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Monitor-to-monitor temporal correlation of air pollution and weather
variables in the North-Central U.S.

KAZUHIKO ITO, GEORGE D. THURSTON, ARTHUR NADAS AND MORTON LIPPMANN

Nelson Institute of Environmental Medicine, New York University School of Medicine, 57 Old Forge Road, Tuxedo, New York 10987

Numerous time series studies have reported associations between daily ambient concentrations of air pollution and morbidity or mortality. Recent personal
exposure studies have also reported relatively high longitudinal correlation between personal exposures to particulate matter (PM) and home outdoor PM
concentrations, lending support to the health effects reported in time series studies. However, the question remains as to how well the temporal fluctuations in
the air pollution levels observed at an outdoor monitor represent the temporal fluctuations in the population exposures to pollution of outdoor origins in a city,
and how such representativeness affects the size and significance of risk estimates. Also, such spatio-temporal correlations would vary from pollutant to
pollutant, likely influencing their relative significance of statistical associations with health outcomes. In this study, we characterized the extent of monitor-to -
monitor correlation over time among multiple monitoring sites for PM less than 10 um (PM,(), gaseous criteria pollutants, and several weather variables in
seven central and eastern contiguous states (IL, IN, ML, OH, PA, WI, and WV) during the study period of 1988—1990. After removing seasonal trends, the
monitor - to - monitor temporal correlation among the air pollution/weather variables within 100-mile separation distance in these areas could be generally
ranked into three groups: (1) temperature, dew point, relative humidity (#>0.9); (2) Oz, PM;g, NO, (7: 0.8—0.6); and (3) CO, SO, (#<0.5). Using the
subsets for separation distance less than 100 miles, regression analyses of these monitor-to-monitor correlation coefficients were also conducted with
explanatory variables including separation distance, qualitative (land use, location setting, and monitoring objectives) and quantitative (large and small
variance ) site characteristics, and region indicators for Air Quality Control Region (AQCR ). The separation distance was a significant predictor of monitor-
to-monitor correlation decline especially for PM;, and NO, (~0.2 drop over 30 miles). Site characteristic variables were, in some cases, significant predictors
of monitor - to - monitor correlation, but the magnitude of their impacts was not substantial. Regional differences, as examined by AQCR, were in some cases
(e.g., in Metropolitan Philadelphia) substantial. In these areas, the pollutants that had generally poor monitor-to - monitor correlation in the overall seven states
data (i.e., for SO, and CO) showed higher monitor-to - monitor correlations, comparable with PM,, and O3, within the AQCR. These results are useful in
interpreting some of the past time series epidemiological results. The differences in monitor- to - monitor correlations found across pollutants in this work (i.e.,
r~0.8 vs. r~0.4) are sufficiently large that they could be a factor in the different pollutant significance levels reported in the epidemiologic literature. It is
recommended that future epidemiological studies collect and incorporate information on spatial variability among air pollutants in the analysis and
interpretation of their results. Journal of Exposure Analysis and Environmental Epidemiology (2001) 11, 21-32.
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Introduction weather data measured at a single air monitor or, at best, at a

few monitors. However, many of the air monitoring stations

Numerous time series studies have reported associations
between daily ambient concentrations of air pollution and
morbidity or mortality (U.S. EPA, 1996a). The results from
these observational studies have had a major influence on
the process of establishing the National Ambient Air
Quality Standards (NAAQS) because these studies produce
quantitative estimates of the impact of ambient air pollution
on the entire population in a given city. In these studies, the
daily fluctuations of mortality or morbidity counts in the
entire city or metropolitan statistical area (MSA) are
regressed on the daily fluctuations of air pollution and
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used in these studies were mostly routine regulatory -based
monitors, and their locations have not been chosen
specifically for the support of epidemiological studies.
Thus, the question remains as to how well the temporal
fluctuations in the air pollution levels observed at a given
monitor represent the temporal fluctuations in the popula-
tion exposures to pollution of outdoor origins in the city, and
how such representativeness affects the size and signifi-
cance of risk estimates.

From the viewpoint of the total human exposures, the
ambient concentrations of an air pollutant measured at a
monitor may appear to only weakly contribute to the total
exposures for an individual to that pollutant, especially
when there are indoor sources for the pollutant in question.
This is because an individual’s exposure to air pollution of
outdoor origin depends on such factors as indoor penetra-
tion fraction of the pollutant, air exchange, and the fraction
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of the time that the individual spends outdoor. These factors
can vary tremendously from person to person, so that if the
relationship between personal exposures and ambient
concentrations of an air pollutant is compared across
persons (i.e., cross-sectionally) at a given point in time, a
poor correlation may be observed. For example, in the
PTEAM study (Ozkaynak et al., 1996), regressing personal
PM,, exposures of 178 subjects on the ambient PM;,
concentrations measured in the backyard of each subject
resulted in a poor R value (0.14). Note that this correlation
is essentially cross-sectional, in that the variation in
personal PM;o exposures versus ambient PM, levels in
the backyard across persons contributed to the overall
correlation (though it was not purely cross-sectional, as the
data were collected over time, up to four subjects per day).
The scatter in such cross-sectional relationships depicts the
person-to-person difference in the relationship between
ambient concentrations and personal exposures.

