Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

U.S. dietary exposures to heterocyclic amines*

Abstract

Heterocyclic amines (HAs) formed in fried, broiled or grilled meats are potent mutagens that increase rates of colon, mammary, prostate and other cancers in bioassay rodents. Studies of how human dietary HA exposures may affect cancer risks have so far relied on fairly crudely defined HA-exposure categories. Recently, an integrated, quantitative approach to HA-exposure assessment (HAEA) was developed to estimate compound-specific intakes for particular individuals based on corresponding HA-concentration estimates that reflect their meat-type, intake-rate, cooking-method and meat-doneness preferences. This method was applied in the present study to U.S. national Continuing Survey of Food Intakes by Individuals (CSFII) data on meats consumed and cooking methods used by >25,000 people, after adjusting for underreported energy intake and conditional on meat-doneness preferences estimated from additional survey data. The U.S. population average lifetime time-weighted average of total HAs consumed was estimated to be 9 ng/kg/day, with 2-amino-1-methyl-6-phenylimidazo[4,5- b]pyridine (PhIP) estimated to comprise about two thirds of this intake. Pan-fried meats were the largest source of HA in the diet and chicken the largest source of HAs among different meat types. Estimated total HA intakes by male vs. female children were generally similar, with those by (0- to 15-year-old) children 25% greater than those by (16+-year-old) adults. Race-, age- and sex-specific mean HA intakes were estimated to be greatest for African American males, who were estimated to consume 2- and 3-fold more PhIP than white males at ages <16 and 30+ years, respectively, after considering a relatively greater preference for more well-done items among African Americans based on national survey data. This difference in PhIP intakes may at least partly explain why prostate cancer (PC) kills 2-fold more African American than white men, in view of experimental data indicating that PhIP mutates prostate DNA and causes prostate tumors in rats.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

Abbreviations

* AαC:

2-amino-9 H-pyrido[2,3- b]indole

2-amino-α-carboline (26148-68-5)

BMR:

basal metabolic rate

BW:

body weight

cmf:

cumulative probability mass function

CSFII:

Continuing Survey of Food Intakes by Individuals

DiMeIQx:

2-amino-3,4,8-trimethylimidazo[4,5- f]quinoxaline (95896-78-9)

HA:

heterocyclic amine

HAEA:

HA-exposure assessment

IQ:

2-amino-3-methylimidazo[4,5- f]quinoline (76180-96-6)

IT:

maximum internal temperature

LBM:

lean body mass

MeIQx:

2-amino-3,8-dimethylimidazo[4,5- f]quinoxaline (77500-04-0)

PC:

prostate cancer

PhIP:

2-amino-1-methyl-6-phenylimidazo[4,5- b]pyridine (105650-23-5)

SE:

standard error

References

  1. Armitage P, and Doll R, A two-stage theory of carcinogenesis in relation to the age distribution of human cancer. Br J Cancer (1957) 11: 161–169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Augustsson K Skog K Jagerstad M Dickman PW and Steineck G, Dietary heterocyclic amines and cancer of the colon, rectum, bladder, and kidney: a population based study. Lancet (1999) 353: 703–707

    Article  CAS  PubMed  Google Scholar 

  3. Augustsson K, Skog K, Jagerstad M, and Steineck G, Assessment of the human exposure to heterocyclic amines. Carcinogenesis (1997) 18: 1931–1935

    Article  CAS  PubMed  Google Scholar 

  4. Bogen KT, Cancer potencies of heterocyclic amines found in cooked foods. Food Chem Toxicol (1994) 32: 505–515

    CAS  PubMed  Google Scholar 

  5. Bogen KT, RiskQ: an Interactive Approach to Probability, Uncertainty, and Statistics for Use with Mathematica® 4.0., UCRL-MA-110232 Rev. 1 Lawrence Livermore National Laboratory, Livermore, CA 2000

    Google Scholar 

  6. Briefel RR Sempos CT McDowell MA Chien SC-Y and Alaimo K, Dietary methods research in the third National Health and Nutrition Examination Survey: underreporting of energy intake. Am J Clin Nutr (1997) 65(suppl): 1203S–1209S

