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Data from the Total Exposure Assessment Methodology studies, conducted from 1980 to 1987 in New Jersey (NJ ) and California (CA) , and the 1990

California Indoor Exposure study were analyzed using positive matrix factorization, a receptor -oriented source apportionment model. Personal exposure and

outdoor concentrations of 14 and 17 toxic volatile organic compounds (VOCs) were studied from the NJ and CA data, respectively. Analyzing both the

personal exposure and outdoor concentrations made it possible to compare toxic VOCs in outdoor air and exposure resulting from personal activities.

Regression analyses of the measured concentrations versus the factor scores were performed to determine the relative contribution of each factor to total

exposure concentrations. Activity patterns of the NJ and CA participants were examined to determine whether reported exposures to specific sources

correspond to higher estimated contributions from the factor identified with that source. For a subset of VOCs, a preliminary analysis to determine irritancy -

based contributions of factors to exposures was carried out. Major source types of toxic VOCs in both NJ and CA appear to be aromatic sources resembling

automobile exhaust, gasoline vapor, or environmental tobacco smoke for personal exposures, and automobile exhaust or gasoline vapors for outdoor

concentrations. Journal of Exposure Analysis and Environmental Epidemiology (2001) 11, 295–307.
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Introduction

Hazardous air pollutants (HAPs) are generally defined as

pollutants that are known or suspected to cause cancer or

other serious health effects, or to cause harm to the

environment (OAQPS, 1998) . The 1990 Clean Air Act

Amendments (CAAA), Section 112, seek to reduce human

exposure to HAPs by defining a statutory list of these

compounds. More than 80% of the compounds on the

federal HAPs list are toxic volatile organic compounds

(VOCs) . The main pathways for exposure to toxic VOCs

include breathing contaminated air, ingesting contaminated

water or soil, and dermal contact. This study focuses on

identifying sources of inhalation exposure to toxic VOCs,

most of which are on the current HAPs list.

The majority of toxic VOCs in ambient air originate from

sources that emit to the outdoors, such as drycleaners, power

plants, and vehicle emissions (UATW, 2000) . It is unclear,

however, whether these sources are the predominant

contributors to human exposure. Although not major

sources of emissions, personal activities and indoor sources

may be the dominant sources of exposure for many

compounds (Wallace, 1991) . Some examples of sources

of personal exposure to toxic VOCs include household

cleaners, vehicle exhaust, gasoline vapors, drycleaned

clothes, and environmental tobacco smoke (ETS).

With concentration data, receptor modeling may be used

to identify source types that contribute significantly to

measured concentrations. Although receptor modeling has

been widely used for estimating source contributions for

particulate matter (PM) air pollution, relatively few

receptor modeling studies have been conducted for VOCs.

The studies that have been done have focused primarily on

estimating source contributions to VOCs in outdoor air

rather than to personal exposure. Early examples of receptor

modeling applied to VOCs include apportionment of

ambient VOCs (Lin and Milford, 1994; Mukund et al.,

1996) , and the use of acetylene (Lonneman et al., 1974;

Whitby and Altwicker, 1978) and aromatic organic

compounds (Singh et al., 1985; Edgerton et al., 1989) as

indicators of motor vehicle emissions.

The primary goals of this study were to determine sources

contributing to personal exposure and outdoor concentra-

tions, and the relative contribution of each source to total

concentrations. Personal exposure and outdoor concentra-

tion data for residents in Elizabeth and Bayonne, NJ, and

Los Angeles (L.A.) , Pittsburg, and Antioch, CA from the

United States Environmental Protection Agency’s (US-

EPA) Total Exposure Assessment Methodology (TEAM)
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and California Air Resources Board (CARB) California

Indoor Exposure studies were analyzed using positive

matrix factorization (PMF; Paatero and Tapper, 1994) .

Methods

Data

The NJ TEAM data used were accessed from the Total

Human Exposure Risk database and Advanced Simulation

Environment (THERdbASE), version 1.2 (Pandian et al.,

1989; NERL, 2000) . This database includes data from the

main TEAM studies, which measured 24-h exposures of

600 people in NJ, CA, North Dakota (ND) and North

Carolina (NC) to various toxic chemicals in air and

drinking water. Monitored compounds were selected based

on their toxicity, carcinogenicity, and amenability to

collection on Tenax sorbent (Wallace, 1987; Wallace et

al., 1984) . The CA TEAM and CARB data were accessed

from the Californian Exposures Database (CED) (Clayton

and Perritt, 1993) . CARB studies were carried out using the

same general procedures as the TEAM studies. A key

feature of these studies was the use of a probability -based

sampling design to represent the exposures of large

populations in the various cities.

Exposures were measured using personal monitors,

which collected two 12-h samples, representing overnight

and daytime exposures. Concurrent outdoor samples were

collected in two 12-h samples from the backyards of a

subset of the study homes. Air samples were analyzed by

gas chromatography/mass spectrometry. Both studies used

time-weighted average exposure concentrations as the

measure of exposure. Two questionnaires were administered

to participants. At the beginning of each study, household

questionnaires were administered regarding age, gender,

occupation, smoking status, and customary activities of the

participants. Immediately following each study, participants

filled out a 24-h activity diary to establish an activity

pattern for each subject. These questionnaires provided

information needed to identify the likely sources and human

activities contributing to exposures.