When the relationship between the personal exposures
and ambient concentrations is examined over time (i.e.,
longitudinally ) for each individual, a higher correlation may
be observed. For example, Wallace (1996), as part of a
review of indoor particle exposure, re-calculated cross-
sectional and longitudinal regressions using data from the
THEES study of Lioy et al. (1990) and showed that higher
R? values were observed for longitudinal regressions than
for cross-sectional regressions. The regressions of personal
PM,, exposures on outdoor PM;, concentrations across the
14 subjects for each day of the 14 study days (i.e., within
day cross-sectional regression) resulted in low R? values
(median=0.06, ranging from 0.00 to 0.39). However, the
regression over time of personal PM( exposures on outdoor
PM,o concentrations over 14 days for each of the 14
subjects (i.e., the longitudinal regression ) resulted in higher
R? values (median=0.46, ranging from 0.02 to 0.82).
Wallace discussed that the higher longitudinal correlation
observed in this and other data sets was supportive of the
time series health effects analyses. More recent studies that
investigated the person - to-monitor temporal correlation for
particulate matter (PM) (e.g., Tamura et al., 1996; Janssen
et al., 1998; 1999) also reported good temporal correlation
coefficients (e.g., r~0.6—0.8) between personal monitors
and fixed outdoor monitors. Moreover, it has been shown by
Mage and Buckley (1995) that the average of the personal
exposures over many subjects correlates very well with
central site monitors (R*=0.91). Thus, from the viewpoint
of time series analyses, the generally good mean popula-
tion-to-monitor longitudinal correlations from the recent
exposure studies have provided supportive evidence for the
link between ambient air pollution concentrations and
short-term health effects.

However, the person-to-monitor longitudinal correla-
tion is only one aspect of the longitudinal correlations that
support the link between ambient air pollution and its effects
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on the whole population in a given city. Even if the person-
to-monitor temporal correlation were high between a
person and a nearby monitor, if the temporal correlation
between a pair of monitors separated by some distance
within a MSA were poor, then the use of a single or a few
monitors to represent the MSA would be questionable.
Since the distance covered in a MSA can range from about
20 to 100 miles, characterization of the extent of monitor-
to-monitor longitudinal correlation within that scale of
distance is as important as characterization of person-to-
monitor temporal correlation. It is this monitor-to-monitor
temporal correlation that this study aims to characterize.

The question of the “adequacy” of the location of a
monitor has been investigated in the context of designing an
efficient network in the earlier studies (e.g., Clifton et al.,
1959; Stalker et al., 1962 ) and more recently by Hwang and
Chan (1997), or in the context of spatial representativeness
of air monitors by Kotchmar et al. (1987) and Chan and
Hwang (1996). However, the monitor-to-monitor correla-
tions evaluated in these studies were of cross - sectional type,
and therefore were not relevant to time series studies. There
have been a few studies that examined monitor - to - monitor
temporal correlations when multiple monitors were avail-
able. For example, when many monitors (~40 stations)
were operating in the 1970s in New York City, Goldstein
and Landovitz (1977a,b) investigated a single site’s
representativeness and, based on the poor monitor-to-
monitor correlations of daily fluctuations (r~0.5-0.6 for
SO, and r~0.3 and 0.4 for smokeshade), concluded that
individual stations “did not adequately represent day-to-
day variation of air pollution in the surrounding area.”
Burnett et al. (1994) described monitor-to-monitor tem-
poral correlations for O3 and sulfate as a function of
separation distance in Ontario, Canada. On the average, the
monitor-to-monitor temporal correlation between two
monitors separated by 60 miles was about 0.7 for both O;
and sulfate. Description of monitor-to-monitor temporal
correlation in a city in an epidemiological investigation is
rather rare, however. This is likely due to the scarcity of
monitors available within a city or MSA. To increase the
statistical power to characterize monitor-to-monitor tem-
poral correlation in this study, we examine monitor-to-
monitor temporal correlation of air pollution and weather
variables using multiple monitoring stations in a larger
geographic area that contains several major cities.