    Article  PubMed  Google Scholar 

  7. Byrne C Sinha R Platz EA Giovannucci E Colditz GA Hunter DJ Speizer FE and Willett WC, Predictors of dietary heterocyclic amine intake in three prospective cohorts. Cancer Epidemiol Biomark Prev (1998) 7: 523–529

    CAS  Google Scholar 

  8. Cox RJ Thomson JM Cunial CM Winter S and Gordon AJ, The effect of degree of doneness of beef steaks on consumer acceptability of meals in restaurants. Meat Sci (1997) 45: 75–85

    Article  CAS  PubMed  Google Scholar 

  9. Davis CD Schut HAJ Adamson RH Thorgeirsson UP Thorgeirsson SS and Snyderwine EG, Mutagenic activation of IQ, PhlP and MelQx by hepatic microsomes from rat, monkey and man: low mutagenic activiation of MelQx in cynomolgous monkeys in vitro reflects low DNA adduct levels in vivo. Carcinogenesis (1993) 14: 61–65

    Article  CAS  PubMed  Google Scholar 

  10. Djavan B, Susani M, Bursa B, Basharkhah A, Simak R, and Marberger M, Predictability and significance of multifocal prostate cancer in the radical prostatectomy specimen. Tech Urol (1999) 5: 139–142

    Article  CAS  PubMed  Google Scholar 

  11. Doll R, and Peto R, The causes of cancer: quantitative estimates of avoidable risks of cancer in the United States J Natl Cancer Inst (1981) 66: 1191–1308

    Article  CAS  PubMed  Google Scholar 

  12. Draper NR and Smith H, Applied Regression Analysis 2nd ed Wiley, New York, NY, 1981

  13. El-Bayoumy K Chae Y-H Upadhyaya P Riveson A Kurtzke C Reddy B and Hecht SS, Comparative tumorigenicity of benzo[a]pyrene, 1-nitropyrene, and 2-amino-1-methyl-6-phenylimidazo[4,5- b]pyridine administered by gavage to female CD rats. Carcinogenesis (1995) 16: 431–434

    Article  CAS  PubMed  Google Scholar 

  14. Felton JS and Knize MG, Heterocyclic-amine mutagens/carcinogens in foods In: Cooper C.S., and Grover P.L. (eds.), Hand book of Experimental Pharmacology, 94/1 Springer-Verlag, Berlin, 1990a, pp. 471–502

    Google Scholar 

  15. Felton JS and Knize MG, New mutagens from cooked food In: Pariza M., Aeschbacher H.-U., Felton J.S., and Sato S. (eds.), Mutagens and Carcinogens in the Diet Wiley-Liss, New York, 1990b, pp. 19–38

  16. Felton JS Knize MG Shen NH Andresen BD Bjeldanes LF and Hatch FT, Identification of the mutagens in cooked beef. Environ Health Perspect (1986) 67: 17–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Felton JS Knize MG Wood C Wuebbles BJ Healy SK Stuermer DH Bjeldanes LF Kimble BJ and Hatch FT, Isolation and characterization of new mutagens from fried ground beef. Carcinogenesis (1984) 5: 95–102

    Article  CAS  PubMed  Google Scholar 

  18. Gerhardsson de Verdier M Hagman U Peters RK Steineck G and Övervik E, Meat, cooking methods and colorectal cancer: a case-referent study in Stockholm. Int J Cancer (1991) 40: 1–6

    Google Scholar 

  19. Ghoshal A, Preisegger K-H, Takayama T, Thorgeirsson S, and Snyderwine EG, Induction of mammary tumors in female Sprague–Dawley rats by the food-derived carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5,- b]pyridine and effect of dietary fat. Carcinogenesis (1994) 15: 2429–2433

    Article  CAS  PubMed  Google Scholar 

  20. Hatch FT MacGregor JT and Zeiger E, Review: putative mutagens and carcinogens in foods: VII. Genetic toxicology of the diet Environ Mutagen (1986) 8: 467–484

