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Wind and sunlight shape microbial diversity in
surface waters of the North Pacific Subtropical Gyre
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Few microbial time-series studies have been conducted in open ocean habitats having low seasonal
variability such as the North Pacific Subtropical Gyre (NPSG), where surface waters experience
comparatively mild seasonal variation. To better describe microbial seasonal variability in this habitat,
we analyzed rRNA amplicon and shotgun metagenomic data over two years at the Hawaii Ocean
Time-series Station ALOHA. We postulated that this relatively stable habitat might reveal different
environmental factors that influence planktonic microbial community diversity than those previously
observed in more seasonally dynamic habitats. Unexpectedly, the data showed that microbial diversity
at 25m was positively correlated with average wind speed 3 to 10 days prior to sampling. In addition,
microbial community composition at 25m exhibited significant correlations with solar irradiance.
Many bacterial groups whose relative abundances varied with solar radiation corresponded to taxa
known to exhibit strong seasonality in other oceanic regions. Network co-correlation analysis of 25m
communities showed seasonal transitions in composition, and distinct successional cohorts of
co-occurring phylogenetic groups. Similar network analyses of metagenomic data also indicated
distinct seasonality in genes originating from cyanophage, and several bacterial clades including
SAR116 and SAR324. At 500m, microbial community diversity and composition did not vary
significantly with any measured environmental parameters. The minimal seasonal variability in the
NPSG facilitated detection of more subtle environmental influences, such as episodic wind variation, on
surface water microbial diversity. Community composition in NPSG surface waters varied in response
to solar irradiance, but less dramatically than reported in other ocean provinces.
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Introduction

Microbial community structure and function have
pivotal roles in the biogeochemical dynamics of
marine ecosystems, yet the microbial ocean remains
largely undersampled. Coordinated time-series
studies are a key strategy for addressing this under-
sampling, and improve understanding of the com-
plex interplay between environmental variability
and microbial community diversity and dynamics.
Several recent time-series efforts focusing on marine
surface waters have observed dramatic seasonality in
microbial communities, including studies in
the Western English Channel (Gilbert et al., 2012),
the Sargasso Sea (Morris et al., 2005; Treusch et al.,
2009), coastal waters near southern California
(Fuhrman et al., 2006) and coastal waters in

Antarctica (Murray et al., 1998). Seasonal variability
at these locations has been attributed to changes in
the physical habitat, including solar irradiance,
stratification and mixing. For example, Gilbert
et al. (2012), observed dramatic shifts in microbial
richness and community composition in the English
Channel that correlated with changing day lengths
that vary by as much as 8 h between seasons. Clear
seasonal patterns in community composition were
also observed at the oligotrophic Bermuda Atlantic
Time-series Study (BATS, Treusch et al., 2009),
where fluctuations in microbial populations varied
with the annual cycle of deep convective mixing in
the winter, a predictable spring bloom and late
summer/early autumn stratification of the upper
ocean (Giovannoni and Vergin, 2012).

Compared with other oceanic regions, the
physicochemical environment of the North Pacific
Subtropical Gyre (NPSG) exhibits relatively low
seasonality (Bingham and Lukas, 1996). For exam-
ple, at the Hawaii Ocean Time-series (HOT) Station
ALOHA, a well-studied site representative of the
NPSG, there is only a 3.09 h time difference between
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the longest and shortest days of the year, and sea
surface water temperatures vary o4 °C annually
(HOT Data Organization and Graphical Systems
(DOGS)-see Methods). Additionally, predominantly
stratified surface waters create oligotrophic condi-
tions at Station ALOHA year round, unlike the more
seasonally oligotrophic waters at BATS. Currently,
it is unknown whether the milder climatic and
hydrographic seasonal variability at Station ALOHA
results in differences in microbial seasonality
compared with other oceanic regions. Since the
NPSG represents the largest circulation feature on
Earth and substantially impacts major global biogeo-
chemical cycles, better understanding its biological
dynamics remains an important endeavor (Karl and
Lukas, 1996; Karl and Church, 2014).

To investigate the potential seasonality in micro-
bial dynamics at Station ALOHA and identify
possible physical and biogeochemical drivers, we
examined changes in microbial communities at two
discrete depths, 25m and 500m, for near-monthly
time intervals over a 2-year period. We used bacterial
small subunit SSU ribosomal RNA (SSU rRNA)
amplicon and shotgun metagenomic sequences to
follow changes in microbial taxonomic and func-
tional gene diversity and representation. Amplicon
sequencing was used to identify differences between
microbial communities by comparing bacterial small
subunit ribosomal RNA gene sequences within and
between samples directly. Metagenomic shotgun
sequencing was used to capture genes from a broader
array of cells from all domains, as well as their
viruses, and provide broader insight into microbial
community composition and variability. Two funda-
mental dimensions of biodiversity were investigated;
alpha diversity, defined as the diversity within
individual time points, and beta diversity, defined
as the dissimilarity in community composition
between pairs of time points. We also used a
weighted co-occurrence network analyses to identify
clusters of co-varying organisms and protein-coding
genes in our samples. We postulated that microbial
community dynamics analyzed using these diversity
metrics and analytical approaches would reveal
clear but potentially muted seasonal trends via
correlations with biotic and abiotic seasonal
changes. We further hypothesized that the compara-
tively low seasonal variability in the NPSG might
reveal the influence of different, potentially more
subtle environmental factors on microbial diversity
that have not been reported in previous studies.