Another important aim of our study is to compare the
monitor - to -monitor temporal correlation across multiple air
pollutants (PM;y, O3, SO,, NO,, and CO) and weather
variables (temperature, dew point, and relative humidity)
that are commonly included in time series regression models
as covariates. In past time series studies, researchers often
interpreted the relative significance of each of the covariates
as possible relative importance of causal potency. A
potential complication in such an interpretation is that, if
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relative error differs across pollutants, then we could have
incorrectly ranked the pollutants. For example, if one
pollutant had poor monitor-to-monitor temporal correlation
than another pollutant (with no such information available
to the study because there was only a single monitor, as
often is the case), then the pollutant with the poor spatial
(monitor-to-monitor) representativeness would be less
significant in the health outcome regression, even if the
underlying causal potency were the same for the two
pollutants. We expect the monitor-to-monitor temporal
correlation across the pollutants to vary due to their
differences in factors such as physico-chemical character-
istics and their source distribution patterns. The person-to-
monitor temporal correlation would also be different among
the pollution and weather variables due to the differences in
personal and indoor/outdoor factors mentioned previously,
but determining such difference requires actual personal
measurements, which was outside the scope of this study.
Thus, in this study, we investigated only monitor-to-
monitor temporal correlation, not person -to-monitor corre-
lation.

The specific objectives of this investigation are: (1) to
estimate ‘“‘average” monitor-to-monitor correlation for
each of the pollution and weather variables that are typically
included in the time series studies of air pollution health
effects; and (2) to quantitatively describe, for each
pollutant, the monitor-to-monitor correlation as a function
of separation distance and qualitative site characterization
(e.g., the location setting of a site). Knowing the relative
extents of monitor-to-monitor correlation among the
explanatory variables is important, as they are likely to
influence their corresponding relative significance of
associations with health outcomes. We analyzed data from
seven Central and Eastern U.S. contiguous states to provide
further understanding as to what factors cause a monitor to
be poorly correlated with other monitors.

Methods

Data
In order to examine monitor-to-monitor correlation in a
large well-monitored area, we chose seven contiguous
well-populated Central and Eastern U.S. states: Illinois
(IL), Indiana (IN), Michigan (MI), Ohio (OH), Pennsyl-
vania (PA), Wisconsin (WI), and West Virginia (WV).
These states cover 312,968 square miles and contain over 56
million people. The study area also includes many major
cities, such as Chicago, Cincinnati, Cleveland, Columbus,
Detroit, Indianapolis, Milwaukee, Philadelphia, and Pitts-
burgh.

An environmental dataset providing comparable data for
all the criteria pollutants was developed first. Air pollution
data for PM,, SO,, O3, NO,, and CO were retrieved from
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U.S. EPA’s Aerometric Information Retrieval System
(AIRS) for study period 1988—1990 for these states. The
AIRS working file format AMP355 (24-h average for PMq
and 1-h average for gaseous pollutants were available) was
used. From the hourly gaseous pollutant data, daily average
values were computed and used in the subsequent analyses.
In the initial retrieval, the numbers of monitoring stations
for these states were 287, 295, 241, 80, and 108 for PM,,,
SO,, O3, NO,, and CO, respectively. However, many of
these sites collected data for a short period of time and
contained large numbers of missing data. Since most of the
PM,, data were collected on an every-sixth-day sampling
schedule (gaseous pollutants and weather variables were
collected every day) at most sites, the data analyses were to
be conducted for the PM;, samplings days only (total of
183 possible days during the 3 -year period) in order to use
comparable sample sizes. Therefore, we eliminated those
sites that had less than 80% of the PM,, every-sixth-day
sampling schedules (183 daysx0.8=146 days). Since O3
was often collected only during the warm season (i.e.,
April-October) in some states, the criterion of the
minimum number of days required for O3 was reduced to
105 days (98% of the PM,, sampling days between April
and October during the 3 -year period). In addition, because
we were interested in monitor-to-monitor correlation in
mainly densely populated areas, we also eliminated those
sites whose characteristics (see below) were ““Agricultur-
al,” “Forest,” or “Rural”. This elimination process resulted
in 97, 137, 99, 26, and 71 stations for PM;,, SO,, O3, NO,,
and CO, respectively. We chose weather variables that are
often analyzed in time series mortality/morbidity studies:
temperature, dew point, and relative humidity. The daily
average values of these variables were retrieved from Earth
Info (Boulder, CO) database, which compiled National
Climatic Data Center’s Surface Hourly Observations. There
were 45 weather stations in these states. Figure 1 shows the
resulting distribution of pollution and weather monitoring
sites in these seven states.

