.

    Article  CAS  PubMed  Google Scholar 

  • Parke D.V., and Williams R.T. Studies in detoxification. 49. The metabolism of benzene containing [14C] benzene. Biochem J 1953: 54: 231–238.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pezzagno G., Maestri L., and Giorentin M.L. Trans, trans muconic acid, a biological indicator to low levels of environmental benzene: some aspects of its specificity. Am J Ind Med 1999: 35: 511–518.

    Article  CAS  PubMed  Google Scholar 

  • Popp W., Rauscher D., Muller G., Angerer J., and Norpoth K. Concentrations of benzene in blood and S-phenylmercaptureic and t,t-muconic acid in urine in car mechanics. Int Arch Occup Environ Health 1994: 66: 1–6.

    Article  CAS  PubMed  Google Scholar 

  • Qu Q., Melikian A.A., Li G., Shore R., Chen L., Cohen B., Yin S., Kagan M.R., Li H., Meng M . et al. Validation of biomarkers in humans exposed to benzene: urine metabolites. Am J Ind Med 2000: 37(5): 522–531.

    Article  CAS  PubMed  Google Scholar 

  • Rabinowitz M.B. Toxicokinetics of bone lead. Environ Health Perspect 1991: 91: 33–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rossi A.M., Guarnieri S., Rovesti S., Gobba F., Ghittori S., Vivoli G., and Varale R. Genetic polymorphisms influence variability in benzene metabolism in humans. Pharmacogenetics 1999: 9(445-451).

  • Rothman, N., Smitth, M., Hayes, R., Traver, R., Hoener, B., Campleman, S., Li, G., Dosemeci, M., Linet, M., Zhang, L., Xi L., Wacholder S., Lu W., Meyer K.B., Titenkko-Hollandd N., Stewart J.T., Yin S. and Ross D . Benzene poisoning, a risk factor for hematological malignancy, is associated with the NQ01 609C-T mutation and rapid fractional excretion of chlozoxazone. Cancer Res 1997: 57: 2839–2842.

    CAS  PubMed  Google Scholar 

  • Sabourin P.J., Bechtold L.E., Birnbaum L.S., Lucier G., and Henderson R.F. Differences in the metabolism and disposition of inhaled [3H] benzene by F344/N rats and B6C3F1 mice. Toxicol Appl Pharmacol 1988: 94: 128–140.

    Article  CAS  PubMed  Google Scholar 

  • Sabourin P.J., Bechtold W.E., Griffith W.C., Birnbaum L.S., Lucier G., and Henderson R.F. Effect of exposure concentration, exposure rate and route of administration on metabolism of benzene by F344 rats and B6C3F mice. Toxicol Appl Pharmacol 1989: 99: 421–444.

    Article  CAS  PubMed  Google Scholar 

  • Sabourin P.J., Muggenberg B.A., Couch, R.C., Lefler D., Lucier G., Birnbaum L.S., and Henderson, R.F. Metabolism of [14C]benzene by cynomolgus monkeys and chimpanzees. Toxicol Appl Pharmacol 1992: 114: 277–284.

    Article  CAS  PubMed  Google Scholar 

  • Sabourin P.J., Sun J.D., MacGregor J.T., Wehr C.M., Birnbaum L.S., Lucier G., and Henderson R.F. Effect of repeated benzene inhalation exposures on benzene metabolism, binding to hemoglobin and induction of micronuclei. Toxicol Appl Pharmacol 1990: 103: 452–462.

    Article  CAS  PubMed  Google Scholar 

  • Scherer G. Renner T., and Mege M. Analysis and evaluation of trans, trans-muconic acid as a biomarker for benzene exposure. J Chromatogr B 1998: 717: 179–199.

    Article  CAS  Google Scholar 

  • Snyder R., and Kalf G. A perspective on benzene leukemogenesis. Crit Rev Toxicol 1994: 24: 177–209.

    Article  CAS  PubMed  Google Scholar 

  • Snyder R., Witz G., and Goldstein B.D. The toxicology of benzene. Environ Health Perspect 1993: 100: 293–306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turnlund J.R. The use of stable isotopes in mineral nutrition research. J Nutr 1989: 119(1): 7–14.

    Article  CAS  PubMed  Google Scholar 

  • USEPA. Exposure Factors Handbook, Volume I — General Factors, Volume II — Food Ingestion Factors, Volume III — Activity Factors. ORD/NCEA/USEPA, Washington, DC, 1997.

  • Valentine J.L., Lee S.S.-T., Seaton M.J., Asgharian B., Farris G., Corton J.C., Gonzalez F., and Medinsky M. Reduction of benzene metabolism and toxicity in mice that lack CYP2E1 expression. Toxicol Appl Pharmacol 1996: 141: 205–213.

    Article  CAS  PubMed  Google Scholar 

  • Van Sittert N.J., Boogaard P.J., and Beulink G.D.J. Application of urinary S-phenylmercapturic acid test as a biomarker for low levels of exposure to benzene in industry. Br J Ind Med 1993: 50: 460–469.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wallace L. Major sources of exposure to benzene and other volatile organic chemicals. Risk Anal 1990: 10(1): 59–64.

    Article  Google Scholar 

  • Weisel C.P., Yu R., Roy A., and Georgopoulos P.G. Biomarkers of environmental benzene exposure. Environ Health Perspect 1996: 104 (Suppl 6): 1141–1146.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Witz G., Kirley T.A., Maniara W.M., Mylavarapu W.J., and Goldstein B.D. The metabolism of benzene to muconic acid, a potential biological marker of benzene exposure. Biological Reactive Intermediates IV. In: Witmer, C. M. e. a. (Eds.). Plenum Press, New York, 1990, pp. 613–618.

    Google Scholar 

  • Witz G., Maniara W., Mylavarapu V., and Goldstein, B.D. Comparative metabolism of benzene and trans,trans-muconaldehyde to trans,trans-muconic acid in DBA/2N and C57BL/6 mice. Bioch Pharmacol 1990: 40(6): 1275–1280.

    Article  CAS  Google Scholar 

  • Witz G. Rao G.S., and Goldstein B.D. Short term toxicity of trans, trans muconaldehyde. Toxicol Appl Pharmacol 1985: 40: 511–516.

    Article  Google Scholar 

  • Witz G., Zhang Z., and Goldstein B.D. Reactive ring-opened aldehyde metabolites in benzene hematotoxicity. Environ Health Perspect 1996: 104 (Suppl 6): 1195–1199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu R., and Weisel C.P. Measurement of benzene in human breath associated with an environmental exposure. J Exposure Anal Environ Epidemiol 1996a: 6(3): 261–277.

    CAS  Google Scholar 

  • Yu R., and Weisel C.P. Measurement of the urinary benzene metabolite trans,trans-muconic acid from benzene exposure in humans. J Toxicol Environ Health 1996b: 48: 453–457.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge Mr. Peter Crosby and Dr. Tina Fan for assistance in the controlled exposures and the participants in the study. This work was supported by Grants ES09676 and ES02558 by the National Institute of Environmental Health Sciences. Drs. Weisel and Witz are supported in part by the NIEHS Center Grant ES05022.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clifford P Weisel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weisel, C., Park, S., Pyo, H. et al. Use of stable isotopically labeled benzene to evaluate environmental exposures. J Expo Sci Environ Epidemiol 13, 393–402 (2003). https://doi.org/10.1038/sj.jea.7500285

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.jea.7500285

Keywords

Search

Quick links