Models

PMF, a multivariate technique, was used for source

apportionment (Paatero and Tapper, 1994) . Previous

PMF applications include identifying sources of bulk wet

deposition concentrations of strong acids in Finland (Antilla

et al., 1995) , and more recently, sources of PM from the

USEPA Particle TEAM study (Yakovleva et al., 1999) and

PM in Phoenix urban aerosol (Ramadan et al., 2000) . PMF

incorporates error estimates of the data to solve matrix

factorization of a linear model as a constrained, weighted

least -squares problem. These error estimates account for

sampling errors, detection limits, missing data observations,

and outliers. The input data must be finite, positive

numbers. One portion of the model solution is a matrix of

factors. These factors, which are roughly interpreted as

source profiles, represent the relative amounts of each

compound in each source. Because source profiles are

spatially and temporally variable, the factor profiles

presented are a qualitative guide to the types of sources to

which people could be exposed and have been qualitatively

related to the best available profiles in the literature. Each

factor is constrained to be nonnegative. This requirement

decreases the rotational freedom used to produce mean-

ingful factors, and oftentimes, the result is fully unique with

no rotational freedom (Paatero, 1998) .

PMF was applied to 24-h personal and outdoor

concentration data obtained by averaging overnight and

daytime samples, as well as to separate daytime and

overnight personal concentration data, to investigate

potential sources of exposure to toxic VOCs. The

compounds included in this study are listed in Table 1.

Due to insufficient data collected for participants in ND,

NC, and Woodland, CA, data from these locations were not

used in this study.

Two-way PMF seeks to solve the matrix equation

Xij ¼
Xp
h¼1

GihFhj þ Eij i ¼ 1; 2; . . . ; n; j ¼ 1; 2; . . . ;m

1ð Þ

where Xij is an element of an n by mmatrix of observed data

with n chemical species and m study participants. Gih is an

element of an n by p unknown factor matrix, which is

interpreted as a matrix of source profiles. Fhj is an element

of a p by m matrix of unknown factor scores, whose relative

magnitudes indicate how much the hth factor contributes to

the exposure of the jth participant. Eij is the residual error.

The number of factors, p, is chosen by the user. Given p,

PMF solves this matrix problem by minimizing the sum of

squares, Q:

Q ¼
Xn
i¼1

Xm
j¼1

Eij

Sij

� �2

2ð Þ

where Sij is the standard deviation representing the

uncertainty in the observation Xij. In this study, the Xij are

assumed to be lognormally distributed and the values of Sij

are iteratively refined so that the solution to Equation 1

approximates a maximum likelihood solution. Further

details in the error model specification are given below

and by Paatero (1997) .

In this study, two-way PMF was applied separately to the

personal exposure and outdoor concentration data from NJ

and CA.

Three-way PMF seeks to solve a similar matrix equation

for an extended set of observations that includes multiple
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sample modes, such as corresponding personal and outdoor

samples. The three-way factor model can be written as

Xijk ¼
Xp
h¼1

AjhBihCkh þ Eijk

i ¼ 1; 2; . . . ; n; j ¼ 1; 2; . . . ;m; k ¼ 1; 2; . . . ; q 3ð Þ

where i indexes the chemical species, j indexes the study

participant, k indexes the sample mode, and h indexes the

factors. Ajh is an element of the m by p matrix of unknown

factor scores, Bih is an element of the n by p unknown factor

matrix, and Ckh is an element of the q by p matrix that

weights the factor contributions between sample modes. Q

is calculated as shown in Equation 2.

Three-way PMF was applied here to the subset of

TEAM and CARB study participants for which both

personal and outdoor concentrations were measured, as

well as to daytime and overnight concentrations for

personal exposures.

Diagnostic Tools

The Q value (Equation 2) , used to estimate the best number

of factors, is an indicator of the goodness of fit and a measure

of how close the modeled values are to the observed values.

Because more of the variation in the data can be explained

with more factors, the Q value will generally continue to

decrease as the number of factors increases. The additional

factors, however, may not be physically meaningful andmay

just be explaining noise in the data. Thus, other diagnostic

measures, as well as judgment of the user, are required to

select an appropriate number of factors. Additional diag-

nostics used include residuals for individual species and for

total VOC concentrations.

In the presence of outliers in the data, it can be difficult to

determine if the reported Q value is too high (Paatero,

1998) . Therefore, the distribution of the scaled residuals for

individual compounds may be used as a diagnostic measure

as well. Ideally, the residuals should be centered around

zero, forming a sharp peak at zero.

A linear regression analysis of the factor scores versus

the sum of the measured VOC concentrations was used to

help ascertain the optimal number of factors. In addition, the

regression was used to determine the relative contribution of

each factor to exposure. Multiplying the factor scores

(unitless) by the linear regression coefficients (concen-

tration units) gives a total modeled VOC concentration

from each factor. Summing these modeled concentrations

over all factors gives a total modeled concentration that

allows the user to compare the model -predicted total VOC

concentration to the measured total VOC concentration for

each observation. In addition, the percent contribution of

each factor to total VOCs can be determined by dividing the

modeled concentration for each factor by the total modeled

concentration. The number of factors was selected, in part,

to avoid negative regression coefficients. R -squared values

and the ratios of modeled to measured concentrations were

examined to determine how well the regression model fit the

measured data for total VOCs.

Treatment of Missing Data and Uncertainties

Compounds were included in the PMF analysis only if

more than 60% of all study participants had values for that

compound. Values reported as below the detection limit

were included in the analysis to create the largest

concentration matrix possible, but were assigned large

errors and thus given low weight. Similarly, participants

were included only if they had data for at least 60% of the

compounds. In this case, missing values for a given

compound were filled in using the median value for that

compound across all participants. Tables 2 and 3 show

that relatively few data points were missing after

compounds and participants not meeting the specified

criteria were excluded.

