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The gastrointestinal (GI) ecosystem is increasingly understood to be a fundamental component of
health, and has been identified as a new focal point for diagnosing, correcting and preventing
countless disorders. Shotgun DNA sequencing has emerged as the dominant technology for
determining the genetic and microbial composition of the gut microbiota. This technology has linked
microbiota dysbioses to numerous GI diseases including inflammatory bowel disease, obesity and
allergy, and to non-GI diseases like autism and depression. The importance of establishing causality
in the deterioration of the host–microbiota relationship is well appreciated; however, discovery of
candidate molecules and pathways that underlie mechanisms remains a major challenge. Targeted
approaches, transcriptional assays, cytokine panels and imaging analyses, applied to animals, have
yielded important insight into host responses to the microbiota. However, non-invasive, hypothesis-
independent means of measuring host responses in humans are necessary to keep pace with
similarly unbiased sequencing efforts that monitor microbes. Mass spectrometry-based proteomics
has served this purpose in many other fields, but stool proteins exist in such diversity and dynamic
range as to overwhelm conventional proteomics technologies. Focused analysis of host protein
secretion into the gut lumen and monitoring proteome-level dynamics in stool provides a tractable
route toward non-invasively evaluating dietary, microbial, surgical or pharmacological intervention
efficacies. This review is intended to guide GI biologists and clinicians through the methods currently
used to elucidate host responses in the gut, with a specific focus on mass spectrometry-based
shotgun proteomics applied to the study of host protein dynamics within the GI ecosystem.
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Introduction

Humans and our microbial inhabitants have co-
evolved to form an aggregate organism. In the distal
gastrointestinal (GI) tract, where microbes are at
the greatest abundance, the complex interactions
between host and microbes define health and
disease. This dynamic relationship differs between
individuals (Costello et al., 2009) and changes over
time due to numerous variables including diet
(Turnbaugh et al., 2009), environment (Spor et al.,
2011) and host genetics (Turnbaugh et al., 2009).
Intensive effort has been applied toward characteriz-
ing the microbiota composition and functionality.
The MetaHIT consortium (Qin et al., 2010) and the
Human Microbiome Project (Consorium THMP,
2012) among other initiatives have charted the
diversity of the gut microbiota across the modern
world. Elegant work using mouse models
has established mechanisms underlying complex
host–microbiota interactions (Ivanov et al., 2009;
Hsiao et al., 2013; Smith et al., 2013), although

relatively few studies have been extended to
include mechanistic connections to human biology
(Nicholson et al., 2005; Koeth et al., 2013). Poten-
tially significant differences in the microbiota
between animal models and humans, co-evolved
interactions between a microbiota and its resident
species (Snel et al., 1995; Ley et al., 2008) and
difficulties in monitoring host responses in humans
non-invasively have resulted in a major gap in our
understanding of human–microbiota interdependen-
cies. To complement the wealth of sequencing-based
microbiota characterization, discovery-based efforts
are necessary to measure the numerous ways hosts
respond to their resident microbiota and identify
novel proteins and pathways that mediate interac-
tion (Box 1).

Current methods of host response
analysis

Most analyses of host responses to the microbiota
have been conducted with targeted, single-protein
level molecular approaches. Although methods,
including western blotting, ELISA and quantitative
PCR, reliably validate functions and interactions of
candidate molecules, they must be individually
tailored to specific hypotheses, and are thus inher-
ently low-throughput and narrow in scope. In an
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extremely complex, ill-defined system like the human
gut, targeting only a few molecules for measurement
is likely to overlook key players. Discovering
physiological responses in an untargeted fashion is
necessary for generating new hypotheses in a manner
commensurate with ongoing, global, microbiota
sequencing efforts (Table 1).