    CAS  Google Scholar 

  21. Hayes RB Ziegler RG Gridley G Swanson C Greenberg RS Swanson GM Schoenberg JB Silverman DT Brown LM Pottern LM Liff J Schwartz AG Fraumeni Jr. JF and Hoover RN, Dietary factors and risks for prostate cancer among blacks and whites in the United States. Cancer Epidemiol Biomark Prev (1999) 8: 25–34

    CAS  Google Scholar 

  22. Hsing AW Tsao L and Devesa SS, International trends and patterns of prostate cancer incidence and mortality. Int J Cancer (2000) 85: 60–67

    Article  CAS  PubMed  Google Scholar 

  23. International Commission on Radiation Protection (ICRP), Reference Manual ICRP Report No. 25 Permagon, Cambridge, UK, 1975

  24. Ito N, Hasegawa R, Imaida K, Tamano S, Hagiwara A, Hirose M, and Shirai T, Carcinogenicity of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) in the rat. Mutat Res (1997) 376: 107–14

    Article  CAS  PubMed  Google Scholar 

  25. Ito N, Hasegawa R, Sano M, Tamano S, Esumi H, Takayama S, and Sugimura T, A new colon and mammary carcinogen in cooked food, 2-amino-1-methyl-6-phenylimidazo-[4,5-b]pyridine (PhlP). Carcinogenesis (1991) 12: 1503–1506

    Article  CAS  PubMed  Google Scholar 

  26. Kaderlik KR Minchin RF Mulder GJ Ilett KF Daugaard-Jenson M Teitel CH and Kadlubar FF, Metabolic activation pathway for the formation of DNA adducts of the carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) in rat extrahepatic tissues. Carcinogenesis (1994a) 15: 1703–1709

    Article  CAS  PubMed  Google Scholar 

  27. Kaderlik KR Mulder GJ Shaddock JG Casciano DA Teitel CH and Kadlubar FF, Effect of glutathione depletion and inhibition of glucuronidation and sulfation on 2-amino-1-methyl-6-phenylimidazo[4,5- b]pyridine (PhIP) metabolism, PhIP–DNA adduct formation and unscheduled DNA synthesis in primary rat hepatocytes. Carcinogenesis (1994b) 15: 1711–1716

    Article  CAS  PubMed  Google Scholar 

  28. Kampman E Slattery ML Bigler J Leppert M Samowitz W Caan BJ and Potter JD, Meat consumption, genetic susceptibility, and colon cancer risk: a United States multicenter case–control study. Cancer Epidemiol Biomark Prev (1999) 8: 15–24

    CAS  Google Scholar 

  29. Kato R, and Yamazoe Y, Metabolic activation and covalent binding to nucleic acids of carcinogenic heterocyclic amines from cooked food and amino acid pyrolysates. Jpn J Cancer Res (Gann) (1987) 81: 10–14

    Google Scholar 

  30. Kato T, Kikugawa K, and Hayatsu H, Occurence of the mutagens 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) and 2-amino-3,4,8-trimethylimidazo[4,5,-f]quinoxaline(4,8-Me2IQx) in some Japanese smoked, dried fish products. J Agric Food Chem (1986) 34: 810–814

    Article  CAS  Google Scholar 

  31. Keating GA and Bogen KT, Methods to estimate heterocyclic amine concentrations in cooked meats in the U.S. diet. Food Chem Toxicol (2001) 39: 29–43

    Article  CAS  PubMed  Google Scholar 

  32. Keating GA Layton DW and Felton JS, Factors determining dietary intakes of heterocyclic amines in cooked foods. Mutat Res (1999) 443: 149–156

    Article  CAS  PubMed  Google Scholar 

  33. Keating GA Sinha, R Layton, D Salmon, CP Knize, MG Bogen, KT Lynch, CF and Alavanja, M, Comparison of heterocyclic amine levels in home-cooked meats with exposure indicators. Cancer, Causes Control (2000) 11: 731–739

    Article  CAS  Google Scholar 

  34. Kendall M, and Stuart A, The Advanced Theory of Statistics Vol. 2 MacMillan Publishing, New York, NY, 1979, pp. 159–160

    Google Scholar 

  35. Kidd LR Stillwell WG Yu MC Wishnok JS Skipper PL Ross RK Henderson BE and Tannenbaum SR, Urinary excretion of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP in White, African-American, and Asian-American men in Los Angeles County. Cancer Epidemiol Biomark Prev (1999) 8: 439–445