Table 1. Compounds investigated in this study.

Compound (ABBREV) Studya IFc Compound (ABBREV) Studya IFc

Benzene (BNZ)b N, C 0.47 n -Octane (OCT) C NA

Carbon tetrachloride (TET) b N, C NA � -Pinene (PIN) C 4.2

Chlorobenzene (CBZ) b N, C 4.3 Styrene (STR)b N, C 7.8

Chloroform (CFM)b N, C NA Tetrachloroethane (PRC)b N, C NA

n -Decane (DEC) C NA 1,1,1 -Trichloroethylene (TCA) N, C NA

n -Dodecane (DOD) C NA Trichloroethylene (TCE) b N, C NA

1,2 -Dichlorobenzene (ODB) N 25 n -Undecane (UND) C NA

1,4 -Dichlorobenzene (PDB)b N 25 o -Xylene (OXY)b N, C 3.1

1,2 -Dichloroethane (DCA) N, C NA m - , p -Xylenes (MPX)b N, C 3.4

Ethylbenzene (EBZ) b N, C 1.6

aN, included in NJ analysis; C, included in CA analysis.
bOn current federal HAPs list.
cIF, irritancy factor (Ten Brinke, 1995; Kasanen et al., 1998) . These values are used to calculate irritancy contributions of factors, which are presented in the

Irritancy Contributions section in the text. NA indicates that the IF was not available for that compound.
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One limitation of PMF is its inability to extract factors

that fit widely varying exposure concentrations, which is

apparent when comparing modeled concentrations from the

regression analysis to measured concentrations. When the

measured concentrations analyzed include both very high

and very low values, the modeled concentrations are

generally much higher or lower than the true values. When

the measured concentrations are restricted to a smaller

range, the modeled concentrations reflect measured con-

centrations much more closely. Because of this limitation,

only participants with total exposure concentrations of less

than 2000 �g/m3 were included in the NJ personal exposure

data analysis, excluding 4% of the participants. This cutoff

concentration was chosen because it was an obvious divider

Table 2. Summary of the NJ concentration data used in the three -way and two-way PMF models.a

Compound Three -way PMF Two-way PMF

No. data points GM (GSD) , �g /m3 No. data points GM (GSD) , �g /m3

Personal Outdoor Personal Outdoor Personal Outdoor Personal Outdoor

BNZ 143 122 9.1 (4.3 ) 6.1 (3.9 ) 506 135 12 (4.1 ) 5.8 (4.1 )

TET 143 142 1.1 (2.0 ) 0.87 (2.1 ) 505 156 1.4 (2.6 ) 0.87 (2.1 )

CBZ 144 142 0.37 (2.2 ) 0.23 (3.2 ) 507 155 0.33 (2.2 ) 0.22 (3.3 )

CFM 144 121 2.6 (3.8 ) 0.85 (6.3 ) 506 133 2.9 (3.7 ) 0.88 (6.3 )

PDB 144 140 4.9 (5.6 ) 0.87 (2.4 ) 506 153 5.4 (5.7 ) 0.88 (2.4 )

ODB 144 140 0.36 (2.9 ) 0.22 (2.0 ) 507 153 0.35 (2.8 ) 0.21 (2.0 )

DCA 144 142 0.46 (2.7 ) 0.22 (2.4 ) 507 155 0.54 (2.7 ) 0.22 (2.4 )

EBZ 143 140 7.1 (3.1 ) 2.5 (3.0 ) 506 152 7.4 (2.9 ) 2.5 (3.0 )

STR 143 142 1.8 (3.0 ) 0.5 (2.8 ) 507 155 2.0 (2.7 ) 0.5 (2.8 )

PRC 144 142 6.2 (3.3 ) 2.9 (3.9 ) 508 155 7.8 (3.2 ) 2.8 (4.0 )

TCA 143 126 15 (3.5 ) 4.3 (3.7 ) 501 138 16 (3.9 ) 4.4 (3.7 )

TCE 144 142 2.9 (2.9 ) 1.6 (4.7 ) 508 155 3.1 (3.4 ) 1.6 (4.7 )

OXY 143 141 7.0 (2.8 ) 2.6 (2.8 ) 506 154 6.8 (2.6 ) 2.6 (2.8 )

MPX 143 140 18 (2.9 ) 7.4 (3.0 ) 507 153 18.5 (2.8 ) 7.5 (3.0 )

aThe original TEAM documentation (Wallace, 1987) states that 50 out of 157 canisters from the NJ summer analysis in 1982 were contaminated, of which

nine were discarded. The concentrations from the remaining 41 canisters were corrected for high background levels. These data were included in the analysis

because background corrections were made to the data before they were reported and the TherDBase database does not flag which concentration values from

1982 in NJ are suspect.

Table 3. Summary of the CA concentration data used in the three -way and two-way PMF models.

