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Next-generation sequencing (NGS) technologies have enabled the application of broad-scale
sequencing in microbial biodiversity and metagenome studies. Biodiversity is usually targeted by
classifying 16S ribosomal RNA genes, while metagenomic approaches target metabolic genes.
However, both approaches remain isolated, as long as the taxonomic and functional information
cannot be interrelated. Techniques like self-organizing maps (SOMs) have been applied to cluster
metagenomes into taxon-specific bins in order to link biodiversity with functions, but have not been
applied to broad-scale NGS-based metagenomics yet. Here, we provide a novel implementation,
demonstrate its potential and practicability, and provide a web-based service for public usage.
Evaluation with published data sets mimicking varyingly complex habitats resulted into classifica-
tion specificities and sensitivities of close to 100% to above 90% from phylum to genus level for
assemblies exceeding 8kb for low and medium complexity data. When applied to five real-world
metagenomes of medium complexity from direct pyrosequencing of marine subsurface waters,
classifications of assemblies above 2.5 kb were in good agreement with fluorescence in situ
hybridizations, indicating that biodiversity was mostly retained within the metagenomes, and
confirming high classification specificities. This was validated by two protein-based classifications
(PBCs) methods. SOMs were able to retrieve the relevant taxa down to the genus level, while
surpassing PBCs in resolution. In order to make the approach accessible to a broad audience, we
implemented a feature-rich web-based SOM application named TaxSOM, which is freely available at
http://www.megx.net/toolbox/taxsom. TaxSOM can classify reads or assemblies exceeding 2.5 kb
with high accuracy and thus assists in linking biodiversity and functions in metagenome studies,
which is a precondition to study microbial ecology in a holistic fashion.
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Introduction

The launch of next-generation sequencing (NGS)
was nothing less than a paradigm shift in environ-
mental molecular microbiology. The dramatic drop
in sequencing costs that followed has resulted in an
unprecedented rate of growth in microbial genome
sequences. This development has spurred the
establishment of sequencing initiatives aiming to
explore the realm of microbial genomes in more

targeted ways than before, for example, by focusing
on specific habitats or taxa. For example, the
‘Marine Microbiology Initiative’ of the Gordon and
Betty Moore foundation has contributed almost 200
draft genomes from marine habitats, and the ‘Genomic
Encyclopedia for Bacteria and Archaea’ project of
the Joint Genome Institute and the German Collec-
tion of Microorganisms and Cell Cultures (DSMZ)
has begun to systematically fill the remaining gaps
in the prokaryotic branches of the tree of life by
aiming to sequence at least one representative from
all clades (Wu et al., 2009). The introduction of
NGS has also propelled metagenomic community-
sequencing approaches, which led to dedicated
initiatives as well. For marine habitats, the ‘Inter-
national Census of Marine Microbes’ is focusing on
extending microbial biodiversity knowledge by the
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large-scale sequencing of 16S ribosomal RNA V6
hyper-variable regions (Sogin et al., 2006; Huse
et al., 2008), while integration of the wealth of
metagenomic data from different sources is at
focus of the ‘Community Cyberinfrastructure for
Advanced Marine Microbial Ecology Research and
Analysis’ (Camera) project (Seshadri et al., 2007).
Similar data integration projects have been estab-
lished in the field of medical microbiology, such as
the NIH Human Microbiome Project (Peterson et al.,
2009). Only a few years after the introduction of
NGS, our picture of the microbial world is already
becoming much clearer.

In spite of the advancements in DNA sequencing,
currently available technologies still restrict low-
cost full genome sequencing to cultivable strains.
This requirement severely limits the application of
NGS technologies to microbial biodiversity studies,
because only a minor fraction (typicallyo1%) of the
microbial species in a given habitat can be culti-
vated with current techniques (Amann et al., 1995;
Huber et al., 2007). It is anticipated that progress in
single-cell isolation techniques (Ochman, 2007) and
single molecule sequencing (Gupta, 2008; Clarke
et al., 2009; Eid et al., 2009) will soon overcome this
limitation. For now, however, metagenomics the
sequencing of DNA from an environmental sample
without previous species separation or cultivation,
is the method of choice for obtaining longer
fragments from the genomes of the vast majority of
as-yet uncultured microorganisms.

In the classical metagenome approach, genomic
libraries are constructed by cloning fragmented
environmental DNA into vectors that are sub-
sequently amplified in ultra-competent host cells
(Schloss and Handelsman, 2003). Once a metagen-
ome library is constructed, it can be screened for
inserts carrying specific genes or metabolic acti-
vities. These strategies have been termed sequence-
and function-driven approaches (Schloss and
Handelsman, 2003) and are used to select dedicated
inserts from the library for full-length sequencing.
These approaches, however, have the inherent
disadvantage of limiting obtainable sequence infor-
mation to the few genes adjacent to the respective
target genes.