Large-scale transcriptional assays (RNAseq, micro-
array) of intestinal tissue provide a highly sensitive
analysis of microbiota-influenced gene expression
that has been applied in both human and model
organism contexts (Laukens et al., 2006;
Athanasiadou et al., 2011; El Aidy et al., 2012).
Although the sensitivity of sequencing is unmatched
in the '-omics' space, the vast constellation of cell
types in the gut could confound these results by
obscuring the contribution of ecologically important
but low-abundant cells. An ideal assay would
independently measure the contribution of each cell
type from a single biopsy (Box 1). For example,
goblet cells have an essential role in mucus
production, which creates a barrier between the host
and microbiota, but these cells only represent 4–16%
of the intestinal epithelium (Kim and Ho, 2010).
Laser-capture microdissection (Cash et al., 2006) and
flow cytometry (Habib et al., 2012) have provided
partial solutions for this problem by isolating
cell types of interest. However, laser-capture
microdissection is technically challenging and flow
cytometry only separates cell types that can be
unambiguously labeled and requires tissue disaggre-
gation. Cell type-specific transcriptional assays are
subject to the same sample limitations common to all
transcript-level measurements: they are generally
crude indicators of protein abundance (Gygi
et al., 1999; Ideker et al., 2001) and cannot describe
protein localization, chemical modifications or

Box 1 Considering an optimal readout of host responses to
the gut microbiota

Prior to evaluating available tools for host physiological analyses in the
gastrointestinal (GI) tract, it is important to identify the components of
an optimal analytical technique. Although the relative importance of
each facet will vary between experimental paradigms, it is worth
considering those that will typically have some role. Discovery-oriented
analysis of host physiology optimally would be untargeted, sensitive,
non-invasive, cell type specific, tissue specific, reproducible and
quantitative (Table 1).
An ideal assay for host responses to the microbiota would be
untargeted, so that unanticipated, but biologically relevant data features
could be identified and characterized. This is especially true in the GI
tract where so little is known about the complex responses to
continuous perturbation by the microbiota. These sorts of unbiased
approaches would nicely complement the continued global studies of
the microbiome via 16S ribosomal RNA gene and metagenomic
sequencing.
Sensitivity is often a major consideration in untargeted studies, and the
complexity of the microbiota can make sensitivity an even greater
problem when defining host responses in the GI tract. A reliable assay
should overcome microbiota interference while retaining as much
biologically relevant information about the host as possible.
Cell type and tissue specificity is a particular challenge in the intestines
where hundreds of host cell types intermingle in a small physical
region, each having an essential role in maintaining gut function. Tissue
specificity can also be a concern when host factors are being read-out in
serum, urine or other accessible bodily fluids in which they could be
confounded by pre-existing biomolecules. Quite commonly, when
examining secreted, soluble molecules from complex tissues or within
an organism, targeted follow-up validation is required.
The individual variability in the microbiota and the keen interest
of the microbiota community toward human disease applications
makes non-invasive assays crucial. Stool provides an accessible, non-
invasive mode of addressing the microbiota but may not include certain
host factors in sufficient abundance. Alternatively, the frequency of
colonoscopy/endoscopy in cancer screening and the normalcy of
colon biopsy provide an alternate route to access regions of the intestinal
tract more precisely, but fine-grained time-course experiments are
impractical.
An assay for host responses to the microbiota needs to be reproducible
and quantitative, especially considering the variability and diversity in
microbiota changes. If these responses are to be correlated with disease
outcomes or microbial abundances, accurate and quantitative data is
essential.

Table 1 The strengths and weaknesses of the various widely-used, global platforms for monitoring host-responses to changes in the gut
microbiota

Quantitative Sensitive Global Cell-type
Specific

Protein
Localization

Non-nvasive Easy/
Low-cost

Bulk-tissue transcriptomics ✓ ✓ ✓ ✕ ✕ ✕ ✓

Laser-capture microdissection
transcriptomics

✓ ✓ ✓ ✓ ✕ ✕ ✕

Flow cytometry transcriptomics ✓ ✓ ✓ ✕ ✕ ✕ ✓

Serum cytokine panel ✓ ✓ ✕ ✕ ✕ ✓ ✓

Histology/Imaging ✕ ✓ ✕ ✓ ✓ ✕ ✕

Metabolomics ✓ ✓ ✓ ✕ ✕ ✓ ✕

Host-centric proteomics ✓ ✓ ✓ ✕ ✓ ✓ ✓

The various metrics highlighted in the columns of this table are defined in Box 1.
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functional interactions. In the GI tract most direct
host–microbe interactions are mediated by host
proteins that are either secreted or present on the
apical epithelial surface, and may represent a small
signal that would be obscured by less relevant
readouts of abundant intracellular transcripts.
Furthermore, measuring host transcription requires
tissue samples obtained through invasive procedures
in humans, or sacrifice of animal models, thus
establishing a substantial barrier to obtaining sam-
ples, particularly for the purpose of monitoring an
individual's response to therapeutic interventions.