Compound Three -way PMF Two-way PMF

No. data points GM (GSD) , �g /m3 No. data points GM (GSD) , �g /m3

Personal Outdoor Personal Outdoor Personal Outdoor Personal Outdoor

BNZ 110 117 9.8 (2.2 ) 4.9 (2.4 ) 296 130 9.7 (2.1 ) 4.8 (3.4 )

TET 113 118 0.65 (1.6 ) 0.64 (1.4 ) 299 131 0.73 (1.7 ) 0.65 (1.4 )

CBZ 105 111 0.057 (2.2 ) 0.046 (2.0 ) 287 123 0.063 (2.2 ) 0.046 (2.0 )

CFM 116 116 0.82 (3.3 ) 0.29 (3.6 ) 298 129 0.70 (4.1 ) 0.28 (3.5 )

DCA 104 116 0.12 (2.3 ) 0.067 (2.3 ) 283 128 0.15 (2.5 ) 0.068 (2.3 )

EBZ 118 119 5.0 (2.3 ) 2.5 (2.8 ) 304 132 5.1 (2.6 ) 2.4 (2.8 )

OCT 116 116 3.6 (2.3 ) 1.3 (2.5 ) 302 127 3.3 (2.3 ) 1.3 (2.4 )

STR 117 119 1.8 (3.0 ) 0.75 (3.9 ) 301 132 1.6 (2.9 ) 0.74 (3.8 )

PRC 108 119 5.0 (3.3 ) 2.2 (3.4 ) 291 132 4.9 (3.3 ) 2.3 (3.3 )

TCA 119 118 18 (3.2 ) 7.5 (2.7 ) 305 131 18 (3.4 ) 7.5 (2.6 )

TCE 115 113 0.94 (5.3 ) 0.15 (2.8 ) 298 125 1.1 (6.2 ) 0.15 (2.8 )

OXY 119 118 6.6 (2.5 ) 3.5 (2.9 ) 305 131 6.5 (2.7 ) 3.5 (2.8 )

MPX 119 118 19 (2.2 ) 9.6 (2.7 ) 305 131 17 (2.3 ) 9.5 (2.6 )

DEC 111 104 2.6 (3.2 ) 1.1 (2.4 ) 295 116 2.2 (3.2 ) 1.1 (2.3 )

DOD 106 111 1.6 (3.4 ) 0.35 (2.4 ) 288 123 1.3 (3.1 ) 0.34 (2.4 )

UND 112 114 2.8 (3.2 ) 0.73 (2.8 ) 295 126 2.3 (3.1 ) 0.72 (2.8 )

PIN 116 113 2.4 (2.9 ) 0.31 (2.8 ) 301 125 2.2 (3.0 ) 0.51 (0.60 )
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between the high and low concentrations. No outdoor

concentrations were greater than 2000 �g/m3. In the CA

studies, only one participant had a total exposure concen-

tration greater than 2000 �g/m3. Therefore, all participants

were included in the analysis for CA.

All data were treated as coming from lognormal

distributions, as indicated by examination of histogram

plots, means, and medians for the concentration data. The

error model used by PMF for lognormally distributed data

is:

Sij ¼ T 2
ij þ

1

2
V 2
ij Yij

�� �� Yij

�� ��þ Xij

�� ��� �� �1
2

4ð Þ

where Yij is the fitted concentration value, represents

normally distributed measurement error and Vij is associated

with inherent randomness in the data. For this study, Tij was

determined for each observation using the following

formula:

if Xij > 0; Tij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:5�DLið Þ2þ 0:1�Xij

� �2h ir

if Xij is missing; Tij ¼ 2Mi

5ð Þ

where DLi is the detection limit and Mi is the median value

for the compound of interest across all observations, as

given by Pandian et al. (1989) and Clayton and Perritt

(1993) . A constant value of 0.1 was used for Vij. For the

three-way analysis, Sij is replaced by Sijk, Tij by Tijk, etc. It

was found that changing the error estimates had a negligible

effect on the factors obtained by the model.

Results

Geometric means (GM) and geometric standard deviations

(GSD) of the personal exposure and outdoor concentration

data used in the PMF modeling are presented in Table 2 for

the NJ data and Table 3 for the CA data. NJ and CA average

personal exposure concentrations for all compounds are

higher than outdoor concentrations.

Standard deviations of the factors are plotted as error bars

on all source apportionment results. These values are based

on a global least squares fit, in which all three matrices, A, B

and C, are determined simultaneously (Paatero, 1998) . In

general, the standard deviation matrices represent both

individual random uncertainty in the factor elements and

uncertainty due to factor rotation. If there is negligible

rotational freedom, however, the error estimates inA,B, and

C reflect only the random uncertainty in the factor elements,

and the values in the standard deviation matrices will be

small (Paatero, 1998) . Although error bars are plotted for

each compound in the factor profiles, some errors are small

enough such that they are not visible, suggesting negligible

rotational freedom of the factors.

NJ Factorization

Factorization was performed using from four to nine factors

for both the two-way and three-way PMF data sets. Six

factors and five factors were chosen as the optimal number

of factors for the personal and outdoor two-way PMF data

sets, respectively. Eight factors were chosen for the three-

way PMFmodel. Adding more factors slightly improved the

Q values and R -squared values, but investigation of the

resulting factor profiles revealed that the additional factors

were not easily interpreted and were likely just explaining

noise in the data. Factor profiles and modal associations for

the three-way model are shown in Figure 1. The right -hand

side of each bar graph shows the relative contribution of

each factor to personal exposure (PER) or outdoor (OUT)

concentrations, and also to personal daytime (PER DT)

versus personal overnight (PER ON) exposures. In all

factor profiles, the height of the bars can only be compared

within a given factor, and not across all factors, because the

sum of chemical contributions in a factor is normalized to

one.

The factors obtained from the three-way PMF analysis

generally matched the factors obtained from the two-way

PMF analysis. Both analyses showed similar contributions

of factors to total concentrations. This occurs despite the

fact that the three-way model was applied to only a subset

of the participants included in the two-way models.