With the advent of NGS it has become feasible to
omit the cloning step and sequence environmental
DNA directly. In particular, if the target organism is
in high abundance or even dominates a habitat, the
sheer power of NGS allows for obtaining longer
genomic fragments by direct sequencing and assem-
bly of extracted environmental DNA. In contrast,
direct DNA sequencing of habitats with high overall
biodiversity or low-abundance target species mostly
yields sequences harboring partial or single genes
and relatively few longer assemblies with multiple
genes. When a specific microorganism or function
is desired, therefore, the classical metagenome
approach is still much more favorable. If, however,
community function in low to medium biodiverse

habitats as a whole is at focus, then direct sequencing
is a viable approach. Although brute-force direct
sequencing of such microbial communities does not
yield individual genomes, it often yields longer
assemblies of the most abundant species and a
wealth of sequences that can be taxonomically
clustered into bins (taxobins) and subsequently
mined for functions. This approach requires, of
course, methods that allow these sequences to be
taxonomically classified with reasonable accuracy.

In general, taxonomic classification of metage-
nomic DNA fragments can be achieved either on the
level of the encoded genes or on the level of the
DNA sequence themselves.

An introduction to gene-level taxonomic classifi-
cation is beyond the scope of this article. In brief,
they are either based on the post-processing of
BLASTP (Altschul et al., 1990) searches as in
Phylogena (Hanekamp et al., 2007) or MEGAN
(Huson et al., 2007), or on the post-processing of
Pfam searches (Sonnhammer et al., 1997) as in
CARMA (Krause et al., 2008).

Taxonomic classification of DNA sequences on
the level of base composition is still unintuitive
to many biologists. However, not only the genes
but also the DNA itself—including non-coding
regions—is subjected to various evolutionary forces
(Karlin et al., 1998), like species-specific codon
preference, constraints because of DNA superstruc-
ture and GþC content maintenance, and biases that
are introduced by the replication machinery. As a
result, DNA carries a fingerprint-like species-
specific signature in its base composition that is most
pronounced in the patterns of statistical over- and
underrepresentation of short oligonucleotides from
tetra- to hexanucleotides (McHardy et al., 2007). As
the factors that give rise to these fingerprints are
inheritable, they also carry a detectable albeit weak
phylogenetic signal (Pride et al., 2003). The first
work on genomic DNA signatures dates back to well
before the genomic area started with the sequencing
of the first complete bacterial genome (Fleischmann
et al., 1995) and was pioneered among others by
Samuel Karlin et al. (Burge et al., 1992). At first,
scientists have investigated this phenomenon with
rather simplistic methods like dinucleotide or
tetranucleotide relative abundances (Karlin and
Ladunga, 1994; Karlin et al., 1994, 1998; Karlin
and Burge, 1995; Karlin, 1998). Later, however, a
whole variety of different methods have been
applied to oligonucleotide signatures, such as
Markov models (Rocha et al., 1998; Pride et al.,
2003; Reva and Tümmler, 2004; Teeling et al., 2004),
frequency chaos game representations (Deschavanne
et al., 1999) and Bayesian classifiers (Sandberg et al.,
2001). More recently, machine-learning algorithms
have been applied to the task. These can be
subdivided into supervised algorithms like support
vector machines, and unsupervised algorithms like
kernelized nearest-neighbor approaches and self-
organizing maps (SOMs). Support vector machines
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have been used in PhyloPhythia (McHardy et al.,
2007), a kernelized nearest-neighbor approach in
TACOA (Diaz et al., 2009) and SOMs have been
used in a variety of different variants, like batch-
learning SOMs (BLSOMs) (Abe et al., 2003, 2005),
growing SOMs (GSOMs) (Chan et al., 2008a, b),
hyperbolic SOMs (Martin et al., 2008) and emergent
SOMs (Dick et al., 2009). One of the most recent
DNA-based approaches to taxonomically classifying
metagenomic DNA fragments is the usage of inter-
polated context models, as implemented in Phymm
and PhymmBL (Brady and Salzberg, 2009).

Here, we explore the practical application of a
novel implementation of GSOMs and BLSOMs for
the taxonomic classification of metagenome data
sets. We first demonstrate the performance of both
SOM variants on the basis of previously published
simulated metagenomes (Mavromatis et al., 2007) as
well as data from complete microbial genomes.
Then, we demonstrate how SOMs can be applied
to real-world metagenomes for an overall taxonomic
profiling as well as to follow community composi-
tion shifts over time. Our SOM implementation is
termed TaxSOM and has been made available as a
free and feature-rich web-service at http://www.
megx.net/toolbox/taxsom.