The monitoring sites were then characterized. The AIRS
database contains site characteristic data elements asso-
ciated with each air pollution monitor. These include: Land
Use (Residential, Commercial, Industrial, Agricultural,
Forest, Desert, or Mobile); Location Setting (Urban,
Suburban, or Rural); and Monitoring Objective (Maximum
Concentration, Population Exposure, Background, or
Source). The AIRS database also identified each site’s Air
Quality Control Region (AQCR). The AQCRs are EPA -
designated regional boundaries that were established based
on jurisdictional boundaries, urban—industrial concentra-
tions, and other factors such as atmospheric areas for the
purpose of providing adequate implementation of air quality
standards (U.S. EPA, 1972). AQCR can be intra- or
interstate. There were 17 “major” AQCRs that contained at
least seven monitors for PM;, or SO, data in this dataset.
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Figure 1. Distribution of air pollution and weather monitoring stations in 7 states.

These characteristics were used in data analysis as group
indices or indicator variables. The longitude and latitude
information was used to compute the separation distance
between each pair of monitoring sites. These data provided
a means of evaluating factors affecting the intersite
correlations.

Statistical Analysis

The data were examined for temporal correlation after
controlling for long-term trends. The air pollution or
weather time series from each monitor was detrended
using smoothing splines of time, with period correspond-
ing to approximately 1 month and longer, in order to
eliminate the influence of seasonal cycles (such influence
is especially strong for temperature and O;). Correlation
over time for each pair of monitors was then computed,
resulting in n*(n—1)/2 correlation coefficients when n
sites were available. All the computations were restricted
to the every-sixth-day PM;, sampling scheduled days.
We then characterized the resulting monitor-to - monitor
temporal correlation as a function of: (1) separation
distance; (2) associated EPA qualitative site characteriza-
tion (land use, location setting, and monitoring objective);
(3) AQCR; (4) variance (the lowest and highest 10
percentiles).

Locally weighted regression, or LOWESS (Cleveland,
1979), was used to smooth the resulting correlation
coefficients to graphically visualize the relationships
across monitors. We first smoothed the monitor-to-
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monitor correlation over the separation distance between
each pair of monitors (spanning up to approximately 1000
miles). We used 20% of data span for the smoothing
window. Because we are particularly interested in
characterizing monitor-to-monitor correlation within the
geographic scale of a MSA or city (the scale used to
aggregate health outcomes in time series studies), we
repeated the procedure using correlation with separation
distance less than 100 miles. We used a 40% data span for
smoothing in the less-than-100-mile data subsets. In
addition, we conducted smoothing of monitor-to-monitor
by site characteristic strata.

To quantitatively summarize factors that explain
monitor-to-monitor correlation, we next conducted re-
gression analyses of the correlation. Note that the
regression analyses were conducted for pollution variables
only, as the weather stations did not collect individual site
characteristic descriptors that are equivalent to pollution
stations. Despite the limits of correlation coefficient ( — 1
to 1), the resulting correlation coefficients were generally
normally distributed, except for PM;, and NO,, for which
there were some outlying low correlation coefficients.
However, preliminary regression analyses indicated that
site characteristics and indicator variables for high or low
variance could explain these outlying values. Since our
preliminary analysis indicated non-linear declines of
correlation as a function of distance, with much of the
drop in correlation within 30 miles, we also considered a
pair of piecewise variables (i.e., the hockey-like shape,
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except that the both pieces can have slopes) with the
inflection point at 30 miles. Thus, using the data subset
for separation distance less than 100 miles, we conducted
regression analyses of the monitor-to-monitor correlation
(dependent variable) with explanatory variables including
the separation distance, site characteristics (indicator
variables), a high or low variance (indicator variables
for the highest and lowest 10 percentiles), and indicator
variables for the 17 major AQCRs.

After the data elimination process described above, the
remaining site characteristics categories included: “Indus-
trial,” “Commercial,” and ‘“Residential” for Land Use;
“Urban and center city” and “Suburban” for Location
Setting; and “Population Exposure” and “Maximum
Concentration” for Monitoring Objective. Thus, each
correlation coefficient (for a pair of sites) computed could
be classified as either “both,” “one only,” or “neither”
with regard to each site characteristics. Non-singular linear
combinations of these indicator variables could be used, but
instead, only the indicator variables for “both” (sites having
that character) were included because of the ease of
interpretation. Prior to regression analyses, we also explored
the relationships between the monitor-to-monitor correla-
tion and the explanatory variable candidates to see if any
transformation was necessary. Forward stepwise regressions
were used to select variables that significantly affected
monitor-to-monitor correlation. All the statistical computa-

tions were conducted using a statistical package, Splus
(StatSci, 1998).

Results

Figure 2 displays the distribution of PM ¢ levels as a function
of site characteristics before data restriction ( that eliminated
“Agricultural” and “Rural” sites). It can be seen that
“Agricultural” (AGR) and “Rural” (RUR) sites had lower
PM,, levels. While the sites with land use=‘Industrial”
(IND) or monitoring objective=“Maximum Concentra-
tion” (MAXC) had larger outlying values, the median levels
were comparable between the sites with these characteristics.
Similar site characteristic—pollutant concentration patterns
were seen in other pollutants (results not shown).