Imaging approaches have proven essential in
differentiating disease states and severity. Histologi-
cal sections were used to demonstrate the improve-
ment of colitis in mice receiving daily administration
of Faecalibacterium prausnitzii (Sokol et al., 2008)
and in concordance with molecular approaches to
describe the improvement in inflammation via
treatment with acetate (Maslowski et al., 2009).
Histology also provides spatial resolution to protein
expression, both across the length of the gut and
within a particular tissue. Conversely, the human
requirement for pathology scoring increases
variability. Furthermore, as imaging primarily
measures cell or tissue morphological changes, it is
less sensitive than molecular approaches and often
requires many samples to achieve statistically
meaningful results. Furthermore, biopsies are highly
invasive, and only represent a small region of the
tissue. More recently, in situ hybridization with
species-specific, fluorescent probes (Swidsinski
et al., 2005, 2007; Swidsinski and Sydora, 2007)
have localized microbes within the intestinal space,
adding an important dimension to unraveling the
host–microbe relationship.

Metabolomics has shown great promise in the
characterization of host–microbiota interactions.
Metabolites in serum and feces, measured by
one-dimensional nuclear magnetic resonance,
provided the first glimpse of host–species interac-
tions and temporal variation in the fecal metabolome
(Saric et al., 2008). Similar studies correlated fecal
metabolites with inflammatory bowel diseases
(Le Gall et al., 2011) and associated fecal and urine
metabolites with antibiotic treatments (Yap et al.,
2008). Parallel approaches using mass spectrometry
have correlated shifts in metabolic profiles measured
from serum, urine and feces to underlying changes in
the microbiota, but are unable to assign 495% of the
features to known metabolites (Wikoff et al., 2009;
Marcobal et al., 2013). Metabolomics demonstrates
great promise for global GI studies. However, the
absence of compound databases necessary to
identify metabolites by either nuclear magnetic
resonance or mass spectrometry and the difficulty
to deconvolute host–microbiota co-metabolism are
serious hurdles that need to be addressed.

As the focus of microbiome research in model
organisms (and eventually humans) turns toward
mechanistic experimentation and retrospective

longitudinal assessments of large subject cohorts,
non-invasive methods for assaying host health will
be essential. Blood represents a commonly sampled
biofluid from which host–microbe interactions
can be measured. For example, serum cytokine
profiles have suggested mechanisms by which gut
microbes induce adaptive immune responses (Sokol
et al., 2008). Cytokine measurements are sensitive
and reliably represent systemic immune responses.
However, as it is physically separated from the
intestinal space and contacts many other body
regions, serum cannot necessarily provide GI-
specific immune profiles indicative of the current
host–microbiota status. Furthermore, serum-based
assays cannot quantify strictly gut-resident mole-
cules, such as intestinal anti-microbial peptides,
immunoglobulins, metabolic enzymes and mucus
proteins.

Stool offers many advantages for measuring host
responses to the microbiota within the GI tract.
Importantly, stool is acquired non-invasively and
contains molecules of both host and microbial origin
from within the gut ecosystem. Where molecules
identified from tissue biopsies and blood that can
serve as proxies for microbiota–host interaction in
the gut, molecules from stool can directly describe
these interactions without confounding non-GI
contributions. Moreover, as proteins in frozen fecal
specimens are amenable to analysis, previously
conducted microbiota-focused experiments can be
revisited to provide additional host-specific insight.

The secretion of host proteins have a key role in
the dynamics of host–microbial interactions
(Vaishnava et al., 2011) and are conveniently
measured from feces. Mass spectrometry-based
proteomics is uniquely suited to discovering the
proteins at the host–microbiota interface.