Materials and methods

Implementation
TaxSOM has been implemented in the Cþþ pro-
gramming language using the ocount2 (http://www.
promedici.de/ocount2), Lapackþ þ (http://lapackpp.
sourceforge.net), MySQLþ þ (http://tangentsoft.net/
mysql++/) and Boost (http://www.boost.org) Cþ þ
libraries. Ocount2 has been used for oligonucleotide
counting and Markov model-based z-transformations.
Lapackþ þ has been used for Eigenvector transforma-
tion and other matrix operations for principal
components analysis, MySQLþ þ for handling
MySQL queries and Boost for parsing program options
and serialization of computed SOMs. Boost Python
libraries were used to provide an easy way for
wrapping TaxSOMs Cþ þ functions and make them
accessible in the Python programming language.
TaxSOM’s web-interface was implemented in PHP
(Hypertext Preprocessor) in conjunction with some
Python scripts for data processing and with scalable
vector graphics for SOM visualizations.

SOM specificity and sensitivities
Specificity (true positives/(true positivesþ false
positives)) and sensitivity (true positives/(true posi-
tivesþ false negatives)) were used as classification
accuracy measures. A classification was considered
as a true positive, when a query sequence was
classified on a SOM node representing only
sequences of the query’s taxonomic affiliation. It
was considered as false positive, when a query

sequences was classified on a node representing
only sequences from different taxonomic affiliation.
Classification of sequences that ought to be classi-
fied but were matching ambiguous nodes represent-
ing multiple taxa were treated as false negatives. In
addition, the F-measure value, which is the harmo-
nic mean of specificity and sensitivity, was used (see
Supplementary Tables 1, 2, and 3).

Simulated metagenome data sets for evaluation
In order to evaluate the accuracy of TaxSOM’s
GSOM and BLSOM implementations for taxonomic
DNA sequence classification, we used three pre-
viously published simulated data sets (simLC,
simMC and simHC) of varying complexities
(Mavromatis et al., 2007). SimLC simulates a low-
complexity community dominated by a single, near-
clonal population that is flanked by low abundance
species. SimMC was designed to mimic a moder-
ately complex community like in the acid mine
drainage biofilm (Tyson et al., 2004) or the Olavius
algarvensis symbionts’ metagenome (Woyke et al.,
2006), wherein multiple dominant populations are
flanked by low abundant ones. SimHC simulates a
highly complex community with no dominant
populations, like that present in agricultural soils
(Tringe et al., 2005). On all of these data sets, the
three different assembly programs Arachne (Jaffe
et al., 2003), Phrap and JAZZ, have been used,
resulting in a total of nine published test data sets.
We excluded the JAZZ assemblies from our analysis,
because they yielded a much lower number of
correct taxonomic classifications than Phrap and
Arachne assemblies. This is hence an effect of the
JAZZ assembler (or its parameter settings) that would
distort the subsequent taxonomic classification.

Data sets from known organisms for evaluation
A test data set comprising 1401 chromosomes and
plasmids was constructed from all completely
sequenced bacterial and archaeal genomes within
GenBank. One-fifth was randomly cut from each
sequence and retained for later classification, while
the remaining 80% were used as training sequences
for BLSOM and GSOM construction. A total of 10
SOMs were constructed, by splitting the training
sequences into 10 or 50 kb fragments and using
either di- tri- and tetranucleotide raw counts or
z-scores as input data. The sequences remaining for
classification were used to construct eight data sets
of 0.5, 1, 2.5, 5, 10, 25, 30 and 50kb lengths, which
were subsequently classified by the SOMs (Supple-
mentary Table 1).

Real-world data set
This study is part of the Microbial Interactions in
Marine Systems project (MIMAS; http://www.
mimas-project.de), which provided the real-world
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metagenome data (Table 1). The data consisted of
pyrosequenced bacterial DNA from the coast off the
North Sea Island Helgoland in the German bight
(541 110 30’ N; 71 540 E) that was sampled at five
different dates in 2009 (11 February, 31 March, 7
April, 14 April and 16 June).

At each of these points in time, 500 l of subsurface
water (1m depth) were sampled with the small
research vessel Diker, immediately taken to the lab,
and pre-filtered with 10mm polycarbonate filters
(TCTP, Millipore, Billerica, MA, USA) and 3mm
polycarbonate filters (TSTP, Millipore). The bacterial
fraction was subsequently retained on 0.22 mm
polyethersulfone filters (GPWP, Millipore). All
filters were 142mm in diameter and six membrane
filtration units were operated in parallel to keep
filtration times as low as possible. From the filters,
bulk environmental DNA was extracted by a modi-
fied standard protocol (Zhou et al., 1996). The DNA
was then pyrosequenced directly on the GS FLX Ti
platform with one (16 June) or two picotiter plates
per sample (454 Life Sciences, Branford, CT, USA)
by LGC Genomics (LGC Genomics GmbH, Berlin,
Germany), and subsequently assembled with Newbler
version 2.0.00.22 (Roche, 454 Life Sciences, Branford,
CT, USA). From the assemblies, all sequences at least
2.5 kb long were taken for classification.