Materials and methods
Site and sample collection
The HOT program has been conducting research
cruises at approximately monthly intervals at
Station ALOHA (22° 45’N, 158° 00’W) to make
physical, chemical and biotic observations since
1988 (Karl and Lukas, 1996). Water samples for the

current study were collected on HOT cruises
between August 2007 and September 2009 (HOT
cruises #194–215). Sampling dates and times are
listed in Supplementary Table S1. Corresponding
HOT environmental observations were downloaded
from the HOT-DOGS website http://hahana.soest.
hawaii.edu/hot/hot-dogs/. Environmental measure-
ment protocols are available on the HOT-DOGS site.
Environmental measurements were collected during
the same cruise and where possible the same day as
microbial sampling. HOT program measurements
sampled from between 20 and 30m were utilized for
contextual information on microbial community
dynamics occurring at 25m, with the exception of
silicate, which was measured between 5 and 25m.
Temperature and salinity measurements collected
between 495 and 505m were averaged for 500m
analyses. Other 500m environmental measurements
(for example, nutrient and dissolved oxygen
concentrations) sampled between 470 and 530m
were utilized for the analyses of microbial commu-
nity structure at 500m. Curated environmental mea-
surements are available in Supplementary Tables S3
and S4. Pigments were measured using high-
performance liquid chromatography and total pico-
plankton cell numbers were estimated using epi-
fluorescence microscopy. The depth of the deep
chlorophyll maximumwas identified by visual inspec-
tion of water column fluorescence data. Mixed layer
depth values were based on a 0.125-unit potential
density criterion.

In addition, we downloaded daily mean sea level
height anomaly data from the Integrated Climate Data
Center (http://icdc.zmaw.de/ssh_aviso.html?&L=1).
We obtained wind velocity and solar radiation data
(incident light energy from 0.28 to 2.8μm wavelengths
in wattsm−2) collected by the Upper Oceans Processes
Group at the Woods Hole Oceanographic Institution
with the WHOTS buoy located at Station ALOHA
(retrieved from http://uop.whoi.edu/projects/WHOTS/
whots.html). For comparisons between wind velocity
and surface chlorophyll concentrations across a longer
time scale (1989–2009), wind velocity measurements
were retrieved from the NOAA National Data Buoy
#51001 located 450 km away from Station ALOHA
(retrieved from http://www.ndbc.noaa.gov/station_
page.php?station=51001). Theoretical hours of daylight
were calculated using the Lammi’s Online-Photoperiod
Calculator V1.94L (http://www.sci.fi/~benefon/sol.
html).

Microbial cells were sampled during HOT cruises
by filtering 20 L of seawater, collected with a CTD
rosette sampler, through an inline 47mm diameter,
1.6 μm pore-size GF/A pre-filter (Whatman, Piscat-
away, NJ, USA) followed by collection on a 0.22 μm
pore-size Sterivex GV filter (Millipore, Billerica,
MA, USA) using a peristaltic pump. Immediately
after filtering was completed, 2 ml of sterile
DNA storage buffer (50 mM Tris-HCl, 40 mM EDTA
and 0.75 M sucrose) was added to the Sterivex
cartridges, and the filters were flash frozen in
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liquid nitrogen and stored at − 80 °C until DNA
extraction.

DNA extraction and sequencing
Cells were lysed directly in Sterivex filter units
and DNA in the crude lysate was purified on a
Quick-Gene 6101 system (Fujifilm, Tokyo, Japan)
using DNA Tissue Kit L (Autogen, Holliston, MA,
USA). Modifications made to the manufacturer’s cell
lysis protocol are described by Sharma et al. (2013).
Shotgun pyrosequencing was performed using either
FLX or Titanium series chemistry (Supplementary
Table S1) on a Roche Genome Sequencer FLX
instrument according to manufacturer’s recommen-
dations (Roche, Indianapolis, IN, USA). FLX or
Titanium Rapid Library Preparation protocols were
used for library construction. Libraries were quanti-
fied using the Titanium Slingshot kit (Fluidigm, San
Francisco, CA, USA) and added to emulsion PCR
reactions at 0.1 molecules per bead.

Bacterial amplicon libraries targeting the V1-V3
region of bacterial SSU rRNA genes were generated
with 27F (5′ AGAGTTTGATCCTGGCTCAG 3′) and
534R (5′ ATTACCGCGGCTGCTGG 3′) primers using
PCR amplification protocols established for the
Human Microbiome Project (Jumpstart Consortium
Human Microbiome Project Data Generation
Working Group, 2012). To increase yield while
keeping the number of amplification cycles low,
triplicate PCR reactions using 20 amplification
cycles were run for each sample then pooled.
Amplicons were purified using the QiaQuick PCR
Clean-Up kit (Qiagen, Valencia, CA, USA) and their
size was verified with agarose gel electrophoresis.
Following this step, equal quantities of all PCR
reactions from the same ocean depth were pooled
together, and sequenced using a 454 Genome
Sequencer. Sequencing of amplicons was carried
out using the Titanium Rapid Library Preparation
protocol. We empirically determined the optimal
conditions for library preparation since the amplicon
DNA fragments were shorter than the fragment
length targeted by the library preparation kit. The
manufacturer’s protocol was followed except
adaptor-ligated libraries were not diluted before size
selection with AMPure XP beads and 1/4 of the
recommended volume of amplification primers was
used in emulsion PCR reactions. All metagenomic
and amplicon sequencing data is available in the
NCBI SRA database (accession numbers in
Supplementary Tables S1 and S2).

Metagenomic sequence analysis and annotation
Before analysis of sequencing data, duplicate
identical DNA sequences, which were likely 454
sequencing protocol artifacts were removed from
metagenomic data sets using previously described
computational methods (Stewart et al., 2010).
BLASTX searches were conducted against an

in-house database comprised of NCBI RefSeq plant
and microbe peptide databases (release 51)
combined with peptide sequences from marine taxa
whose genomes were sequenced using single-cell
sequencing (Swan et al., 2011; Swan et al., 2013).
Reads were assigned to the taxonomy of their best
match, provided the match had a bit score of 50 or
greater. Reads matching multiple hits equally well
were assigned to the lowest common ancestor of all
equally scored top hits. A table containing the
number of reads in each sample assigned to each
genome or taxonomic group is available in the
supplement (Supplementary Tables S6 and S7).

SSU rRNA genes were identified in the
metagenomic data using BLASTN searches against
the ARB-Silva non-redundant SSU rRNA reference
database with a minimum bit score cutoff of 50
(Pruesse et al., 2007, release 102). Reads identified as
SSU genes were assigned to their top hit in the
database and corresponding leaf on the ARB-Silva
non-redundant SSU reference guide phylogeny. By
using the ARB software program, the reference
phylogeny was then pruned to only include sequences
that matched SSU sequences in our metagenomic
libraries (Ludwig et al., 2004). This phylogeny was
used for subsequent phylogenetic analyses.