    CAS  Google Scholar 

  36. Knize MG Dolbeare FA Carroll KL and Felton JS, Effect of cooking time and temperature on the heterocyclic amine content of fried-beef patties. Food Chem Toxicol (1994) 32: 595–603

    Article  CAS  PubMed  Google Scholar 

  37. Knize MG Sinha R Rothman N Brown ED Salmon CP Levander OA Cunningham PL and JS, F . Heterocyclic amine content in fast-food meat products. Food Chem Toxicol (1995) 33: 545–551

    Article  CAS  PubMed  Google Scholar 

  38. Kolonel LN Nomura AMY and Cooney RV, Dietary fat and prostate cancer: current status. J Natl Cancer Inst (1999) 91: 414–428

    Article  CAS  PubMed  Google Scholar 

  39. Lang NP Butler MA Massengill J Lawson M Stotts RC Hauer-Hensen M and Kadlubar FF, Rapid metabolic phenotypes for acetyltransferase and cytochrome P4501A2 and putative exposure to food-borne heterocyclic amines increase the risk for colorectal cancer or polyps. Cancer Epidemiol Biomark Prev (1994) 8: 675–682

    Google Scholar 

  40. Layton DW, Metabolically consistent breathing rates for use in dose assessments. Health Phys (1993) 64: 23–36

    Article  CAS  PubMed  Google Scholar 

  41. Layton DW Bogen KT Knize MG Hatch FT Johnson VM and Felton J, Cancer risk assessment of heterocyclic amines in cooked foods: an analysis and implications for research. Carcinogenesis (1995) 16: 39–52

    Article  CAS  PubMed  Google Scholar 

  42. Lichtenstein P Holm NV Verkasalo PK Iliadou A Kaprio J Koskenvuo M Pukkala E Skytthe A and Hemminki K, Environmental and heritable factors in the causation of cancer. N Engl J Med (2000) 343: 78–85

    Article  CAS  PubMed  Google Scholar 

  43. Lyon JL and Mahoney AW, Fried foods and the risk of colon cancer. Am J Epidemiol. (1988) 128: 1000–1006

    Article  CAS  PubMed  Google Scholar 

  44. Macintosh CA Stower M Reid N and Maitland NJ, Precise microdissection of human prostate cancers reveals genotypic heterogeneity. Cancer Res (1998) 58: 23–28

    CAS  PubMed  Google Scholar 

  45. McManus ME Burgess WM Veronese ME Hugget A Quattrochi LC and Tukey RH, Metabolism of 2-acetylaminofluorene and benzo( a)pyrene and activation of food-derived heterocyclic amine mutagens by cytochromes P450. Cancer Res (1990) 50: 3367–3376

    CAS  PubMed  Google Scholar 

  46. Miller BA Kolonel LN Bernstein L Young JL Jr, Swanson GM West D Key CR Liff JM Glover CS Alexander GA et al, Racial/Ethic Patterns of Cancer in the United States 1988–1992. NIH Publ. No. 96-4104, National Cancer Institute, Bethesda, MD, 1996

    Google Scholar 

  47. Muscat JE and Wynder EL, The consumption of well-done red meat and the risk of colorectal cancer. Am J Public Health (1994) 84: 856–858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. National Research Council (NRC), Nutrient Adequacy: Assessment Using Food Consumption Surveys National Academy Press, Washington, DC, 1986

  49. Norrish AE Ferguson LR Knize MG Felton JS Sharpe SJ and Jackson RT, Heterocyclic amine content of cooked meat and risk of prostate cancer. J Natl Cancer Inst (1999) 91: 2038–2044

    Article  CAS  PubMed  Google Scholar 

  50. Ochiai M, Ogawa K, Wakabayashi K, Sugimura T, Nagase S, Esumi H, and Nagao M, Induction of intestinal adenocarcinomas by 2-amino-1-methyl-6-phenylimidazo[4,5- b]pyridine in Nagase analbuminemic rats. Jpn J Cancer Res (Gann) (1991) 82: 363–366