The bacterial community composition of the
samples was assessed by catalyzed reporter deposi-
tion-fluorescence in situ hybridization (CARD-FISH)
as follows: samples were fixed with 1% formal-
dehyde and 10ml was filtered onto polycarbonate
membrane filters (type GTTP, pore size 0.2 mm,
Sartorius, Göttingen, Germany). CARD-FISH was
performed according to previously published proto-
cols (Pernthaler et al., 2002). All hybridizations
were counterstained with 40,6-diamidino-2-pheny-
lindole (1 mgml–1) and manually inspected and
quantified.

Data sets for SOM construction
The SOMs for the evaluation of the simulated data
sets were constructed from all bacterial and archaeal
DNA sequences exceeding 485 kb (roughly the size
of Nanoarchaeum equitans) in the NCBI GenBank
database as of October 2008 (release no. 167). These
sequences were extracted using a self-written Cþþ

library termed phyloprint (Waldmann, 2008) that
allows any type of sequence selection based on the
complete NCBI taxonomy (phyloprint currently
includes 462 019 nodes). This resulted in 1521
sequences comprising 3.43Gb of DNA. All
sequences were split into 50 kb fragments and
subsequently used for the construction of GSOMs
and BLSOMs with two types of inputs: oligonucleo-
tide frequency raw counts (di-, tri- or tetranucleotide
counts normalized on values between 0 and 1), or
raw counts z-transformed based on a maximal order
Markov model (Teeling et al., 2004).

The real-world metagenome data sets were
classified on a GSOM with tetranucleotide z-scores
as input. The GSOM was trained in a habitat-
specific manner using 340 bacterial and archaeal
DNA genomic sequences from aquatic habitats,
such as open ocean water, hot springs, hydrothermal
vents or marine sediments. The respective habitat
information was obtained from the EnvO-lite
classifications present in the Marine Ecological
Genomics (MEGX, http://www.megx.net/) database
(Kottmann et al., 2010), and the corresponding
sequences were extracted from NCBI GenBank using
phyloprint.

Protein-level taxonomic classification of real-world
data sets for cross-evaluation
Protein-level taxonomic classification of the
assembled 454-sequenced bulk environmental
DNA was achieved as follows. First, the sequences
were subjected to an open reading frame prediction
with MetaGene (Noguchi et al., 2006). Afterward,
open reading frames exceeding 150 bp were com-
pared with BLASTP (Altschul et al., 1990) against
the non-redundant NCBI database (as of 28 October
2008) and with hmmpfam (Eddy, 1996, 1998) against
the Pfam database (release 22) (Sonnhammer et al.,
1997, 1998). Hits with good E-values (BLASTP:
E pE–15, hmmpfam: E pE–5) were subsequently
analyzed.

BLASTP hits were processed with an adaptation
of the DarkHorse algorithm (Podell and Gaasterland,
2007). In brief, DarkHorse performs rank-based
reasoning on the taxonomic terms from BLASTP
hits, calculates for each hit a so-called lineage
probability index and assigns the open reading

Table 1 Real world metagenome data sets

Sampling date 454 runs Assembly

No. reads No. contigs Mb Contigs 42.5 kb Mb

11 February 2009 1 591182 2 PTP 56 160 31.7 227 0.8
31 March 2009 1 101493 2 PTP 113454 70.2 2321 9.8
07 April 2009 2 109239 2 PTP 61 651 56.0 3229 15.5
14 April 2009 2 017268 2 PTP 66 417 61.0 2999 16.2
16 June 2009 1 120072 1 PTP 42 461 31.9 1137 5.0

Abbreviation: PTP, picotiter plate.
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frame to the hit with the highest lineage probability
index.

Pfam hits were post-processed with CARMA, an
algorithm proposed by Krause et al. (2008) that
infers taxonomic affiliations from the alignments
underlying Pfam Hidden Markov models. Here, we
used a rewritten and improved version of the
original algorithm.

A weighted consensus of all three tools was used
to derive final taxonomic assignments for reads
carrying single and contigs carrying multiple genes.
The self-written phyloprint Cþ þ library was used
to map the taxonomic terms and their NCBI
identifiers during the whole analysis.

Algorithm
The SOM is an unsupervised neural network
algorithm that implements a non-linear mapping of
high-dimensional input data onto a two-dimen-
sional array of weight vectors (Kohonen, 1982,
1990; Kohonen et al., 1996). The process of reducing
the data’s dimensionality can be thought of as a
compression of the input information, whereby the
most important topological and metric relationships
are preserved. In this sense, SOMs produce an
abstraction of the primary data (Kohonen et al.,
2001). The topology of the resulting two-dimen-
sional map can be rectangular or hexagonal, and
is easy to visualize (Figure 1). Details about input-
data variants and a detailed description of the

SOM algorithm variants as implemented in TaxSOM
are summarized in the Supplementary Methods.