Metagenomic reads were also binned into de novo
protein-coding ‘functional gene’ clusters by first
using the gene-finding program MetaGene to identify
amino acid sequences within reads (Noguchi et al.,
2006). Amino acid sequences originating from the
same ocean depth were then pooled, clustered first
to a 90% identity threshold, followed by 60%
identity threshold, both with a 70% minimum
overlap, using cd-hit (Li and Godzik, 2006).

Amplicon sequence analysis and annotation
Amplicons were analyzed within the software
package QIIME (Caporaso et al., 2010). First PCR
and 454 sequencing artifacts were removed using the
AmpliconNoise and Perseus algorithms (Quince
et al., 2011). Next, de-multiplexed sequences were
binned into de novo operational taxonomic units
(OTUs) at 97% identity using the UCLUST algorithm
(Edgar, 2010). Reference sequences from each OTU
were aligned using PyNAST, uninformative base
positions based on the default lanemask were
removed and a phylogeny was constructed using
the FastTree algorithm (Price et al., 2009; Caporaso
et al., 2010b). This phylogeny, with OTUs as leaves
was used to calculate subsequent amplicon diversity
metrics. Aggressive taxonomic assignments were
made outside of the QIIME package, by comparing
the OTU reference sequences to the ARB-Silva SSU
database using BLASTN (release 108). Reads were
assigned to the lowest common ancestor of all
database hits with a score within 5% of the top
score, provided that bit scores were 50 or higher and
the database sequences spanned at least 95% of the
amplicon sequence. On occasion, all but a small
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number of the top hits were to the same taxonomic
assignment and the few incongruous hits had low
pintail values indicating a high probability the hits
were chimeras. In such cases the taxonomy of the
majority was assigned to the reference sequence.

Statistical analyses
We estimated alpha diversity with SSU rRNA genes
from both amplicon and metagenomic samples,
using the metric termed phylogenetic diversity
(PD), which is similar to taxonomic richness,
but incorporates the phylogenetic relatedness of
organisms (Faith, 1992). We estimated beta diversity
within SSU rRNA genes using the UniFrac Metric,
which is similar to the Jaccard Index that quantifies
dissimilarity in taxonomic composition between
pairs of samples but unifrac also incorporates the
phylogenetic relatedness of organisms (Lozupone
and Knight, 2005). We used the protein-coding gene
clusters to calculate functional alpha diversity with
richness, and to calculate functional beta diversity
with the Jaccard Index, parallel to our rRNA
phylogenetic metrics PD and Unifrac. Metrics
described thus far all depend on the presence, but
not abundance of the organisms in the samples. To
investigate the additional influence of varying taxon
abundances, we also calculated parallel abundance-
based metrics (see Supplementary Material).

Alpha diversity within the amplicon data and
SSU reads extracted from the metagenomic libraries
were calculated in R using the packages vegan and
picante (Faith, 1992; Allen et al., 2009; Kembel
et al., 2010; Oksanen et al., 2013). PD rarefaction
curves were generated in QIIME, as were Unifrac
distances (Caporaso et al., 2010). Functional alpha
and beta diversity measures were calculated using
Vegan and the Python package SciPy (Jones et al.,
2001; Oksanen et al., 2013). To account for differing
sequencing depths between samples, rarefaction
re-sampling was conducted for all indices by
averaging the diversity values generated from 100
random subsamples of each community. Commu-
nities were subsampled to the read depth of the
smallest of the samples being compared. See figure
captions for subsampling levels used for each
analysis (Figures 2–4). Spearman’s correlation
coefficients and corresponding two-sided P-values
were calculated between alpha diversity and envir-
onmental measurements using the R function cor.
test. Mantel tests using Spearman’s coefficient
implemented in the vegan package were used to
test the significance of correlations between beta
diversity measures and Euclidean distances
between environmental measurements. P-values
were adjusted to account for multiple tests using
the Benjamini–Hochberg (BH) procedure.

Because of cruise schedules and the nature of solar
radiation at HOT, most of our microbial sampling
took place when Station ALOHA was experiencing
annual extremes in incoming solar irradiance.

Therefore to identify microorganisms whose relative
abundances may change with variation in incoming
solar irradiance, we divided samples into high- and
low-light samples. Samples collected in October
2007, February 2008, October 2008 and April 2009
(cruises 196, 200, 205 and 210) that did not fall
during annual extremes in incoming shortwave solar
radiation were removed. A DESeq2 enrichment
analysis was used to test the null hypothesis that
the Log2 fold change in the number reads mapping to
a given taxonomic group or OTU between high- and
low-light times of the year is zero (Love et al., 2014).
A detailed description is available elsewhere (Love
et al., 2014), but in brief, DESeq2, using count data,
tests for differential abundances using negative
binomial generalized linear models and estimates
size and dispersion factors to control for differences
in sequencing depth between libraries and disper-
sion between taxa. P-values are adjusted to account
for multiple tests using the BH procedure after an
independent filtering criterion is applied to remove
tests that have little chance of showing significance.
We included taxa that DESeq2 flagged as potential
outliers, because they appeared biologically reason-
able. To test for differential abundance in clades
within the amplicon data, we collapsed OTU counts
into clade counts based on Arb-Silva taxonomic
assignments (see above). We choose clades that
corresponded to roughly the family level and had
relative abundances that summed 41% across all
samples. The cladogram in Figure 5 displaying these
results was built using the program GraPhlAn
(https://bitbucket.org/nsegata/graphlan/).