Figure 3 shows the monitor-to-monitor correlation
coefficients calculated (after seasonal detrending) as a
function of separation distance, with LOWESS -smoothed
correlation superimposed. It is obvious that the correlation
coefficients are not only generally higher for the weather
variables, especially temperature and dew point, but also
tighter in their spread. Generally poorer correlation for SO,
and CO is also indicated. Among the weather variables,
relative humidity’s spatial correlation declined more steeply
as a function of distance than that for temperature and dew
point.

Land Use Location Setting Monitoring
Objective
0 0 . 0 | .
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Figure 2. Box-plots of PM;, levels (y-axis in ug/m 3) by site characteristics. IND =industrial; COM =commercial; RES=residential;
AGR =agricultural; URB=urban; SUB=suburban; RUR =rural; MAXC =maximum concentration; POPX = population exposure.
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Figure 3. Monitor-to-monitor temporal correlation (y-axis) vs. separation distance (x-axis in miles) for pollution and weather variables.

Figure 4 shows the smoothed spatial correlation using the number of very low correlation coefficients (i.e., outliers).
cases with separation distance of less than or equal to 100 To identify what factor(s) contributes to the low correlation,
miles (to focus on the scale of a city or MSA typically used the distribution of correlation was also examined by site
in time series health effects studies). In this scale, the characteristics. Figure 5 shows boxplots of the monitor-to-
decline in correlation over distance is not apparent for monitor correlation for PM;, by a 10-mile increment (for
temperature and dew point. It can be seen that the smoothed
correlation for PM,, Oz, and NO, essentially overlapped. - - —_Temp, Dewp
CO and SO, showed poorer monitor-to-monitor correla- | e ‘ " Rel Hum.
tion, but the correlation coefficients for CO were somewhat
higher than for SO,. Also, the decline in correlation as a
function of distance for pollution variables appears to be
steeper within a 30-mile distance. Thus, without taking into
account the site characteristics and AQCR difference, the
correlation can be ranked into three distinct groups: (1)
temperature, dew point, relative humidity (#>0.9); (2) Os,
PM;y, NO, (7: 0.8—0.6); and (3) CO, SO, (r<0.5). Among
the second group, O; appears to generally have a slightly 0 20 40 60 80 100 120
higher correlation than PM;, or NO,. distance(mile)

Note that, as could be seen in Figure 3, the distribution of

monitor-to -monitor correl.atlon for PM;g appears to be Figure 4. Smoothed monitor-to-monitor correlation (distance < 100
somewhat skewed. That is, there are a relatively small miles).
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Figure 5. Monitor-to-monitor correlation (distance < 100) by distance and with (a) and without (b) industrial sites.

distance <100 miles) with and without the “Industrial”
sites. It is clear that most of the very low correlation
coefficients are those from the “Industrial” sites. However,
the medians are not appreciably different between the
correlation with industrial sites and the correlation without
industrial sites, suggesting that the “Industrial” sites do not
alone explain these low correlation coefficients.
Smoothing was also conducted for data subsets stratified
by site characteristics. Figure 6 shows the resulting

smoothed correlation for PM;, and SO,. It can be seen
that, for land use, the smoothed correlation for “Industrial”
sites was lower than that for “Residential” or ‘“Commer-
cial”. The smoothed correlation by location setting did not
show appreciable difference for both PM;, and SO,.
Monitoring objectives (““Population exposure” and “Max-
imum concentrations”) did not separate smoothed correla-
tion for PM;o. However, for SO,, the smoothed correlation
was somewhat smaller for “Maximum concentration” than

(a) By Land Use: Residential (solid line); Commercial (fine b(;oken line); Industrial (coarse broken line)
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Figure 6. Smoothed monitor-to-monitor correlation by site characteristics for PM, and SO,
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Table 1. Stepwise regression coefficients (7-ratio) of monitor-to - monitor correlation on site characteristics (case with separation distance <100 miles only).

Number of Intercept ~ Drop in Land Use Location setting Monitor objective Variance indicator® AQCR indicator®
observations 30 miles
IND COM RES URB SUB POPX MAXC High Low Highest Lowest
PM;o 969 0.760 —0.171 —0.069 0.037 0.048 —0.085 —0.085 NE Pennsylvania  Chicago
(45.6) (—933) (—4.19) (1.83) (2.40) (—593) (5.93) 0.212 (2.08) —0.069 (—3.44)
O3 865 0.711 —0.084 0.034 —0.029 —0.032 0.034 0.049 0.049 Cleveland Chicago
(34.8) (—4.10) (2.91) (—2.69) (—235) (141 (3.77) (3.77) 0.240 (6.05) 0.085 (5.11)
NO, 70 0.719 —0.204 0.114
(19.7) (=3.75) (2.37)
coO 442 0.472 —0.066 —0.034 0.066 NE Pennsylvania ~ SW Pennsylvania
(22.1) (—2.69) (—1.80) (2.86) 0.287 (5.92) 0.139 (2.81)
SO, 1895 0.321 —0.060 —0.039 0.037 0.024 —0.018 0.031 —0.028 Philadelphia St. Louis
(19.7) (—3.47) (—296) (3.08) (2.07) (—-199) (2.19) (—2.58) 0.444 (6.05) —0.176 (—3.62)