Results

Taxonomic classification of simulated metagenomes
For a close to real-world evaluation, TaxSOM was
applied to three published simulated data sets
mimicking metagenomes of low, medium and
high complexities (simLC, simMC and simHC; see
Materials and methods section).

For simLC and simMC, high classification specifi-
cities were achieved on both the BLSOM and the
GSOM, with almost identical results with either Phrap
or Arachne assemblies of at least 8kb—the length used
by Mavromatis et al. (2007) in the publication of
the simulated metagenome data sets. For GSOM
classification of the simLC data set, specificities and
sensitivities of 100% were achieved on the super-
kingdom level and from there on above 97% down to
the genus level. For simMC, the classification speci-
ficity of the GSOM dropped slightly but stayed above
95% from superkingdom to the genus level, while the
sensitivity stayed above 90% (Figure 2a; Supplemen-
tary Figure 1). BLSOM classifications yielded almost
identical specificities with slightly decreased sensiti-
vities (Supplementary Figure 2a). SimHC was devoid
of assemblies exceeding 8kb and hence was omitted.

When Phrap or Arachne assemblies were used
without constraints on sequence size, GSOM

Figure 1 Example of a GSOM showing phylum-level separation. TaxSOM output of a GSOM constructed from all DNA sequences
exceeding 485 kb of all Bacteria and Archaea present in GenBank as of October 2008 (1521 sequences; 3.43Gb). The figure demonstrates
the clustering of sequence fragments of 50 kb with each hexagon representing a single node in the grid. The GSOM was calculated using
z-transformed tetranucleotide counts for every fragment. Each color denotes 1 of 23 different phyla, if a node is colored in black it
contains fragments of more than one phylum. Nodes displayed in any other color contain only fragments of one particular phylum.
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classification specificities exceeded 94% (Figure 2b)
and those of BLSOM exceeded 96% (Supplementary
Figure 2b) on the superkingdom level for all three data
sets (simLC, simMC and simHC). Both SOMS were
still able to correctly classify 467% of the sequences
on the phylum level, while classification accuracy
deteriorated notably on deeper taxonomic levels.

Taxonomic classification of data sets from known
microorganisms
In order to evaluate the taxonomic classification
accuracy of SOMs as a function of DNA fragment
lengths, a test data set was constructed from DNA
sequences of complete bacterial genome sequences.
Parts of the sequences were used to construct
di-, tri- and tetranucleotide-based SOMs and the
remainder was split into fragments of different
lengths and subsequently classified using the SOMs
(see Materials and methods section).

Classification specificity improved with increas-
ing motif and fragment lengths (Supplementary
Table 1). It was mostly above 80% for sequences of
at least 5 kb and even above 90% for longer
fragments on low-resolution taxonomic levels.
Below 5kb classification specificities quickly
dropped to values of mostly below 50%, especially
for high-resolution genus and species assignments.
One interesting observation was that for fragments
of 5 kb or more, z-scores provided better assignments

while below 5kb, raw scores provided more accu-
rate results. Also, GSOMs performed better than
BLSOMs. Generally speaking, high-resolution
assignments required longer sequences (that is,
higher information content) than broad-level assign-
ments. For instance, in order to have a 70% accuracy
with dinucleotide-based GSOMs, sequenceso0.5 kb
were sufficient on the superkingdom level, 2.5 kb on
the phylum level, 5 kb on the class level, 25 kb on
the family level and 450 kb on the genus level.
Similar patterns were observed with longer motif
lengths, although longer motifs increased classifica-
tion accuracy. For example, based on tetranucleo-
tides, 70% classification accuracy on the genus level
was possible with o10 kb (Supplementary Table 1).

Taxonomic classification of real-world metagenome
data sets
TaxSOM’s ability to classify real-world metagenome
data was assessed with five North Sea metagenome
data sets comprising a total of nine full 454 FLX Ti
pyrosequencing runs amounting to almost 8 million
reads (Table 1). These could be assembled into
340 143 contigs, of which those of 2.5 kb or more
were used for classification. The sample taken in
February was highest in biodiversity and yielded
only 227 contigs of sufficient length (0.8Mb). In
contrast, the samples taken in March and April had
lower biodiversities since they covered a Bacteroidetes

Figure 2 GSOM-based classification specificities of simulated data sets. Taxonomic classification accuracy of TaxSOM for the simulated
metagenome data sets mimicking habitats of low (simLC) and medium (simMC) complexities using contigs of 8 kb or larger (a) and all
contigs (b). Plot (i) depicts specificities (%) and plot (ii) sensitivities (%), respectively. From left to right: specificity of classifications of
the simLC data sets assembled with PHRAP and Arachne; classifications of the simMC data sets assembled by PHRAP and Arachne. The
different taxonomic levels are represented by different colors. All classifications were achieved on a GSOM trained with z-transformed
tetranucleotide counts.
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bloom, and thus could be assembled into 2321–3229
contigs of sufficient lengths (9.8–16.2Mb), while the
last sample taken in June yielded 1137 such contigs
(5Mb).