Weighted co-occurrence network analyses
The R package WGCNA (Langfelder and Horvath,
2008) was used for weighted co-occurrence network
analyses of both SSU amplicon and community
metagenomic data. For the 25 and 500m SSU
amplicon data sets, count matrices of OTUs were
constructed whereby counts represented the number
of sequences identified as belonging to a particular
OTU with the total number of counts in each sample
used for normalization. Low abundance OTUs
(o50 counts across all time points or 0 values for
at least 15 time points) were excluded on the
grounds that they were not likely to yield robust
seasonal patterns. To corroborate seasonal patterns
identified in the 25m OTU data, count matrices were
also constructed for the 25m community metage-
nomic data by mapping sequence reads onto ortho-
log clusters using methods described previously
(Aylward et al., 2015). Briefly, metagenomic reads
were first mapped against RefSeq v. 62 using LAST
(Frith et al., 2010) with parameters ‘-b 1 -x 15 -y 7 -z
25 -e 80 -F 15 -u 2 -Q 0’, with bit scores calculated
afterwards and only hits having scores ⩾ 50 retained.
Ortholog clusters were constructed for phylogenetic
groups of interest (Prochlorococcus, SAR11,
SAR116, SAR86, SAR324, SAR406, Roseobacter,
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pelagiphage and cyanophage) with ProteinOrtho
(Lechner et al., 2011) using select genomes that
had a high number of reads mapping across
metagenomes. For annotations a representative
protein was selected from each ortholog cluster
(the longest protein in the cluster, or a randomly
selected protein in case of ties) and queried against
the Kyoto Encyclopedia of Genes and Genomes
(Kanehisa and Goto, 2000) using LAST (default
parameters, bit score cutoff of 50). Count tables in
which columns represented metagenomes and rows
represented ortholog clusters were then constructed,
in which counts were given based on the number of
reads mapping to all of the proteins comprising each
of the ortholog clusters. Ortholog clusters having
o50 total reads mapping were excluded from
subsequent analysis. Ortholog cluster count tables
were normalized using the DESeq function
‘varianceStabilizingTransformation’.

Pairwise Pearson correlations were calculated for
all OTUs or ortholog clusters in the count tables and
a matrix of pairwise adjacency scores was subse-
quently generated using the equation:

aij ¼ jsbij j
where a is the adjacency, s is the Pearson correlation,
i and j are the rows and columns of the correlation
and adjacency matrix, respectively, and β is the soft
threshold calculated using the scale-free topology
index with the guideline that a soft threshold
yielding an R240.8 for scale-free topology fit is
suitable (Zhang and Horvath, 2005). The ‘blockwi-
seModules’ command in WGCNA was used to
identify subgroups of OTUs (termed ‘modules’) with
co-varying temporal profiles (minimum group size
45 specified for OTUs, 30 for ortholog clusters).
Clustering was performed using the average linkage
hierarchical clustering algorithm, and the Dynamic
Tree Cut package (Langfelder and Horvath, 2008)
was used to determine module delineations. The first
principle components (‘eigengenes’) of modules
were calculated using the ‘moduleEigengenes’ com-
mand in WGCNA, with default parameters. OTUs or
ortholog clusters were classified as ‘unassigned’ if
their correlation to the eigengene of the module to
which they were assigned was o0.3. Modules
having eigengene dissimilarities o0.25 were
subsequently merged. Because these methods do
not distinguish between positive and negative
correlations, we separated modules post facto by
calculating the Pearson correlation of each OTU
or ortholog cluster's temporal profile with the
eigengene of the subgroup to which it belonged;
positively and negatively correlated OTUs or ortho-
log clusters were then denoted with ‘pos’ or ‘neg’.
Full information for weighted network analysis of
OTUs and metagenomes can be found in the
Supplementary Material entitled ‘network data sets’.

To further examine co-correlation patterns and
corroborate weighted network analysis findings, we

also employed a more commonly used unweighted
network analysis to examine seasonal patterns in
the 25m data set. In this approach, significantly
correlated OTUs were identified independently
of weighted co-occurrence analyses using the
‘CorAndPvalue’ function in the WGCNA package,
which uses Student’s t-test to calculate P-values from
pairwise Pearson values while accounting for the total
number of observations. OTUs found to be signifi-
cantly correlated (BH adjusted Po0.05) were then used
to construct unweighted networks in which edges were
drawn between OTUs with significantly correlated or
anticorrelated temporal profiles (Figure 6). Network
construction was performed using the R package
igraph (Csardi and Nepusz, 2006). The adjacency
matrix used for unweighted network construction can
be found in Supplementary Table S4.

Results and discussion

Microbial plankton samples were collected at
roughly monthly intervals from August 2007 through
September 2009, at 25 and 500m depths during HOT
program cruises to Station ALOHA in the NPSG. As is
typical for this region, we observed a persistently
stratified upper ocean and only mild seasonal varia-
tion in surface waters (Figure 1). At the ocean’s
surface, mixing depths ranged from 13 to 111m and
water temperatures and bacterial cell numbers tended
to peak in the late summer and fall (Figure 1 and
Supplementary Figure S1). In contrast, there was little
evidence of seasonality in physical or biogeochemical
dynamics at 500m, with conditions being relatively
homogenous throughout the year, relative to near-
surface waters (Figure 1). For example, maximum and
minimum temperature values differed by 3.8 versus

Figure 1 Environmental variation at Station ALOHA during our
study period. (a) Orange ovals display the 24-hour daily average
solar irradiance (light energy in watts from 0.28 to 2.8 μm
wavelengths (shortwave) per m2) at the ocean's surface measured
at the nearby WHOTS buoy. The color gradient in (b) signifies
water temperature across time and depth. The white line outlines
the bottom of the mixed layer measured during HOT cruises.
Dots mark sampling points.
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1.4 °C, salinity values differed by 0.52 versus 0.08
(Practical Salinity Scale 1978) and dissolved organic
carbon differed by 12.0 versus 7.4 μmol kg−1 at 25 and
500m, respectively. In addition, nitrate+nitrite and
phosphate concentrations were all at least an order of
magnitude higher at 500m compared with 25m
(Supplementary Tables S3 and S4).