Proteomics in the gut

Proteomic studies of intestinal epithelial cells have
characterized postnatal intestinal development
(Hansson et al., 2011) and chronic inflammation
(Shkoda et al., 2007). Unfortunately, these studies
were subject to many of the same limitations as bulk
transcriptomic analyses insofar as they had to
surmount the noise of intracellular protein expres-
sion. Laser-capture microdissection of intestinal
epithelial cells provides a limited amount of sample
material, posing a significant constraint on the use of
shotgun proteomic techniques. To identify and
quantify the proteins secreted into the gut lumen,
proteomic workflows had to adapt to the complex-
ities of stool (Box 2).

In line with early proteomics approaches, the first
studies of stool proteins relied on two-dimensional
gel separation and spot excision (Klaassens et al.,
2007). In 2009, the first global metaproteomic profile
of human stool was conducted. Verberkmoes
et al. (2009) used sequenced metagenomes from
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two previously surveyed individuals and 33 gen-
omes of isolated commensal microbial species to
enumerate candidate proteins in stool. Using this
resource, they generated what, at the time, was the
deepest coverage of a bacterial metaproteome
(Table 2). By pelleting bacteria from fecal samples,

bacterially associated host proteins and sloughed
host epithelial cells contributed to the ~ 500 host-
derived proteins they identified. In a subsequent
study, these researchers improved their bacterial
protein identification rates by using a matched
metagenome–metaproteome approach: metagenomic
data derived from individual fecal specimens were
used to create matched protein sequence databases
to aid in mass spectrometry-based protein identifica-
tion (Erickson et al., 2012). More accurately,
predicting the fecal proteome likely contributed to
improved analytical sensitivity: 43000 bacterial and
41600 host proteins were identified across
12 individuals with Crohn’s disease. Through
functional annotations and statistical analysis of
host protein expression, they identified impaired
epithelial integrity and decreased epithelial
absorption as hallmarks of ileal Crohn's disease.

This matched metagenome–metaproteome
approach is the current state of the art in whole-
feces metaproteomics and addresses the issues of
protein diversity and variability (Box 2). However,
many challenges still exist. First, deep sequencing
and de novo genome assembly are expensive, time
consuming and technically challenging. Second,
these approaches do not address dietary protein
sources, which contribute to the GI ecosystem as
well as to protein diversity. Third, proteomic data
are reliant on the quality of genome annotations,
which has yet to keep pace with the 10 million
identified genes from the gut microbiota (Li et al.,
2014). Finally, these metaproteomic approaches fall
victim to the unavoidable issue of dynamic range
(Box 2), even when considering recent advance-
ments in mass spectrometry instrumentation.
Although modern proteomic techniques are capable
of measuring thousands of proteins from just
hundreds of nanogram of input material (for exam-
ple, see Hughes et al. (2014)), the competition from
host, microbial and dietary proteins could decrease
analytical sensitivity by orders of magnitude.
Thus, it remains to be seen for which application
proteomics of microbial proteins in the gut will
contribute beyond the superior depth of RNAseq and
metagenomics.

Box 2 Limitations in Gastrointestinal (GI) Metaproteomics.

Three major technical problems limit our ability to deeply analyze the
GI metaproteome: protein diversity, variability and dynamic range

Protein diversity
Standard shotgun proteomic workflows compare experimental frag-
mentation spectra of individual peptides to hypothetical spectra
calculated from a database of potential peptide matches. Analyzing
human stool from thousands of individuals across the world,
metagenomic sequencing efforts have assembled between five and nine
million unique open reading frames, corresponding with ~ 1 billion
unique tryptic peptides. This is over 200 times larger than the human
proteome and results in increased computational time and greatly
decreased ability to distinguish correct identifications from spurious
matches. Single-nucleotide polymorphisms and post-translational
modifications, though biologically relevant, further exacerbate the
search space problem, and are best addressed through alternate means,
including iterative database search procedures (Bern et al., 2012) and de
novo sequencing (Ma et al., 2003).