    Article  CAS  Google Scholar 

  51. Ohgaki H, Hasegawa H, Kato T, Suenaga M, Ubakata M, Sato S, Takayama S, and Sugimura T, Carginogenicity in mice and rats of heterocyclic amines in cooked foods. Environ Health Perspect (1986) 67: 129–134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Pettaway CA, Racial differences in the adrogen/androgen receptor pathway in prostate cancer. J Natl Med Assoc (1999) 91: 652–660

    Google Scholar 

  53. Probst-Hensch NM Sinha R Longnecker MP Witte JS Ingles SA Frankl HD Lee ER and Haile RW, Meat preparation and colorectal adenomas in a large sigmoidoscopy-based case–control study in California (United States). Cancer, Causes Control (1997) 8: 175–183

    Article  CAS  Google Scholar 

  54. Reagan JO and Buyck MJ, Beef Customer Satisfaction National Live Stock and Meat Board, Chicago, IL, 1995

    Google Scholar 

  55. Robbins AS Whittemore AS and Van Den Eden SK, Race, prostate cancer survival, and membership in a large health maintenance organization. J Natl Cancer Inst (1998) 90: 986–990

    Article  CAS  PubMed  Google Scholar 

  56. Rosenkranz HS and Mermeistein R, The genotoxicity, metabolism and carcinogenicity of nitrated polycyclic aromatic hydrocarbons. J Environ Sci Health (1985) C3: 221–272

    CAS  Google Scholar 

  57. Ross RK Pike MC Coetzee GA Reichhardt JKV Yu MC Feigelson H Stanczyk FZ Kolonel LN and Henderson BE, Androgen metabolism and prostate cancer: establishing a model of genetic susceptibility. Cancer Res (1998) 58: 4497–4504

    CAS  PubMed  Google Scholar 

  58. Ruijter ET van de Kaa CA Schalken JA Debruyne FM and Ruiter DJ, Histological grade heterogeneity in multifocal prostate cancer. Biological and clinical implications. J Pathol (1996) 180: 295–299

    Article  CAS  PubMed  Google Scholar 

  59. Sato S, Negishi C, Umemoto A, and Sugimura T, Metabolic aspects of pyrolysis mutagens in food. Environ Health Perspect (1986) 67: 105–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Schoeller DA and van Santen E, Predicting basal metabolic rate, new standards and review of previous work. Hum Nutr Clin Nutr (1985) 39C(suppl. 1): 5–41

    Google Scholar 

  61. Schut HAJ and Snyderwine EG, DNA adducts of heterocyclic amine food mutagens: implications for mutagenesis and carcinogenesis. Carcinogenesis (1999) 20: 353–368

    Article  CAS  PubMed  Google Scholar 

  62. Selvin S, Practical Biostatistical Methods Duxbury Press, New York, NY, 1995

  63. Shiffman MH and Felton JS, Re Fried foods and the risk of colon cancer [letter]. Am J Epidemiol (1990) 131: 376–378

    Article  Google Scholar 

  64. Shirai T, Cui L, Takahashi S, Futakuchi M, Asamoto M, Kato K, and Ito N, Carcinogenicity of 2-amino-1-methyl-6-phenylimidazo[4,5- b]pyridine (PhIP) in the rat prostate and induction of invasive carcinomas by subsequent treatment with testosterone propionate. Cancer Lett (1999) 143: 217–221

    Article  CAS  PubMed  Google Scholar 

  65. Shirai T, Sano M, Tamano S, Takahashi S, Hirose M, Futakushi M, Hasegawa R, Imaida K, Matsumoto K, Wakabayashi K, Sugimora T, and Ito N, The prostate: a target for carcinogenicity of 2-amino-1-methyl-6-phenylimidazo[4,5- b]pyridine (PhIP) derived from cooked foods. Cancer Res (1997) 57: 195–198

    CAS  PubMed  Google Scholar 

  66. Signorello LB Brismar K Bergstrom R Andersson S-O Wolk A Trichopoulos D and Adami H-O, Insulin-like growth factor-binding protein 1 and prostate cancer. J Natl Cancer Inst (1999) 91: 1965–1966