We characterized microbial samples using both
shotgun metagenomic pyrosequencing of whole
community DNA (hereafter referred to as metage-
nomic data sets or samples), and bacterial SSU
rDNA amplicon sequencing. Amplicon-based meth-
ods are the most commonly used method for
studying microbial diversity. However, shotgun
metagenomic approaches are becoming more
common as sequencing costs decrease (Logares
et al., 2009; Bryant et al., 2012). Comparing
functional gene (protein-coding gene) diversity
with SSU rRNA-based measures is also useful and
relevant, since gene composition ultimately dic-
tates how microbes can potentially interact with
each other and their environment (Gilbert et al.,
2010; Raes et al., 2011; Barberán et al., 2012; Bryant
et al., 2012; Fierer et al., 2012). For each of the 21
discrete time points and two depths studied, we
generated metagenomic libraries with an average of
1.1 million reads of an average length of 360 base
pairs (bps) (Supplementary Table S1). We gener-
ated 21 amplicon libraries at 25 m and 19 at 500 m,
each with an average of 12 000 reads of ~ 350 bps in
length (Supplementary Table S2).

As anticipated, Prochlorococcus and SAR11, the
dominant microorganisms in surface waters year
round at Station ALOHA, comprised roughly
50% and 10% of metagenomic reads across all
samples, respectively (Supplementary Figure S2).
This was consistent with the corresponding ampli-
con data, as well as with previous reports in this
same oceanic region (Supplementary Figure S3;
Schmidt et al., 1991; Campbell and Vaulot, 1993;
Eiler et al., 2011). At 500m, SAR11, SAR324,
SAR406, Nitrospina, SAR202 and Thaumarchaeota
were consistently the most abundant taxa
(Supplementary Figures S4 and S5).

We compared SSU rRNA alpha and beta diversity
metrics generated by the two different sequencing
approaches (SSU rRNA amplicons versus shotgun
metagenomic sequencing) and also compared
diversity metrics generated from amplicon SSU
rRNA to diversity metrics generated from metage-
nomic functional genes to investigate whether the
different methods were consistent with one another
(Supplementary Material). At 25m, all the diversity
metrics were generally well correlated. In contrast,
diversity metrics at 500m were not consistently
correlated. We propose that lower correspondence
between amplicon verses metagenomic data sets in
500m samples likely reflects lower variability
between samples at 500m (see next section).
Detailed results and additional discussion are
available in the supplement.

Microbial communities at 25 versus 500m in the NPSG
An emerging pattern in pelagic systems is an
increase in alpha diversity at intermediate water
depths compared with surface waters (Treusch et al.,
2009; Jing et al., 2013, Sunagawa et al., 2015).
Discrepancies in this richness pattern can usually
be explained by the taxonomic resolution of the study
(Brown et al., 2009; Kembel et al., 2011). Consistent
with these findings, we observed a broad array of
dominant taxa at 500m, which yielded higher
phylogenetic and functional richness compared
with that found at 25m (Figure 2, Supplementary
Figures S10 and S11). Explanations for higher
richness in the mesopelagic are not immediately
obvious, since productivity is highest in the photic
zone. The distance from sunlight-driven energy and
productivity, however, likely causes intense resource
competition at depth. This may promote a more
diverse and even community containing a broader
range of heterotrophic and chemolithotrophic
lifestyles and taxa compared with shallower waters.
Evidence for more prevalent chemolithotrophic asso-
ciated activities, including ammonia oxidation, sulfur
oxidation and CO2 fixation have all been reported in
the mesopelagic at the NPSG (Karl et al., 1984; Ingalls
et al., 2006; Hansman et al., 2009; Swan et al., 2011;
Giovannoni and Vergin, 2012).

Previous studies have demonstrated that in the
NPSG, steep physical and chemical gradients and
perennial stratification are reflected in strong vertical
structure in microbial community composition
(DeLong et al., 2006). Moreover, previous studies
have observed that microbial communities in the
near-surface ocean tend to be more variable in time
compared with communities in deeper water, likely
because the physical environment below the euphotic
zone is more stable (for example, Lee and Fuhrman,
1991; Treusch et al., 2009; Rich et al., 2011; Ghiglione
et al., 2012). Results derived from our metagenomic
and amplicon data were consistent with these
previously described depth-dependent trends.

Figure 2 Comparison of microbial communities at 25 and 500m.
(a) Venn diagram displaying the number of OTUs from each depth
with relative abundances 40.1 % at either one or both depths. All
amplicon data within each depth were combined to calculate
relative abundances. (b) Boxplots comparing the distribution of
phylogenetic diversity and Unifrac values between 25 and 500m
samples based on amplicon data. Whiskers delineate the full range of
values. The variance of Unifrac values was significantly smaller in
500m samples compared with 25m samples (Levene’s test, Po0.05).
In b, amplicon data was resampled to 6906 reads per sample.
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When combining all the amplicon data from both
25 and 500m together, we only observed five OTUs
with relative abundances 40.1% at both depths
studied (Figure 2, Supplementary Table S5). These
OTUs mapped to SAR11 and SAR406. Other shared
OTUs that were abundant at one depth were at least
an order of magnitude less abundant at the other
depth (Supplementary Table S5).

Variance between time points was significantly
higher among 25m samples than among 500m
samples, for the majority of alpha and beta diversity
metrics including Unifrac (Levene’s test Po0.05,
Figure 2 and Supplementary Figure S10). In
addition, we observed that microbial communities
at 500m had lower average beta diversity
indices compared with 25m, indicating that the
composition of microbial communities was more
similar across time points at 500m (Figure 2, and
Supplementary Figure S10). However, when incor-
porating abundance information into Unifrac values
(weighted-Unifrac, Lozupone et al., 2007), values
were higher at 500m compared with 25m. This is
likely because two groups, Prochlorococcus and
Pelagibacter, dominated all the 25m time points.