Individual variability
Although the total sequenced metagenomic space is 5–9 million open
reading frames, any single individual harbors only a subset of these
genes. Accordingly, individual-to-individual variation in the microbiota
is extensive (Costello et al., 2009). Paradoxically, considering all known
metagenomic open reading frames would increase the frequency of
false-positive identifications, while considering a more focused, though
unmatched sequence database would not contain every protein in the
sample. In the former case, database search engines are more likely to
make an incorrect assignment when they are presented with more
candidate peptide matches to an input spectrum—even when the true
peptide is considered (Resing et al., 2004). In the latter, database search
engines almost always return their 'best guess' as to the peptide source
of a mass spectrum, even if the true source is missing from the sequence
database. In both cases, higher numbers of false-positive identifications
greatly decreases the ability to clearly discern which identifications are
actually correct, and therefore decreases the sensitivity of the
metaproteome analysis.

Dynamic range
If it can be assumed that the dynamic range of protein concentrations
within a bacterium is on the order of 106 and the dynamic range of
bacteria concentrations in the gut is, conservatively, on the order of 1010,
then the total bacterial protein dynamic range is 1016. Compared with the
quantitative dynamic range of 105 in shotgun proteomics, 1016 is a
daunting challenge. Cell- and tissue-based shotgun proteomics analyses
tend to use fractionation to extend dynamic range by separating
abundant and less-abundant proteins but this has only been shown to
improve the dynamic range slightly and comes at the cost of more
analysis time on the mass spectrometer. This problem is evident in
metaproteomic studies where only the most abundant (and well-
characterized) bacterial proteins have been identified.

Solutions
Both matched metagenomics–metaproteomics and de novo peptide
sequencing are viable solutions to the problems of diversity and
variability but come with their own limitations. The dynamic range
problem cannot be readily resolved with instrumentation or blind
fractionation alone. The utilization of gnotobiotic animal models to
decrease the microbial complexity and control the dynamic range may
help, but the possibility of collecting deep proteomic signatures of the
entire gut microbiota is not technically feasible, or possible in humans.
The tried-and-true principles of proteomics are equally merit worthy in
the metaproteome context: fractionation and enrichment. In the gut, this
can include the rational enrichment of sub-proteomes, like those at the
epithelial–luminal interface or the secreted proteome. Furthermore,
these sub-proteomes may actually contain the proteins that actively
define the host–microbiota relationship.

Table 2 Workflow comparison of traditional metaproteomics and
host-centric proteomics

Metaproteomics Host-centric
proteomics

Initial sample Stool Stool
Sample fraction Bacterial pellet Supernatant
Fractionation method MUDPIT

(peptide,
in-line)

C4 reverse phase
(protein)

Search database Metagenome* Host genome
False discovery rate Target decoy Target decoy
Mass spectrometric time 22 h 6 h

* Indicates that the metagenome could be derived from known
bacterial genomes or matched metagenomics sequencing.
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Proteomics as a tool for analyzing host
responses

Host responses to the dense and dynamic intestinal
ecosystem are often mediated by the secretion of
proteins into the gut lumen (Vaishnava et al., 2011;
Vaishnava and Hooper, 2007). Depleted of abundant
intracellular proteins that often cloud metaproteo-
mic studies, the extracellular component of the gut
metaproteome offers a direct comparison of proteins
produced by both the host and microbes that mediate
their interactions. Importantly, none of the
previously described host response analyses are
capable of quantifying the relative abundance of
these secreted host proteins in an untargeted and
non-invasive way. We previously described a stool-
based host-centric proteomics approach in which we
identified and quantified thousands of host proteins
present in the mouse intestinal lumen (Figure 1;
Table 2). By removing intact cells (both microbial
and host) and fecal debris, we were able to enrich for
secreted proteins, many with well-characterized GI
functions, such as digestion and immune response,
and which serve as reporters of host physiological
status in response to changing microbiota composi-
tion and function (Lichtman et al., 2013).