Factor 6p, however, did not have an equivalent three-way

factor, nor was there an equivalent factor to the three-way

Factor 3 in the two-way outdoor model. This is likely due

to the use of different data sets in the two-way and three-

way models.

In addition to 24-h personal and outdoor data, 12-h

daytime and overnight personal observations were mod-

eled using three-way PMF. Daytime sources were

generally the same as overnight sources, though the

sources contributed differently to exposure. Modal asso-

ciations for daytime and overnight personal factors are

shown in Figure 1.

Figure 2 shows examples of the residuals for benzene and

TCE for the personal and outdoor modes of the three-way

PMF model. If the majority of the scaled residuals (Eij /Sij )

are between ±2 standard deviations (� ) , the fit of the model

is acceptable (Paatero, 1998) . The percentages of residuals

within ±2� are shown in Table 4.

To estimate the contributions of factors to total personal

exposure and outdoor concentrations (summed over all

VOCs), the observations of these values were regressed

against the factor scores produced by the PMF model.

Figure 3 shows an example of the factor scores for each NJ

participant for Factor 1 in the three-way model. The

regression analysis results, showing the average source

contributions to personal exposure and outdoor concen-

trations for both the two-way and three-way NJ PMF data

sets, are presented in Table 5. For example, Factor 3

Source apportionment of exposure to toxic VOCs Anderson et al.
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contributed, on average, 22% to participants’ total 24-h

personal VOC exposure, whereas Factor 4 contributed

approximately half as much (11%) to total exposure.

Averaged across all of the study participants, Factors 1 and 2

contribute most to total personal exposures, whereas Factors

5 and 6 contribute most to total outdoor concentrations of

the 14 VOCs studied.

The measured concentrations were well predicted by the

regression. The personal modeled concentrations were, on

average, slightly overpredicted at 110±40% and 105±12%

of measured concentrations for the three-way and two-way

models, respectively. The predicted outdoor concentrations

were approximately 100±32% and 97±22% of measured

concentrations for the three-way and two-way models,

respectively.

CA Factorization

Factorization was attempted for the CA data using from 4

to 11 factors for both the two-way and three-way PMF

data sets. Eight factors and three factors were chosen as the

optimal number of factors for the personal and outdoor

two-way PMF data sets, respectively. Nine factors were

chosen for the three-way PMF model. Factor profiles and

modal associations for the three-way model are shown in
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Figure 4. As with the NJ data, the factors obtained from

three-way PMF generally matched the factors obtained

from the two-way PMF analysis. Factor 1 from the three-

way model, however, did not appear in the personal two-

way model. The percentages of residuals within ±2� are

shown in Table 4.
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Figure 2. Examples of frequency distributions of residuals scaled by standard deviations for the NJ three -way PMF solutions for personal and
outdoor concentrations of benzene and TCE.

Table 4. Percentages of NJ and CA residuals within ±2�.

Compound NJa CAa

Three -way Two-way Three -way Two-way

Personal (%) Outdoor (%) Personal (%) Outdoor (%) Personal (%) Outdoor (%) Personal (%) Outdoor

BNZ 95 79 88 100 75 78 70 80

TET 92 97 82 96 91 79 74 79

CBZ 92 92 91 95 94 98 93 97

CFM 73 83 69 82 55 74 100 83

PDB 99 88 100 100 NA NA NA NA

ODB 86 98 86 97 NA NA NA NA

DCA 92 98 94 99 82 93 75 92

EBZ 92 99 94 99 86 75 91 76

OCT NA NA NA NA 58 74 69 78

STR 70 90 63 92 74 67 63 64

PRC 97 67 100 100 76 73 100 74

TCA 100 90 100 94 94 82 100 83

TCE 100 72 100 95 100 96 100 95

OXY 94 98 96 99 95 94 95 95

MPX 93 98 96 99 87 95 91 95

DEC NA NA NA NA 77 81 84 81

DOD NA NA NA NA 63 92 68 91

UND NA NA NA NA 92 80 85 80

PIN NA NA NA NA 99 84 100 83

aNA, not applicable; compound was not included in study.
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Daytime and overnight personal observations were

modeled using three-way PMF for the CA data as well.

Modal associations for the daytime and overnight personal

factors are shown in Figure 4. Factor 6 from the three-

way model did not have an equivalent daytime/overnight

factor.

The regression analysis results for the two-way and

three-way CA PMF models are presented in Table 6.

Averaged across all of the study participants, Factors 1, 5,

and 9 contribute most to personal exposure and Factor 7

contributes most to outdoor concentrations of the 17 VOCs

studied.

The measured concentrations were well predicted by the

regression. The personal modeled concentrations were, on

average, slightly overpredicted at 120±41% and 100±11%

of measured concentrations for the three-way and two-way

models, respectively. The predicted outdoor concentrations

were approximately 104±18% and 102±13% of measured

concentrations for the three-way and two-way models,

respectively.

Discussion

Interpretation of Factor Profiles

Factors identified in three-way PMF were interpreted as

10 different source types contributing to NJ and CA VOC

concentrations that were reflected in either one or both of

the data sets. The interpretation was made on the basis of

qualitative comparison to source or exposure profiles

reported in the literature, as detailed below. Note that

precise matches were not expected due to variability in

the reported profiles and the fact that VOCs undergo

chemical degradation from the time they are emitted. The

sources are: contaminated water (TCE); solvents (TCA);

gasoline vapors, automobile exhaust, or ETS (aromatics,
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Figure 3. Factor scores for Factor 1 (personal TCE) for each participant included in the NJ three -way model.