At 500m, no consistent correlations between
microbial alpha and beta diversity metrics and
environmental measurements were found (BH
adjusted Po0.10, Supplementary Tables S10 and
S11). Also weighted gene co-occurrence network
analyses revealed that only a minority of 500m
OTUs could be clustered into modules and these
modules showed no significant correlations
with environmental parameters (Supplementary
Figure S16, Supplementary Table S14). Mesopelagic
communities may of course have responded to
environmental variables we did not measure. The
minimal variability in 500m samples also suggests
that at this depth the temporal frequency we
sampled was not optimal for detecting variability in
microbial communities. Our 500m results are con-
sistent with previous work at Station ALOHA, and at
global scales, that showed that in the bathypelagic,
individual environmental variables appear to have
only a small effect on free-living communities,
but perhaps a stronger influence on particulate
associated communities (Eiler et al., 2011; Salazar
et al., 2016). Microbes in the mesopelagic have been
shown to be very active on particulate matter, which
is rapidly transported from surface water to the
ocean floor (Karl et al., 1984, 2012). Including
particulate associated microbial communities in
mesopelagic studies, as well as incorporating longer
sampling periods might reveal more variability and
perhaps seasonality in mesopelagic microbial com-
munities than we could observe with this data set.

Wind correlates with alpha diversity in NPSG surface
waters
To reveal potential environmental factors influencing
variability in alpha diversity across our 25m time
series, we looked for correlates between the alpha

diversity measures and the physical, chemical and
biotic environmental parameters measured during HOT
cruises and at the nearby WHOTS meteorological buoy.
Unlike previous studies, we did not observe significant
correlations between alpha diversity and seasonally
driven environmental parameters such as temperature
and mixed layer depth (Gilbert et al., 2012; Ladau et al.,
2013). Instead all alpha diversity metrics were consis-
tently most strongly correlated with the average wind
speed of the days leading up to sample collection
(Figure 3, Supplementary Table S8). The correlation
between wind and alpha diversity was statistically
significant for amplicon phylogenetic diversity (PD)
and functional richness (Spearman r=0.7, BH adjusted
Po0.10). This trend held when averaging the wind
speeds from 3 to 10 days before the sampling date
(Supplementary Figure S12). The alpha diversity metric
phylogenetic entropy, which incorporates taxon abun-
dance information, is less influenced by rare taxa than
PD. The lower correlation between wind and phyloge-
netic entropy (Spearman ro 0.50) combined with an
OTU abundance distribution demonstrates that low
abundance taxa largely contributed to the wind-
associated increase in alpha diversity (Supplementary
Table S8, Supplementary Figure S13).

Chlorophyll a concentrations (chl a) and several other
phytoplankton pigments were also correlated with
amplicon PD (BH adjusted Po0.10 Supplementary
Table S8b) and chl a was reciprocally correlated with

Figure 3 Relationship between wind speed and phylogenetic
diversity at 25m. Inset in a shows the average wind speed (m s-1)
of the 4 days before sample collection across time. (a) Relationship
between average wind speed and phylogenetic diversity of
samples characterized using amplicon data (BH adjusted
Po0.01, Spearman r=0.7). The relationship was consistent when
considering other alpha diversity measures and average wind
speeds derived from a narrower or broader range of days leading
up to sampling (Supplementary Table S8, Supplementary
Figure S12). Each amplicon data set was resampled to 9661 reads
(see Methods). (b) Relationship between average wind speed and
chlorophyll a concentrations (Po0.05, Spearman r=0.46).
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average wind speeds (Spearman r=0.46, Po0.05,
Figure 3). The relationship between wind speed and
chlorophyll concentrations at HOT appears to be a long-
term trend, consistent with findings from global-scale
studies (Kahru et al., 2010). We compared 20 years of
HOT near-surface ocean chl ameasurements from 1989
to 2009 to wind speed measurements collected from
the NOAA Nation Data Buoy #51001. Chl a was
significantly correlated with wind speeds over the
20-year period (Spearman r=0.26, Po0.001). Surface
chlorophyll concentrations are also impacted by
phytoplankton photoadaption, where per cell pigment
concentrations rapidly adjust to current light levels
(Ohman et al., 1982; Letelier et al., 1993; Winn et al.,
1995). The wind-chl a relationship across the 20-year
period remained significant after statistically accounting
for phytoplankton photoadaption by modeling chl a
and day length (Supplementary Figure S14, linear
regression Po0.001, r2=0.13).

Strong wind-driven mixing events and wind/eddy
interactions can spur phytoplankton blooms in the
open ocean (Winn et al., 1992; Letelier et al., 2000;
McGillicuddy et al., 2007). Wind may also be fertiliz-
ing surface waters by transporting nutrients including
fixed nitrogen, phosphorus and iron through both wet
and dry dust deposition (DiTullio and Laws, 1991;
Young et al., 1991; Karl and Tien, 1997; Jickells et al.,
2005; Fitzsimmons et al., 2014). We did not observe
significant increases in autotrophic biomass or cyano-
bacteria cell concentrations with increasing wind
speeds (Supplementary Figure S14). These data likely
reflect a wind-driven increase in chlorophyll per cell,
as opposed to increased cell numbers, suggesting that
alpha diversity is not a product of wind-driven
increases in oxygenic photoautotroph abundance.

Photoautotrophs deeper in the water column
have higher per cell chlorophyll concentrations to
adjust for lower light levels (Winn et al., 1995). Thus
the increases in microbial alpha diversity and chlor-
ophyll may also result from entrainment of micro-
organisms located deeper in the water column via
wind-driven mixing. In addition, wind-driven mixing
increases the rate at which organisms cycle through
the extreme light conditions at the top of the mixed
layer and poorly lit conditions at the bottom of the
mixed layer, and so may influence microbial commu-
nities and chl a concentrations by modifying light
exposure. Incoming solar irradiance and wind speed
were not significantly correlated (Spearman r=−0.23,
P=0.32), albeit the three windiest sampling periods
occurred in the winter. Additional studies with high-
resolution sampling of strong wind events in the
NPSG will help improve the mechanistic under-
standing of our observations.