    Article  CAS  PubMed  Google Scholar 

  67. Sinha R Chow WH Kulldorff M Denobile J Butler J Garcia-Closas M Weil R Hoover RN and Rothman N, Well-done, grilled red meat increases the risk of colorectal adenomas. Cancer Res (1999) 59: 4320–4324

    CAS  PubMed  Google Scholar 

  68. Sinha R Knize MG Salmon CP Brown ED Rhodes D Felton JS Levander OA and Rothman N, Heterocyclic amine content of pork products cooked by different methods and to varying degrees of doneness. Food Chem Toxicol (1998a) 36: 289–297

    Article  CAS  PubMed  Google Scholar 

  69. Sinha R Kulldorff M Curtin J Brown CC Alavanja MC and Swanson C, Fried, well-done red meat and risk of lung cancer in women (United States). Cancer Causes Control (1998b) 9: 621–630

    Article  CAS  PubMed  Google Scholar 

  70. Sinha R Rothman N Brown ED Salmon CP Knize MG Swanson CA Rossi SC Mark SD Levander OA and Felton JS, High concentrations of the carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine occur in chicken but are dependent on the cooking method. Cancer Res (1995) 55: 4516–4519

    CAS  PubMed  Google Scholar 

  71. Sinha R Rothman N Salmon CP Knize MG Brown ED Swanson CA Rhodes D Rossi S Felton JS and Levander OA, Heterocyclic amine content in beef cooked by different methods and to varying degrees of doneness and gravy made from meat drippings. Food Chem Toxicol (1998c) 36: 279–287

    Article  CAS  PubMed  Google Scholar 

  72. Skog K, Steineck G, Augustsson K, and Jagerstad M, Effect of cooking temperature on the formation of heterocyclic amines in fried meat products and pan residues. Carcinogenesis (1995) 16: 861–867

    Article  CAS  PubMed  Google Scholar 

  73. Snyderwine EG and Battula N, Selective mutagenic activation by cytochrome P3-450 of carcinogenic arylamines found in foods. J Natl Cancer Inst (1989) 81: 223–227

    Article  CAS  PubMed  Google Scholar 

  74. Sugimura T, Sato S, Ohgaki H, Takayama S, Nagao M, and Wakabayashi K, Mutagens and carcinogens in cooked food. In: Knudsen I. (ed.), Genetic Toxicology of the Diet Alan R. Liss, New York, 1986, pp. 85–107

  75. Sugimura T, Sato S, and Wakabayashi K, Mutagens/carcinogens in pyrolysates of amino acids and proteins in cooked foods: heterocyclic aromatic amines In: Woo Y.T., Lai D.Y., Arcos J.C., and Argus M.F. (eds.), Chemical Induction of Cancer, Structural Bases and Biological Mechanisms Academic Press, New York, NY, 1988, pp. 681–710

  76. Takahashi S Tamano S Hirose M Kimoto N Ikeda Y Sakakibara M Tada M Kadlubar FF Ito N and Shirai T, Immunohistochemical demonstration of carcinogen–DNA adducts in tissues of rats given 2-amino-1-methyl-6-phenylimidazo[4,5- b]pyridine (PhIP): detection in paraffin-embedded sections and tissue distribution. Cancer Res (1998) 58: 4307–4313

    CAS  PubMed  Google Scholar 

  77. Thomson BM Lake RJ Cressey PJ and Knize MG, Estimated cancer risk from heterocyclic amines in cooked meat — a New Zealand perspective. Proc Nutr Soc (1996) 21: 106–115

    CAS  Google Scholar 

  78. Thorgeirsson SS, Metabolic determinants in the carcinogenicity of aromatic amines In: Greim H., Jung R., Kramer M., Marquardt H., and Oesch F. (eds.) Biochemical Basis of Chemical Carcinogenesis Raven Press, New York, 1984, pp. 47–56

  79. Thorgeirsson SS Glowinski IB and McManus ME, Metabolism, mutagenicity and carcinogenicity of aromatic amines In: Hodgson E., Bend J.R., and Philpot R.M. (eds.), Reviews in Biochemical Toxicology 5 Elsevier Biomedical, New York, Amsterdam, Oxford, 1983, pp. 349–386