Table 5. Average and standard deviations of source contributions in NJ for 24 -h personal and outdoor data sets analyzed using three -way and two-way

PMF, and 12 -h personal daytime and overnight data sets analyzed using three -way PMF.a

Three -way (n=144 /528 ) b Two-way (n=508 /528) b Two-way (n=158 /528 ) b

Factor Personal Outdoor Factor Personal Factor Outdoor

24-h 12-h (daytime) 12 -h (overnight ) 24 -h 24-h 24-h

1 27±21% 15±15% 23±14% NS 1p 5±8% – –

2 27±23% 28±19% 40±19% NS 2p 32±19% – –

3 22±19% 12±14% 7±11% 6±11% 3p 20±18% – –

4 11±13% 11±13% NS NS 4p 9±10% 1o 14±13%

5 NS – – 48±25% – – 2o, 3o 29±20%(2o ) , 23±21%(3o)

6 NS – – 46±23% – – 4o 33±22%

7 13±21% 9±17% 11±20% NS 5p 13±21% 5o NS

8 NS 26±18% 20±15% NS 6p 21±14% –

aNS, not significant; ‘‘ – ’’ indicates that factor did not appear in mode.
bn indicates the number of participants included in the analysis out of the total number possible.
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including benzene, ethylbenzene, and xylenes) ; waste-

water treatment plant emissions (chloroform, TCA, TCE,

benzene, xylenes) ; drycleaning chemicals (PERC); de-

odorizers or mothballs (p -DCB); consumer products

(PERC, styrene, benzene, n -octane) ; building materials

(alkanes and xylenes) ; background ambient concentra-

tions (TCA, benzene, ethylbenzene, PERC, xylenes) ; and

cleaners (� -pinene) . These sources were, in general,

confirmed by two-way PMF results. A summary of the

factorization results for the NJ and CA PMF modeling is

presented in Table 7.

The contaminated water factor, comprised of mainly

TCE, may be a reflection of exposure to contaminated

drinking and showering water or solvents (McKone, 1987;

Wallace et al., 1989) . The main exposure route to TCE

appears to be from personal activities, as evidenced by

Factors 1 and 6 from the NJ and CA three-way models, and

the corresponding Factors 1p and 6p from the NJ and CA

personal two-way models.

The TCA source likely reflects exposure to solvents,

household cleaners, and household pesticides (Wallace et

al., 1989) . The main exposure route to TCA, as evidenced

by NJ Factors 3 and 3p, and CA Factors 5 and 5p, is due to

personal activities as well.

The aromatics factor, resembling ETS (Daisey et al.,

1994) , automobile exhaust or gasoline vapors (Rappaport
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Figure 4. Source apportionment for the CA three -way PMF model. The y axes represent normalized concentrations with arbitrary units.
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et al., 1987; Scheff et al., 1991; MacIntosh et al., 1995;

Wallace, 1996) , is present as both a personal exposure and

outdoor source in NJ and CA. Exposure to ETS could result

from smoking or being proximal to a smoker. Personal

exposure to gasoline or exhaust could result from activities

such as sitting in traffic, pumping gasoline, or from being

exposed to outdoor air with automobile exhaust or gasoline

vapors that has penetrated indoors. NJ Factors 2 and 2p, and

6 and 4o consist mainly of ethylbenzene and xylenes.

Benzene, a major component of gasoline, automobile

exhaust and ETS, is not included in these factors. It is,

however, the dominant component in other NJ personal and

outdoor factors (Factors 8 and 6p, and Factors 5 and 2o,

respectively) . This suggests that benzene is present in

Table 6. Average and standard deviations of source contributions in CA for 24 -h personal and outdoor data sets analyzed using three -way and two-way

PMF, and 12 -h personal daytime and overnight data sets analyzed using three -way PMF.a

Three -way (n=119 /447 ) b Two-way (n=305/447 ) b Two-way (n=132 /447 ) b

Factor Personal Outdoor Factor Personalc Factor Outdoorc

24 -h 12 -h (daytime) 12 -h (overnight ) 24 -h 24 -h 24 -h

1 30±26% NS NS 25±21% – – 1o 23±22%

2 22±15% 12±11% 13±11% NS 1p, 2p, 3p 8±8%, 11±6%, 3±6% – –

3 5±6% 4±11% 5±9% NS 4p 11±13% – –

4 NS – – 35±21% – – 2o 35±21%

5 31±31% 31±20% 27±15% NS 5p 18±15% – –

6 NS – – NS 6p 4±9% – –

7 NS – – 41±19% – – 3o 42±20%

8 NS NS 7±8% NS 7p 5±7% – –

9 32±24% 52±20% 48±23% NS 8p 40±17% – –

aNS, not significant; ‘‘ – ’’ indicates that factor did not appear in mode.
bn indicates the number of participants included in the analysis out of the total number possible.
cSource contributions of a few factors varied significantly by location and season. The source contribution from Factor 2p was slightly higher in Pittsburg /

Antioch (14±7%, n=67) than in L.A. (11±6%, n=238) . The contribution from 5p was slightly higher in L.A. (19±16%) than in Pittsburg /Antioch

(13±11%) . The differences between the contributions of all factors to outdoor concentrations in Pittsburg /Antioch and L.A. were statistically different, but

data were only available from nine outdoor samples for Pittsburg /Antioch. The source contribution from Factor 4p was slightly higher in the summer

(14±16%, n=89) than in the winter (10±11%, n=149) . The source contribution from Factor 1o was approximately twice as high in the summer

(26±19%, n=61) as in the winter (14±14%, n=62) , whereas the contribution from 2o was approximately twice as high in the winter (43±23%) as in the

summer (28±15%) . The relative contributions from all other factors were not statistically different at the �=0.05 level, based on season or on location.