Solar irradiance correlates with beta diversity in surface
water
To uncover potential environmental factors influen-
cing beta diversity across our 25m time series, we
looked for correlates among the beta diversity
measures and changes in physical, chemical and

biotic environmental properties (Supplementary
Table S9). Unlike alpha diversity, the beta diversity
measures demonstrated a significant seasonal trend.
All the non-abundance-based beta diversity indices
consistently correlated with the average solar
irradiance reaching the ocean's surface derived from
light energy from 0.28 to 2.8 μm wavelengths
(Crescenti et al., 1989, Figure 4, Mantel test, BH
adjusted Po0.05, Supplementary Table S9). The
lower correlation between solar irradiance and the
abundance-based measures demonstrates that lower
abundance taxa largely contributed to this pattern,
similar to our alpha diversity observations. The
seasonal variables temperature and mixed layer
depth were also correlated with some beta diversity
measures, but the relationship was not as strong,
nor as consistent as with solar irradiance
(Supplementary Table S9). Chl a also correlated
with most beta diversity measures, presumably
reflecting the phytoplankton response to changing
light levels via photoadaption. Our results are
consistent with recent global-scale studies that found
seasonally fluctuating variables including light and
temperature strongly impact marine surface commu-
nities (Raes et al., 2011; Sunagawa et al., 2015). The
stronger impact of light compared with temperature
we observed at Station ALOHA contrasted with
findings from the Tara Oceans Expedition, and may
reflect differing impacts of these variables at differ-
ent spatial scales (Sunagawa et al., 2015).

Serial sampling date did weakly correlate with
some of the beta diversity indices at 25m suggesting
there may have been some autocorrelation among
our samples. Ocean currents and water masses in the
open ocean are very dynamic and therefore it is
unlikely that any such autocorrelation we observed
comes from sampling the same microbial population
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Figure 4 Nonmetric multidimensional scaling plot to
visualize Unifrac distances between amplicon data sets at 25m.
Stress = 0.15. Inset shows the solar irradiance (Wm� 2) averaged
across the 30 days leading up to sample collection. Red indicates
high-incident solar irradiance data points that were 4260 W m�2.
Blue indicates low-incident solar irradiance data points that were
o175 W m�2. Colors in inset correspond to colors in main figure.
Each amplicon data set was resampled to 9661 reads (see
Methods).
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each month. Instead, regional-scale processes likely
drive the observed temporal autocorrelation. Seaso-
nal trends, including solar irradiance fall under this
description. Regardless, the significant relationships
between incoming solar irradiance and composi-
tional dissimilarity were still significant after taking
the time separating sampling dates into account
(partial Mantel tests, Po0.05) demonstrating that
temporal autocorrelation is not an overarching driver
in the patterns we observed.

Because Station ALOHA is located between the
Tropic of Cancer and the equator, it experiences
longer periods of maximum incoming solar
irradiance in the summer followed by sharp dips
during the winter (Figure 1). We compared beta
diversity measures to the average incoming solar
radiation using 24 hmeasurements across the 30 days
before sampling. Therefore our solar irradiance
values incorporate the influence of hours of daylight,
cloud cover and seasonal variability in light inten-
sity. Community composition significantly varied
with hours of daylight alone as well, but the
correlation was not as strong as that derived from
the daily average over the preceding 30 days
(Supplementary Table S9). This suggests that the
quantity of incoming solar irradiance is impacting
microbial community composition rather than mem-
bers of the community exhibiting photoperiodism.

The observed seasonal changes in microbial
communities at Station ALOHA are more subtle than
what has been previously reported at other marine
microbial time-series stations. This likely reflects the
less extreme environmental variability at Station
ALOHA compared with coastal sites (Murray et al.,
1998; Morris et al., 2005; Fuhrman et al., 2006;
Gilbert et al., 2012). For example, Rickettsiales and
Rhodobacterales alternate being the most abundant
clade in surface water in the Western English
Channel depending on season (Gilbert et al., 2012).
At BATS, Prochlorococcus cell densities are an order
of magnitude higher than other picophytoplankton
until the spring water column mixing when Synecho-
coccus bloom, Prochlorococcus cells decline and cell
densities of these two groups of cyanobacteria
become comparable (DuRand et al., 2001). At Station
ALOHA, changes in community composition are less
pronounced. Prochlorococcus and Pelagibacter
remain the dominant organisms year round
(Supplementary Figure S2 and S3). This is consistent
with a 5-year study showing weak and inconsistent
seasonality in total Prochlorococcus cell counts at
Station ALOHA (Malmstrom et al., 2010). However
these dominant groups (for example, Prochlorococcus,
Pelagibacter) undoubtedly harbor microdiverse sub-
populations that may also fluctuate with light
(Kashtan et al., 2014).

Figure 5 Cladogram highlighting bacterial OTUs and clades with differential relative abundances between samples experiencing high- and
low-incident solar irradiance at 25m (as defined in Figure 4). Shaded areas of branches delineate broad taxonomic groups. The innermost
ring (ring #1) delineates clades that are more abundant during high light (4260Wm � 2 average solar irradiance of the preceding 30 days;
yellow) or low light (o 200Wm−2 average solar irradiance of the preceding 30 days; light blue) sampling points (DESeq2 with BH correction,
Po0.1). Letters correspond to listed clade names. The next two rings display the average relative abundance to within an order of magnitude
of each OTU during high (ring # 2) and low light (ring # 3) sampling points. Red and blue bars in the outermost ring (ring # 4) mark individual
OTUs that are significantly more abundant during high (red) and low (dark blue) light sampling points (DESeq2 with BH correction, Po0.1).
Only OTUs with relative abundances across all samples summing to greater than 0.01% are shown. Abbreviations: Alpha, Gamma and Delta,
denote corresponding Proteobacteria classes; Verruco, Verrucomicrobia; Actino: Actinobacteria.
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Figure 6 Weighted co-occurrence network analysis at 25m. (a) OTU trends in the three largest modules with module eigengenes (gray solid lines,
left axis) overlaid with their most strongly correlated environmental measurement (dashed lines, right axis). n and r correspond to the total number
of OTUs in themodule and the Spearman’s correlation between themodule and overlaid environmental measurement, respectively. P-values (p) are
shownwhere significant (BH adjusted Po0.1). Note that modules contain both positively and negatively correlating OTUs, resulting in sets of OTUs
whose relative abundances either positively or negatively correlate with eigengene trends. The bar charts (b) display the number of OTUs that are
positively (red) or negatively (blue) correlatedwith the eigengene trend displayed to the left (a). (c) An unweighted network of OTUs identified in the
25m data set. Nodes represent OTUs that are colored according to the module to which they were assigned in the weighted network analysis, with
‘a’ and ‘b’ signifiers representing OTUs that are either positively or negatively associated with the eigengene of that module, respectively (gray nodes
were either assigned to another module or not assigned to any module). Edges are colored based on whether the OTUs were found to be correlated
(blue) or anticorrelated (red). Note that although the network is unweighted similar patterns identified in the weighted network analysis are
recapitulated, such as tight clustering of correlated and anticorrelated nodes assigned to module 1 in the weighted network analysis.
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The changes we observed in the relative
abundance of some taxa at Station ALOHA between
annual high and low solar irradiance periods,
however, were consistent with seasonal studies in
other oceanic regions (Figure 5). The clades that
were more abundant in the amplicon data during
high irradiance periods, SAR86, SAR116 and
Rhodobacteraceae, were also reported as being more
abundant during low nutrient, peak summer water
stratification periods at BATS and/or were more
abundant in the summer than winter in the Western
English Channel (Mary et al., 2006; Treusch et al.,
2009; Gilbert et al., 2012; Giovannoni and Vergin,
2012; Figure 5). This was consistent with the
genomes we identified in the metagenomic data
whose abundance varied with solar radiation when
annotating metagenomic reads with the NCBI RefSeq
database (Supplementary Figure S15). We also
observed a small but statistically significant increase
in the relative abundance of some Pelagibacter
strains during high solar irradiance periods
(Supplementary Figure S15). Similarly, Carlson
et al. (2009) found that SAR11 cell densities
distinctly increase when the mixed layer depth
shoals at BATS in the spring.