Many challenges remain in the analysis of
host proteins in stool. The high concentration of

molecules incompatible with sensitive liquid chro-
matography-mass spectrometry systems is an impor-
tant issue to address for these methods to be widely
accepted. Although the centrifugation strategy we
previously described eliminates intact cells,
sloughed epithelial cells that are broken down in
the gut could still contribute intracellular proteins to
the supernatant. Furthermore, identifying constitu-
tive, stably expressed proteins in the gut will
improve data normalization, much like is done
with housekeeping genes in intracellular assays.
Perhaps the greatest challenges are posed by clinical
experiments, in which proteins will need to be
associated with particular disease and microbiome
states despite tremendous inter-individual variabil-
ity in microbiota and overall stool compo-
sition. Normalization procedures that leverage
stool-compatible quantitative labeling strategies (for
example, reductive dimethylation (Hsu et al., 2003),
tandem mass tags (Werner et al., 2014), Isobaric tag
for relative and absolute quantitation (iTRAQ) (Ross
et al., 2004) and stable isotope labeling in mammals
(Wu et al., 2004) or hypothesis-driven, targeted
mass spectrometry analysis methods (for example,
multiple reaction monitoring (Kennedy et al., 2014)
and sequential window acquisition of all theoretical
fragment ion spectra (SWATH-MS) (Gillet et al.,
2012) stand to improve upon the label-free

Figure 1 Gastrointestinal metaproteomics. Perturbations, like diet and infection, cause distinct changes to the host and microbiota.
Protein-level changes throughout the gastrointestinal tract exist in the stool and can be assayed by mass spectrometry. Microbial-focused
approaches pellet intact cells of both host and microbial origin, whereas the host-centric approach focuses on luminal proteins.
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quantification we previously used (Lichtman et al.,
2013).

The application of this host-centric perspective
has implications for basic biomedical research.
Just as sequencing provided a powerful method
to survey the microbial community, a similar
approach is needed to reveal novel aspects of gut
biology such as the discovery of pathways and
effectors, unique biological states and signatures.
Host-focused proteomics of stool promises to point
the field toward proteins with yet-to-be-defined
roles in governing interaction within the GI tract.
The combination of microbial community, metabo-
lite and host protein analyses from stool coupled
with the application of gnotobiotic animal models
and time-course studies will greatly improve our
understanding of the proteins that mediate harmony
within this complex ecosystem, and those that are
signals of interactions going astray.

In clinical research, host-centric proteomics pro-
vides an orthogonal approach that could directly
affect precision patient care. A multi-dimensional
definition of GI states will allow for increased power
in differentiating closely related but discrete states,
the stratification of patients, individualized treat-
ment and the monitoring of disease progression and
recovery. These molecular phenotypes also provide
a first step toward biomarker discovery. Signatures
may be distilled to one or a few proteins that provide
a simple means for diagnosing a spectrum of GI
diseases. Such markers may be directly related to the
underlying disease mechanism and direct pharma-
ceutical development, or they may serve as a proxy
for specific biological events. As the stool is an
aggregate read-out of the entire GI tract, biological
insight need not be confined to the colon. Mapping
protein signatures back to specific regions from
which they originate promises clinical rewards. For
example, enzymes produced in the pancreas have
been assayed in stool as a metric for pancreatic
function for more than 20 years (Loser et al., 1996;
Lankisch, 1993).

In summary, we are now armed with high-
throughput means to elucidate host intestinal states
without invasive testing procedures. Host-centric
proteomics is therefore compatible with long
time-course evaluations of human subjects. These
host-centric methods can be directly applied to
banked stool samples from previous microbial
studies, enriching prior data without the need for
new specimen procurement. Although individua-
lized microbiota present challenges in establishing
microbial signatures as markers of disease, host
responses are likely to be more conserved. Rapidly
improving mass spectrometry instrumentation,
advancements in de novo peptide sequencing and
multiplexed quantification tools are diminishing
the problems associated with proteome complexity
and dynamic range and thus greatly improving
our abilities to dive deeper into the gut pro-
teome (Box 2). Although discovery-based mass

spectrometry techniques will not likely be a clinical
tool for diagnosing patients, the markers identified
could be readily transferred into targeted mass
spectrometry (Addona et al., 2009; Whiteaker et al.,
2011) or ELISA assays that are readily adapted by
clinical labs.
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