  80. Turesky RJ Lang NP Butler MA Teitel CH and Kadlubar FF, Metabolic activation of carcingenic heterocyclic aromatic amines by human liver and colon. Carcinogenesis (1991) 12: 1839–1845

    Article  CAS  PubMed  Google Scholar 

  81. U.S. Department of Agriculture (USDA), 1989–91 Continuing Survey of Food Intakes by Individuals and 1989–91 Diet and Health Knowledge Survey (CSFII/DHKS 1989–91 Data Set) CD-ROM. USDA Agricultural Research Service, Beltsville Human Nutrition Research Center, Food Surveys Research Group, 1993

  82. U.S. Department of Agriculture (USDA), Use a Meat Thermometer. Internet electronic publication USDA Food Safety Inspection Service, http://www.fsis.usda.gov/OA/pubs/cithermo.htm1997

  83. U.S. Department of Agriculture (USDA), 1994–96 Continuing Survey of Food Intakes by Individuals and 1994–96 Diet and Health Knowledge Survey (CSFII/DHKS 1994–96 Data Set) CD-ROM. USDA Agricultural Research Service, Beltsville Human Nutrition Research Center, Food Surveys Research Group, 1998

  84. U.S. Department of Health and Human Services (DHHS), Third National Health and Nutrition Examination Survey, 1988–1994, NHANES III Second Laboratory Data File (CD-ROM, Series 11, No. 2A) Centers for Disease Control and Prevention, National Center for Health Statistics, Hyattsville, MD, 1998

  85. Ward MH Sinha R Heinman EF Rothman N Markin R Weisenburger DD Correa P and Zahm SH, Risk of adenocarcinoma of the stomach and esophagus with meat cooking method and doneness preference. Int J Cancer (1997) 71: 14–19

    Article  CAS  PubMed  Google Scholar 

  86. Whittemore AS Kolonel LN Wu AH John EM Gallager RP Howe GR Burch JD Hankin J Dreon DM West DW Teh C-Z and Paffenbarger JRS, Prostate cancer in relation to diet, physical activity, and body size in Blacks, Whites, and Asians in the United States and Canada. J Natl Cancer Inst (1995) 87: 652–661

    Article  CAS  PubMed  Google Scholar 

  87. Wolfram S, Mathematica Book 4th ed. Cambridge University Press, Cambridge, UK, 1999

    Google Scholar 

  88. Yang S Leff MG McTague D Horvath KA Jackson-Thompson J Marayi T Boeselager GK Melnick TA Gildemaster MC Ridings DL Altekruse SF and Angulo FJ, Multistate surveillance for food-handling, preparation, and consumption behaviors associated with foodborne diseases: 1995 and 1996 BRFSS Food-Safety Questions. Morb Mortal Wkly Rev (1998) 47(SS-4): 33–57

    CAS  Google Scholar 

  89. Zheng W Deitz AC Campbell DR Wen WQ Cerhan JR Sellers TA Folsom AR and Hein DW, N-acetyltransferase 1 genetic polymorphism, cigarette smoking, well-done meat intake, and breast cancer risk. Cancer Epidemiol Biomark Prev (1999) 8: 233–239

    CAS  Google Scholar 

  90. Zheng W Gustafson DR Sinha R Cerhan JR Moore D Hong CP Anderson K Kushi LH Sellers TA and Folsom AR, Well-done meat intake and the risk of breast cancer. J Natl Cancer Inst (1998) 90: 1724–1729

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank our LLNL colleagues Jim Felton and Mark Knize for their comments on a draft of this manuscript. This work was performed under the auspices of the U.S. Department of Energy by University of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48, with funding provided by the National Cancer Institute (National Institutes of Health Grant No. P01 CA55861-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to KENNETH T BOGEN.

Rights and permissions

Reprints and permissions

About this article

Cite this article

BOGEN, K., KEATING, G. U.S. dietary exposures to heterocyclic amines*. J Expo Sci Environ Epidemiol 11, 155–168 (2001). https://doi.org/10.1038/sj.jea.7500158

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.jea.7500158

Keywords

This article is cited by

Search

Quick links