Table 7. Summary of factorization results for NJ and CA two-way and three -way PMF modeling. Only the dominant components for each factor are listed,

although others are present in most factors.a

Factors Sources NJ CA

Three -way PMF Two-way PMF Three -way PMF Two-way PMF

Personal Outdoor Personal Outdoor Personal Outdoor Personal Outdoor

TCE Contaminated water 1 – 1p NA 6 – 6p NA

TCA Solvents 3 – 3p NA 5 – 5p NA

BNZ,b EBZ, xylenes ETS,c automobile exhaust,

gasoline vapors

2, 8 6 2p, 6p 4o 9 7 8p 3o

CFM, TCA, TCE, xylenes, BNZ Wastewater treatment – 5 NA 2o, 3o 1 1 NA 1o

PRC Drycleaners 4 4 4p 1o NA NA NA NA

PDB Mothballs, deodorizers 7 – 5p 5o NA NA NA NA

BNZ, OCT, STR, PRC Consumer products NA NA NA NA 2 – 1p, 2p, 3p NA

DEC, DOD, UND, MPX Building materials, carpeting NA NA NA NA 3 – 4p NA

TCA, BNZ, EBZ, PRC, xylenes Ambient air NA NA NA NA – 4 NA 2o

PIN Cleaners NA NA NA NA 8 – 7p NA

Q value 8620 8620 16308 2191 13585 13585 14351 6170

R 2 value 0.77 0.88 0.97 0.92 0.88 0.98 0.98 0.98

Total number of factors 8 8 6 5 9 9 8 3

aNA, not applicable ( factor was not in PMF results ) , ‘‘ – ’’ indicates that factor did not appear in mode.
bIn NJ, benzene appears in a separate factor from ethylbenzene and xylenes.
cETS is likely only a personal source.

Anderson et al. Source apportionment of exposure to toxic VOCs

304 Journal of Exposure Analysis and Environmental Epidemiology (2001) 11(4)



widely varied concentrations in several sources. PMF, to

account for the variability in the data, might make benzene a

separate source. As shown with CA Factors 9 and 8p, and

Factors 7 and 3o, an aromatics factor consisting of benzene,

ethylbenzene, and xylenes was a personal and outdoor

source in the CA data as well.

The outdoor source comprised of chloroform, TCA,

xylenes, and TCE resembles wastewater treatment plant

emissions (Scheff et al., 1989) . This source is evident with

NJ Factor 5, which appears to be a combination of Factors

2o and 3o in the two-way model, and CA Factor 1, which

affects both personal exposure and outdoor concentrations.

This factor did not appear in the CA two-way personal

model, but was present in the two-way outdoor results, as

shown by Factor 1o.

The PERC source could result from exposure to

drycleaned clothes, or being inside or living near a

drycleaning shop (Wallace, 1989; Wallace et al., 1989) .

This source was only extracted from the NJ data, although

PERC was measured in CA too. As shown in NJ Factors 4,

4p and 1o, the PERC source affects both personal exposure

and outdoor concentrations.

The p -DCB source is most likely a reflection of exposure

to mothballs and room deodorizers (Wallace, 1989) .

Because this compound was not included in the CA

modeling due to a limited number of measurements, the

p -DCB source appeared only in the NJ data. NJ Factors 7

and 5p show that p -DCB primarily affects personal

exposures. A p -DCB source was present in the NJ two-

way PMF outdoor results, although it was not significant to

outdoor concentrations.

The source resembling consumer products (Samfield,

1992; Sheldon et al., 1992) , such as adhesives and aerosols,

is comprised of PERC, styrene, benzene, and n -octane. This

source, appearing only in the CA results, was reflected in

CA Factor 2, a personal exposure factor that appears to be a

combination of Factors 1p, 2p and 3p from the two-way

model.

The building material and carpeting source (Mølhave,

1982; Wallace, 1987) , composed of higher alkanes (n -

decane, n -undecane, n -dodecane) and xylenes, was ex-

tracted fromonly theCAdata aswell, as shown inCAFactors

3 and 4p. These alkanes were not measured in the NJ study.

As shown in Factors 4 and 2o, the outdoor source

comprised of TCA, benzene, ethylbenzene, PERC and

xylenes is present only in the CA results. This factor

resembles background outdoor concentrations of these

compounds (Rosenbaum et al., 1999) .

The last source, extracted only from the CA data, is

comprised of � -pinene, which is most likely a reflection of

exposure to deodorizers and cleaners (Apte and Daisey,

1999) . Factors 8 and 7p show that � -pinene primarily

affects personal exposures. This compound was not

measured in the NJ study.

Activity Patterns

Activity pattern data from questionnaires administered in

the CARB and TEAM studies were analyzed along with the

personal factor scores to determine if factors with high

scores were reflected in the reported activities. For example,

we expected that participants who reported having smoked

or pumped gasoline should have higher scores for factors

dominated by aromatics than those who did not report being

exposed to smoke or gasoline. Although many activities

were analyzed, only a subset is discussed here.