Note: (a) Indicator variables for variables with the highest 10th percentile and the lowest 10th percentile variance; (b) the AQCR indicator variables with the highest coefficient and the lowest coefficients

are listed.

Abbreviation keys: IND, Industrial; COM, Commercial; RES, Residential; URB, Urban; SUB, Suburban; POPX, Population Exposure; MAXC, Maximum Concentration.

v 32 o1 (.:.

so[qeLIeA 10yjedm pue uonn[jod Ie Jo uone[aLIod [erodwa],



Temporal correlation of air pollution and weather variables

Ito et al. ‘j)

for “Population exposure”. For other pollutants, the site
characteristics did not influence smoothed correlation,
except for NO, and CO (results not shown). For NO,, the
sites with location setting= “Urban’’ showed higher correla-
tion than those with “Suburban”. For CO, the sites with
land use=“‘Residential”” showed higher correlation than the
“Commercial” sites. Thus, these site characteristics do
appear to influence the monitor-to-monitor correlation, but
the magnitude of their impacts was not substantial.

Table 1 shows results from the forward stepwise
regressions. Note that the 7-ratios should not be directly
compared across the pollutants because their available
numbers of observations are different. The R? values for
these models were relatively small (0.15, 0.21, 0.23, 0.31,
and 0.17 for PM;q, O3, NO,, CO, and SO,, respectively).
For all the pollutants, the intercept was the most significant
predictor. The intercepts showed the essentially the same
ranking/grouping as those for the correlation smoothed
over the distance discussed above: PM;y, O3, and NO,
showing similar intercepts (~0.7-0.75), followed by CO
(0.47), then SO, (0.32). The piecewise slope variable
within the 30-mile distance was selected in the stepwise
regression for all the pollutants, while neither the linear
distance term nor the piecewise slope variable beyond 30
mile was selected for any pollutant. The computed decay in
correlation as a function of distance at the 30-mile
separation point was substantial for PM;, and NO,
(—0.17 and —0.20, respectively), but more modest for
05 (—0.08), CO (—0.07), and SO, (—0.06).

The coefficients for the specific site characteristics (Land
Use, Location Setting, and Monitor Objective) reflect the
magnitude of a gain or loss in correlation (from the
intercept) when a pair of sites has a given site characteristic
(e.g., Land Use="Industrial”’). While sometimes signifi-
cant and mostly consistent with the expectation (i.e.,
“Industrial” sites reduce correlation), their magnitude of
impacts (mostly <|0.1]) was not substantial. These results
are generally consistent with the results from smoothing by
site characteristics (Figure 6). The large variance of
temporal fluctuations (indicator for the highest 10 percen-
tiles in variance) for PM;, reduced correlation, while the
small variance (the lowest 10 percentiles in variance) for
CO reduced monitor-to-monitor correlation. Thus, the
large variance may be indicative of strong local source
impacts that contribute to “error” in representing larger
region-wide fluctuations of pollution, whereas the small
variance may be indicative of the lack of “signal” that
contributes to monitor-to-monitor correlation.

As can also be seen in Table 1, the magnitudes of some of
the regression coefficients for certain AQCRs were
substantial. Of all the pollutants, the largest positive
regression coefficient for the AQCR was that for the SO,
sites in Metropolitan Philadelphia (0.444), although the
number of sites within a 100-mile distance in this AQCR
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was small (four sites producing six correlation coefficients,
or 0.3% of the total number of correlation coefficients for
SO,). In fact, the median monitor-to-monitor correlation
coefficient of the four SO, sites in Metropolitan Philadel-
phia was 0.795, which is close to the intercept plus the
coefficient (0.321+0.444=0.765). The second largest
regression coefficient for the AQCR was the CO coefficient
(0.287) for Northeast Pennsylvania — Upper Delaware
Valley. There were five CO sites in this area (10 correlation
coefficients), with a median monitor-to-monitor correla-
tion of 0.690. The largest negative regression coefficient for
the AQCR was that for the SO, sites in Metropolitan St.
Louis (—0.176), making the already generally low
monitor-to-monitor correlation for SO, even poorer. An
examination of the six SO, sites (15 monitor-to-monitor
correlation coefficients) in Metropolitan St. Louis, in fact,
showed negative correlation coefficients (range: —0.326 to
0.609, with a median of 0.053). Thus, the regional
difference in monitor-to-monitor correlation, as modeled
with the AQCR indicator variables, can be substantial, but
the number of such AQCRs, as well as the number of sites
associated with these AQCRs, was relatively small in this
analysis.