In order to assess the plausibility of TaxSOM’s
taxonomic classifications, we compared the classi-
fications with corresponding CARD-FISH counts of
water samples for all five data sets (Figure 3). In the
February post-winter situation, the water was low in
temperature (B4 1C) and cell densities (4 E6 cells
ml–1). Only in this diverse sample TaxSOM detected
Deltaproteobacteria and Epsilonproteobacteria,
which were likely dispersed from the sediment by
winter storm perturbations.

The spring situation from end of March to
mid-April was characterized by a slight increase in
water temperature (B6 1C) and cell densities (B1
E6 cellsml–1). TaxSOM and the CARD-FISH data
both detected a spring bloom in Bacteroidetes that
reached a maximum in mid-April and was accom-
panied by a decrease in Alphaproteobacteria from
the SAR11 and Roseobacter clades. Hence, much
of the original biodiversity patterns were retained
in the sequence assemblies. Of course, absolute
numbers differed. For example, after the bloom
maximum in mid-April, equal levels of Gamma-
proteobacteria (25%) and Alphaproteobacteria
(27%, SAR11 and Roseobacter combined), and
much higher abundances of Bacteroidetes
(43%) were detected in situ with CARD-FISH,
while in the assemblies TaxSOM detected more

Gammaproteobacteria (36%) than Alphaproteobacteria
(13%) and Bacteroidetes (26%).

In addition to CARD-FISH, we compared
TaxSOM’s classifications with protein-based classi-
fications for the data sets of mid-April (Supplemen-
tary Figure 3). Both allow a complete taxonomic
breakdown from the superkingdom to the species
level. Again, while absolute numbers are different
from those of FISH in situ measurements, the overall
biodiversity pattern was retained. In comparison
with PBC, only TaxSOM was able to resolve the high
abundances of Bacteroidetes (TaxSOM: 28%; PBC:
13%). Both tools were able to resolve the key players
down to the genus level. Most of the Bacteroidetes
were resolved as Polaribacter-like Flavobacteria by
both tools. Similarly, a large proportion of the
Alphaproteobacteria was resolved as SAR11 and
Roseobacter clade species, as indicated by hits to
Pelagibacter and Roseobacter on the genus level.
This is in line with the CARD-FISH results as well
as with reported high abundance of SAR11 species
in the oceans by previous metagenome studies
(Temperton et al., 2009).

Complete taxonomic breakdowns of all five
metagenome data sets are included in the Supple-
mentary Material of this study.

It is noteworthy that as a signature-based method,
TaxSOM could classify the contigs without suitable
BLAST and HMMer hits that could not be classified
on the level of proteins. Especially on deeper
taxonomic levels, sequences could oftentimes not

Figure 3 Biodiversity assessments of the North Sea metagenomes over time. (a) Taxonomic classification of assemblies exceeding 2.5 kb
with TaxSOM. (b) Relative CARD-FISH counts of corresponding water samples. Dotted lines indicate congruence in the abundances of
Bacteroidetes (green) and the majority of Alphaproteobacteria consisting of the orders Rickettsiales (cyan) and Rhodobacterales
(magenta) as assessed by both methods. They do not indicate a smooth transition of the respective abundances, because the community
composition fluctuated considerably in between sample time points (data not shown).
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be classify based on protein information but could
be classified by TaxSOM, which thus provided a
much more detailed taxonomic breakdown.

Discussion

In this study, we demonstrate that DNA composi-
tion-based SOMs as implemented in TaxSOM are a
valuable and useful tool for the taxonomic classifi-
cation of microbial metagenomes and their subse-
quent ecological interpretation. Most suitable in this
respect are NGS-based deeply sequenced meta-
genomes of habitats with a low to medium bio-
diversity, as for example in pelagic ocean waters.

Simulated metagenomes
When applied to simulated metagenome data sets,
TaxSOM achieved high classification specificities
down to the genus level for the data sets mimicking
low- and medium-diversity habitats with fragments
of at least 8 kb. These results were obtained even
though the corresponding SOMs were constructed
from all available fully sequenced prokaryote
genomes, and thus comprised a wealth of nodes
representing species lacking from the simulated data
sets, leading to a high statistical chance of mis-
classification. This implies that with real-world data
from habitats of comparable complexities, respec-
tive fragments can be classified with specificities
that are sufficient to deduce biologically meaningful
results down to the family or even genus level. As in
most real-world applications a priori knowledge
about the studied habitat is available, more specific
SOMs can be constructed from dedicated training
sequences, which will further improve classification
specificity. Using the simulated data sets without
constraining fragment lengths lead to a notable
decrease in classification specificities. One reason
for this is of course that without length restrictions,
large quantities of very short sequences were
included whose information content is insufficient
for accurate classification. Interestingly, this effect
was almost independent of the complexity of the
simulated data set, suggesting that at least these data
sets were not saturating the resolution of the SOM,
that is, the complexity of the analyzed data was not
limiting the analysis. An additional reason for the
drop in classification specificities, as stated by
Mavromatis et al., (2007), is that a high proportion
of chimeras among shorter contigs result in low
quality classifications. If the number of such mis-
assemblies can be reduced, the minimum required
sequence length will drop as well (Chan et al.,
2008b). Still, even with inclusion of the short
fragments TaxSOM provided respectable results in
all simulated data sets at least down to the phylum
level, which might be the current limit for reason-
able biological conclusions based on mostly short
and unassembled sequences (Figure 2; Supplemen-
tary Figures 1 and 2).