Participants in NJ who reported visiting the drycleaners

(4 out of 321 participants) had factor scores for the personal

PERC factor that were approximately twice as high as those

who did not report visiting the drycleaners. It should be

noted, however, that the sample size for NJ is likely not

large enough to produce conclusive evidence as to exposure

from being at the drycleaners. In addition, significant

exposure can arise from wearing or being around drycleaned

clothes. Therefore, the highest exposures may have

occurred outside of the drycleaners (Wallace, 1989) .

Three hundred five out of 321 NJ participants and 282

out of 311 CA participants reported drinking tap water, as

opposed to bottled water. These participants had approx-

imately four times higher factor scores for the TCE factor

(Factor 1p in NJ and Factor 6p in CA), which is thought to

reflect exposure to contaminated water. CA participants

who reported having showered or bathed (204 out of 234

participants) had two times higher factor scores for Factor

6p. This activity was not reported for the NJ participants.

CA participants who reported having used paint or

solvents (16 out of 94 participants) had approximately five

times higher factor scores for the 1,1,1-TCA factor (Factor

5p) and seven times higher factor scores for the alkanes

factor (Factor 4p) . This activity was not reported for the NJ

participants.

The NJ participants who reported having smoked or lived

with smokers in NJ (224 out of 321 participants) had

approximately 85% higher factor scores for the aromatics

factor (Factor 2p) and 40% higher factor scores for the

benzene factor (Factor 6p) than people who neither smoked

nor lived with smokers. Those who reported having pumped

gasoline during the study (22 out of 321 participants)

showed 80% higher factor scores than those who did not

pump gasoline for Factor 2p and 20% higher factor scores

for Factor 6p. The fact that higher factor scores for the

aromatics factors are linked to both ETS and pumping

gasoline may be evidence of PMF having difficulty

separating sources with similar profiles.

The CA participants who reported having smoked or

lived with smokers (145 out of 305 participants) did not

have elevated factor scores for the aromatics factor

compared to those who did not smoke or live with smokers.

This suggests that either ETS was not strongly reflected as a

source of exposure in the PMF factors or that most
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participants received similar levels of exposure to ETS,

whether they reported exposure to ETS or not. A study

published in 1996 by Pirkle et al. (1996) indicates

widespread exposure to ETS in the U.S. Of American

nonsmokers tested, 88% showed evidence of exposure to

ETS over the previous 1 to 2 days.

Forty-eight out of 305 CA participants reported having

pumped gasoline and 50 out of 93 reported having an

attached garage, but neither group showed an increase in the

factor scores, on average, for the aromatics factor (Factor

8p) . Exposure to gasoline or automobile exhaust, therefore,

may not have been a strong personal source of exposure for

CA participants or, as with ETS, it may have been a

common source of exposure that most participants received.

Irritancy Contributions

Tables 5 and 6 show mass-based contributions of various

sources to exposures. Because this research focuses on

exposure to toxic VOCs, a preliminary analysis using

irritancy-based contributions of sources to exposures was

carried out. Mass fractions of each factor were scaled by

unitless irritancy factors ( IFs) to determine contributions of

each source to total irritancy for a given participant. IFs are

calculated using RD50 values (Ten Brinke, 1995; Kasanen

et al., 1998) , or the concentration of airborne irritant

causing a 50% decrease in the respiratory rate of an animal.

The RD50 for toluene is divided by the RD50 for the

compound of interest (Ten Brinke, 1995) . Compounds for

which IFs were available (Ten Brinke, 1995; Kasanen et al.,

1998) and that were included in this calculation are

indicated in Table 1. Using these IFs, the greatest

irritancy-weighted contribution to exposure in NJ is from

Factor 5p (p -DCB), which contributes an average of 48%

of irritancy. In CA, the personal aromatics factor resembling

either ETS, gasoline vapors or automobile exhaust (Factor

8p) contributes the greatest amount to irritancy, on average,

with 66% of the total contribution. A factor with a similar

profile (Factor 2p) is the second highest contributor to

irritancy in NJ, averaging 37% of the total contribution,

followed by the benzene source (Factor 6p) , with 12% of

irritancy. The second highest contributor to irritancy in CA

is � -pinene (Factor 7p) , with 12% of irritancy, followed by

the consumer products factor (Factor 2p) , with 11%. All

other source contributions to total irritancy were small

(0.5–7%) compared to these factors.

IFs were available for only 8 out of 14 and 8 out of 17

compounds studied in the NJ and CA analyses, respectively.

Therefore, this analysis serves primarily to illustrate

alternate methods of analyzing source apportionment

results. IFs are only one of several methods of scaling

source contributions to analyze different aspects or

consequences of exposure to chemicals. For example,

cancer slope factors or reference doses could be used to

analyze chronic cancer risk or acute risk, respectively.

Conclusions

The main sources of personal exposure to toxic VOCs in NJ

and CA in the mid to late 1980s appear to be ETS and/or

automobile exhaust or gasoline vapors, followed by TCA

sources, such as solvents and cleaning agents. Good

agreement was found between reported activity patterns

and factor scores for pumping gasoline, being exposed to

ETS, drinking tap water, and visiting the drycleaners in NJ,

and drinking tap water, showering, and using paints and

solvents in CA.

We are continuing this study by analyzing a synthetic

data set with known sources and contributions to test the

robustness of PMF as a source-apportionment technique.

We will also be analyzing the NJ, CA and synthetic data sets

with the principal components analysis (PCA), chemical

mass balance (CMB), and GRACE/SAFER (Henry et al.,

1994) models. The results from all models will be

compared.
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