Discussion

Without taking into account the site characteristics and
regional differences, the monitor-to-monitor temporal
correlation among the air pollution/weather variables
within a 100-mile separation distance in the combined
study areas could be generally ranked into three groups: (1)
temperature, dew point, relative humidity (r>0.9); (2) Os,
PMp, NO, (7: 0.8—0.6); and (3) CO, SO, (r<0.5), with
SO, generally showing smaller correlation (~0.3) than that
for CO (~0.4). Within the 100-mile separation distance,
the monitor-to-monitor correlation for the pollution vari-
ables declined as a function of separation distance, with
much of the drop observed within the first 30 miles.

When the separation distance, site characteristics, and
regional difference were modeled in regression analyses for
the 100 miles or less separation distance subset, the
intercepts were the most significant predictors and their
values were similar to the correlation smoothed over
distance. The separation distance was a significant predictor
of monitor-to-monitor correlation decline, but more so for
PM; and NO, than for other pollutants. The results indicate
that it makes difference whether two monitors are located 2
or 30 miles away. While the qualitative site characteristics
were, in some cases, significant predictors of monitor-to-
monitor correlation, the magnitude of their impacts was
generally not substantial. In some cases, the regional
difference, as modeled with the AQCR indicator variables,
could be substantial, to the extent that the ranking of the
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pollutants’ monitor-to-monitor correlation was different
from that of the overall data (e.g., SO, in Philadelphia and
CO in Northeast Pennsylvania). Thus, while there is a
general ranking of monitor-to-monitor correlation among
pollutants, the regional difference and monitor separation
distance can make exceptions. It should also be pointed out
that the relatively low R? values of these regression models
(~0.2-0.3) indicate that predicting a monitor-to-monitor
correlation coefficient for any particular pair of sites based
on the explanatory variables included was difficult.

There are some possible explanations for the ranking of
pollution monitor-to-monitor correlations observed in this
study. SO, and CO are both primary pollutants and are
likely highly influenced by local sources, whereas Oz and
NO, are largely secondary pollutants, and therefore likely
more uniformly distributed within the scale of a city or
MSA. PM,, in this region of U.S. in the summer months,
contains a large fraction (from 50% to 80% in the summer)
of sulfate, which is a secondary pollutant derived from SO,.
Wilson and Suh (1997) examined monitor-to-monitor
correlation of PM,,, PM, s, and PM;(_, 5 in Philadelphia
and St. Louis, and found that monitor-to-monitor correla-
tion coefficients for PM, s were high (#~0.9), but low for
PMy_»5 (r~0.4), indicating that fine particles have
smaller errors in representing community - wide exposures.
Thus, fine particles are expected to show even better
monitor-to-monitor correlation than PM;q. Also, the
situation may be quite different in the Western U.S., where
sources of PM are different from those in the Northeast or
Central U.S. We are currently extending our study to
consider larger areas that include West Coast states.

Interpretation of the monitor-to-monitor temporal cor-
relation in the context of exposure characterization error and
its effects on the health risk estimates is an important issue
for time series studies. Recently, Zeger et al. (2000) laid out
a conceptual framework for assessing measurement error
effects in air pollution mortality studies. In their model, the
pollution measurement difference between personal expo-
sure and the average of multiple monitor measurements was
decomposed into three components: (1) the error due to
having aggregate rather than individual exposure data; (2)
the difference between the average personal exposure and
the true ambient pollutant level; and (3) the difference
between the true and the measured ambient concentration.
They then described how each component of error would
affect the risk estimate (mortality regression coefficient) by
substituting the decomposed terms in an equation that
described the relationship between individuals’ effects and
aggregate level. The first component is considered to be of
Berksonian error, in that it does not bias the risk estimate.
The second component is not of the Berksonian type and is
likely to bias the risk estimate. The third component is
considered largely of the Berksonian type if the average of
available monitors is an unbiased estimate of the true
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spatially averaged ambient level. The introduction of this
conceptual framework is a major advancement, from which
empirical and simulation analyses may be developed.
However, it should be noted that Zeger et al.’s model
assumed, as mentioned in their paper, that a high degree of
spatial homogeneity in ambient levels existed, and, for the
“measured ambient concentration,” the average of multiple
monitor measurements was assumed to be available. Zeger
et al. also mentioned that the third component represented
the instrumental error, which would tend to be cancelled out
by spatial averaging across multiple unbiased ambient
monitors in a region. However, we point out that many of
the past time series studies relied on data from a single
monitor (e.g., the time series analysis of the Harvard Six
Cities study). For PM, the currently available data in most
cities and MSAs were collected every sixth day (which did
not provide sufficient sample size for mid-sized cities) and
therefore, the mortality analyses often relied on only one or
a few, at most, monitors that collected data on daily basis.
We also argue that based on our results, we cannot generally
assume a high degree of spatial homogeneity, and the extent
of such homogeneity varies from pollutant to pollutant.
Thus, Zeger et al.’s model, while excellent in terms of
framework, did not directly address the possible impact of
error due to monitor-to-monitor variability on risk
estimates that, as our data suggest, could be important.