Data sets from known microorganisms
The results from the artificial data sets of fully
sequenced microorganisms show that classification
specificity is a function of information content, and
hence increases with motif and with sequence
length. Longer oligonucleotides provide better spe-
cificities than shorter oligonucleotides, and longer
sequences can be classified more accurately than
shorter ones. Good classification specificities can be
obtained for sequences down to 5 kb; below that,
information content starts to become limiting (Sup-
plementary Table 1). This is also supported by the
fact that below 5kb SOMs constructed from raw
oligonucleotide counts outperformed those con-
structed from z-transformed counts, while it was
the opposite above 5 kb. The z-transformation
statistically corrects counts of oligonucleotides of a
given length for asymmetries introduced by skews
in shorter oligonucleotide frequencies. For example,
it is expected that within high GC genomes higher
frequencies of GC-rich tetranucleotides (for exam-
ple, GGCC) are observed than an AT-rich genomes,
and thus high frequencies of GGCC in an GC-rich
genome convey less information as when they occur
in an AT-rich genome. However, the z-transforma-
tion compensating this is itself based on a statistical
assessment, and hence also limited by the
sequence’s information content. As the latter dete-
riorates from about 5 kb on, z-transformation can
only enhance results for sequences with sufficient
information content and even introduces additional
noise when the sequences get too short for proper
statistics. Nonetheless, classification accuracies for
sequences below 5kb are still sufficient to conduct
NGS-based statistical ecological habitat studies.
Here, the ability to discriminate a biological signal
from the data’s noise is more important than an
almost perfect classification, such as when monitor-
ing overall community composition changes or
linking abundances of functional genes to taxo-
nomic groups.

Real-world metagenomes
As our results with pyrosequenced bulk DNA show,
such studies are possible with sequences of 2.5 kb
at least down to the class if not to the order level,
especially with suitable habitat-specific SOMs.
Although classifications were not perfect with
respect to providing a high-resolution quantitative
taxonomic breakdown of the analyzed samples, they
provide a good description of overall biodiversity
and abundances of a given habitat (Supplementary
Figure 3) and allow detection of major community
composition changes (Figure 3). These data can
serve as a guideline for the selection of specific
CARD-FISH probes for more detailed biodiversity
studies, and furthermore allows mining the taxono-
mically classified sequences (taxobins) for func-
tions. Such a linkage of taxonomy and function
will allow us to gain insights into the ecological
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functioning of habitats and even to select frequent
but as yet unknown genes within dedicated taxa as
targets for further studies.

It is our experience from more than a dozen direct
pyrosequencing experiments on moderately diverse
coastal and deep sea ocean waters (data not shown)
that well-run 454 FLX Ti picotiter plates can yield
more than a million reads comprising up to 400Mb
of raw sequence that typically can be assembled
into 30–70Mb of non-redundant DNA, equivalent to
7–16 bacterial genomes. In all cases, the longest
assemblies were well within the range of typical
fosmids (that is, up to 35 kb), and larger proportions
of the assemblies were above 2.5 kb and thus
suitable for SOM analysis (Table 1).

Biodiversity information from direct DNA sequen-
cing cannot rival in situ measurements like FISH in
terms of quantitativeness because of inherent biases,
such as lineage-specific DNA extraction efficacies,
sequence-dependent differences during the bead-
mediated amplification in the 454 library creation
step, skews introduced by the assembly diminishing
quantities of the most abundant species, and taxa
without suitable reference sequences for taxonomic
classification, like those without any representation
in public sequence databases. FISH on the other
hand has to cope with its own inherent limits, like
issues with permeabilization, target accessibility or
probe sensitivity and specificity. Hence, both meth-
ods shed a slightly different light on biodiversity.
It is therefore understandable that the biodiversity
data obtained by FISH and by direct sequencing of
bulk DNA show differences, although they are in
broad agreement with respect to major community
composition shifts. It is noteworthy that the
TaxSOM assignments were well supported by PBC
tools. This indicates that the TaxSOM assignments
reflect a realistic assessment of the biodiversity
within the sampled sequences, which does not
necessarily reflect the situation in situ in a perfect
manner. FISH does provide only information for the
applied probes, whereas in silico taxonomic classi-
fications of directly sequenced DNA do not require
a priori assumptions about the community composi-
tion, provide a deeper taxonomic resolution in
shorter time and enable formation of taxobins that
can be mined for gene functions in order to address
ecological questions.

TaxSOM website
In order to make such applications accessible for a
broader audience in microbial molecular ecology,
we implemented TaxSOM as a freely accessible
website that allows the usage of GSOMs and
BLSOMs for taxonomic classification of microbial
DNA sequences. TaxSOM provides either pre-com-
puted SOMs for general taxonomic classification
purposes, or the option to compute custom-tailored
SOMs. For the latter, TaxSOM provides the ability
to upload sequences for SOM construction (for

example, with habitat-specific sequences) as well as
a dynamic taxonomy tree selection tool that allows
for an easy visual as well as textual selection of all
sequences of the NCBI nt database with sufficient
length. A rich set of features is available for
controlling the behavior of SOMs, and the resulting
SOMs can be inspected visually. For experts, we
provide a rich set of parameters for controlling the
SOMs behavior. Unique to TaxSOM is the capability
of pre-processing frequencies using a maximal-order
Markov model as input data, which improves
classification accuracy for sequences exceeding
5kb. After a SOM is constructed, sequences can be
uploaded for classification, whereby a SOM persists
and can be used for the classification of multiple data
sets. Classification results can be inspected either
visually (Figure 1) or downloaded as tables in text
files for further use. This will enable a broader
audience to use taxonomic classifications in micro-
bial community studies. The TaxSOM web service is
available at http://www.megx.net/toolbox/taxsom.

Conclusions
One advantage of SOMs is that taxonomic classifica-
tion once a SOM is trained takes only minutes, even
for large amounts of sequences, while gene-based
classification tools rely on time-consuming and
computationally intensive BLAST or HMMER
searches, and FISH requires labor-intensive labora-
tory work. For example, the current TaxSOM
implementation can classify 100 000 sequences on
a SOM of 10 000 nodes within 20min on moderate
hardware (single 2.2MHz Opteron core). Similarly, a
million sequences can be classified within a couple
of hours conveniently over night (see Supplemen-
tary Tables 4, 5 and 6 for more elaborate data on
classification speed). This makes SOM-based taxo-
nomic classifications ideal for processing vast
amounts of sequences as they are produced by
current NGS platforms.

With promising new sequencing technologies on
the horizon that will not need amplification and will
deliver more and longer reads at lower prices, like
ZMW-based sequencing by Pacific Biosciences
(Menlo Park, CA, USA; Eid et al., 2009) or various
variants of nanopore sequencing as developed
by Oxford Nanopore Technologies (Kidlington,
Oxfordshire, UK; Clarke et al., 2009), IBM
Deutschland Research & Development GmbH
(Böblingen, Germany)/Roche (DNA transistor) and
others, there is a need for high-throughput tools to
convert the wealth of sequence data into knowledge.
The recently introduced Pacific Biosciences single
molecule sequencing platform has an average read
length of 41 kb and a maximum read length of 5 kb.
Hence, technologies that focus on short reads will be
mostly obsolete in the not too distant future. As a
consequence, microbial biodiversity studies soon
will target full-length 16S ribosomal RNA sequences
instead of only small hypervariable regions, and
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metagenomic studies will produce longer assem-
blies that can be taxonomically classified with high
accuracy. Tools like TaxSOM will enable the fast
classification of large proportions of metagenomes
into taxobins, and thus provide a link between
biodiversity and function.

Even with current 454 FLX Titanium pyrosequen-
cing, good results can be expected for SOM-based
taxonomic classifications, in particular for habitats
with limited diversity, few dominating species or
with species that discriminate well in terms of their
genomic signatures. For complex habitats leading to
metagenomes without longer assemblies, DNA com-
position-based methods should be combined with if
not substituted by PBC methods. These, however,
are restricted to sequences harboring well-character-
ized genes or domains and thus can classify fewer
sequences.

Until long read technologies are available, we
suggest clustering metagenomes into taxobins by a
combination of nucleotide and protein-based taxo-
nomic classification tools. This enables the applica-
tion of large-scale NGS DNA sequencing as a
screening tool for biodiversity and paves the way
for insights into the functional ecology of complex
microbial communities. For habitats with low-to-
medium biodiversity, sufficiently reliable classifica-
tions can be achieved down to the genus level, but
the amount of sequence that is obtained in praxis
with current techniques will be often too small for a
sound statistical analysis of gene functions on this
level. However, functional analyses of our real-
world data have shown that such studies can be
done down to the class and for abundant taxa even
down to the order level with two to four full
picotiter plates of pyrosequencing per sample (data
not shown). We anticipate that progress in sequen-
cing with respect to read length and throughput will
soon eliminate this bottleneck and thus will enable
to study microbial communities in a holistic fashion
on a much finer level.
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