Does the knowledge of monitor-to-monitor temporal
correlation of a pollutant allow correction or adjustment of
the health outcome regression coefficients in a time series
study? The answer, unfortunately, is no, or at least not with
the monitor-to-monitor correlation alone because: (1) the
extent of the error due to person-to-monitor needs to be
considered; (2) the classical additive error may not be
applicable; and (3) the effects of “error” in multiple
regression model requires consideration of intercorrelation
among covariates. What we can infer, however, from these
results, is that for the pollutants that have poor monitor-to-
monitor correlation, such as SO, and CO, we have, on the
average, a worse chance of getting accurate population
exposure estimates using a single or a few monitoring sites,
compared to other pollution and weather variables.

The added monitor-to-monitor error would have two
effects on epidemiologic risk estimates: (1) it would bias
the pollutant relative risk estimates downward; and (2) it
would increase the confidence band around the pollution
relative risk estimate. For example, in a simplified linear
additive error scheme, a monitor-to-monitor correlation is
the attenuation factor (also called a reliability ratio; Fuller,
1987) that reduces the risk coefficient by that number. Thus,
a pollutant that is measured at a monitor with an underlying
monitor-to -monitor correlation of 0.8 could have twice the
excess risk of a pollutant with an underlying monitor-to-
monitor correlation of 0.4, if they had the same underlying
effects. In addition, the pollutant significance would be even
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more affected, as the standard error of risk coefficient would
increase as well. In time series studies in which the reported
pollution effects are often marginally significant, such an
extent of difference in monitor-to-monitor correlation
could clearly make a large difference in whether a pollutant
is deemed a ““significant” or “non-significant™ predictor of
health outcomes.

Despite the limitation of the use and interpretation of
these monitor-to-monitor temporal correlation, the ranking
of these monitor-to-monitor correlation among variables
appears to be, to some extent, consistent with these
predictors’ relative significance in recent time series
mortality studies reviewed (U.S. EPA, 1996b), in which
temperature was often the most significant predictor of
mortality; PM indices and Oz were often the most
significant predictors among air pollution indices; and
SO, and CO often did not significantly explain mortality
variation. There are also exceptions in which SO, or CO
was a significant predictor of daily measure of health
outcomes. For example, in two recent mortality—air
pollution time series studies (Moolgavkar and Luebeck,
1996; Kelsall et al., 1997) for Philadelphia data (recall that,
in our results, SO,’s monitor-to-monitor correlation was as
good as that for PM;q), both Total Suspended Particles
(TSPs) and SO, were significant predictors of mortality in
single pollutant models, and both of their coefficients were
reduced when they were included in the model simulta-
neously. This suggests that the intercorrelations of pollu-
tants, as well as the relative extent of error, can play roles in
the relative importance of these pollutants in health outcome
regression models.

There are several simulation studies that examined joint
effects of correlation and error (Zidek et al., 1996; Marcus
and Chapman, 1998; Carrothers and Evans, 2000; Zeger et
al., 2000). These studies generally suggest that transfer of
effects from one (causal) pollutant to another (non-causal)
pollutant is possible under some conditions (i.e., strong
correlation between the covariates and large error in the
causal predictor). Since intercorrelations among pollution/
weather variables, as well as monitor-to-monitor temporal
correlation, are expected to vary from region to region, an
examination of this issue in real data requires analysis of
data from various locations. We did not investigate the
intercorrelation among pollutants in this study, but plan to
investigate the issue in our ongoing study, in which a larger
geographic area will be covered.

It should be re-emphasized that the monitor-to - monitor
variability is only one aspect of the exposure characteriza-
tion error. For example, the monitor-to-monitor temporal
correlation of temperature may be very high, but in a city
where residential air conditioning or heating is prevalent,
the ambient air temperature may not be a good index of
population exposure to temperature in that city. Another
type of error, monitoring site-to-personal difference, is also
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likely different among the weather/pollution variables. In
addition, the averaging of concentrations over multiple sites
would tend to reduce spatial variability as a problem. An
overall assessment of the relative contribution of these
exposure characterization errors, which will vary from study
to study, will be possible when data for all of these
components of the interpollutant errors are available.
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