The clades we observed to be more abundant during
low-light periods of the year, including OCS116,
SAR324, SAR202, Synechococcus and SAR406, were
either reported as more abundant in surface water at
BATS during spring mixing periods or as having
peak abundances deeper in the water column at
Station ALOHA (Gordon and Giovannoni, 1996;
Giovannoni et al., 1996; Wright et al., 1997; Treusch
et al., 2009; Giovannoni and Vergin, 2012; Figure 5 and
Supplementary Figure S15). Consistent with our
observations, previous studies have reported that
Synechococcus cell counts at Station ALOHA peak in
the winter (Malmstrom et al., 2010). We also observed
that low light adapted Prochlorococcus marinus
ecotypes NATL1A and NATL2A reached maximal
abundances in our study at 25m during low-light
sampling periods (Supplementary Figure S15).
Prochlorococcus strains NATL1A and NATL2A reach
their highest abundances deeper in the water column,
although they can tolerate short periods of more intense
light exposure (Moore et al., 1998; Johnson et al., 2006;
Kettler et al., 2007; Zinser et al., 2007). Similar seasonal
trends have also been observed in NATL and other
Prochlorococcus ecotypes (Zinser et al., 2007;
Malmstrom et al., 2010; Kashtan et al., 2014).

Solar radiation can influence microbes in a variety
of ways including direct impacts on cell physiology,
indirect impacts through food web dynamics and
chemical transformation of organic matter (Moran and
Miller, 2007; Ruiz-González et al., 2013). Incident
solar radiation also impacts ocean hydrology. For
example, the deepening of the mixed layer in the
winter may increase transport of microbes from the
lower photic zone to 25m. Our data indicated
however, that solar irradiance was more strongly
correlated with beta diversity than mixed layer depth.

Solar radiation and temperature also exert top-
down controls on microbial community structure,
through changes in bacterivory and viral infection
(Tsai et al., 2005; An-Yi et al., 2009; Tsai et al., 2012;
Ruiz-González et al., 2013). Over the 2-year period
examined, we observed an increase in the relative
abundance of several cyanophage genomes in
low-light samples (Supplementary Figure S15).
Similarly, Parsons et al. (2012) observed that viral
particle concentrations in the mixed layer at BATS
are lowest during periods of summer water stratifica-
tion. Our observations, however, likely reflect an
increase either in phage intracellular production or
extracellular attachment, rather than an increase in
planktonic phage particles, since free viral particles
should not be efficiently retained on the sampling
filters we used.

Co-occurrence network analyses of OTUs and orthologs
A weighted co-occurrence network analysis
(Langfelder and Horvath, 2008) was used to identify
potential subgroups of co-varying organisms in our
samples that might be responding to seasonal
or other measured environmental parameters not
captured by the community level analysis. Taxa
within co-varying subgroups may be directly or
indirectly interacting or sharing a similar niche
space. Using the 25m amplicon data, we identified
six clusters of co-correlated OTUs ('modules') that
contained over five OTUs (Figure 6 and
Supplementary Figure S16). Consistent with our
previous findings, the first principal component
('eigengene'; Langfelder and Horvath, 2008) of these
modules most strongly correlated with seasonally
fluctuating environmental measurements or average
wind speed (Supplementary Table S12). The eigen-
genes of the modules containing the largest number
of OTUs (96 and 23 total) significantly correlated
with the seasonally fluctuating measurements
solar irradiance and dissolved oxygen concentra-
tions (Spearman r, BH adjusted Po0.1, Figure 6,
Supplementary Table S12). Interestingly the peak of
module 1 and 2's eigengenes are slightly offset,
suggesting a potential seasonal succession. Several
phylogenetic groups had OTUs with both positive
and negative correlations to individual modules, or
OTUs that were present in multiple modules,
suggesting that there are distinct sets of ecotypes
from different clades that appear to be co-varying.
For example, there are OTUs belonging to Flavobac-
teriaceae and clade SAR406 that either positively or
negatively correlated with module 1, which peaked
in early summer. OTUs belonging to clade SAR86
showed a similar pattern in module 3, which most
strongly co-varied with water temperature (Figure 6).

These co-correlation patterns were not unique to
the weighted network analysis, as an unweighted
network analysis yielded similar clustering patterns
for the 25m data (Figure 6c). Particularly noteworthy
in the unweighted network analysis was the tight
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clustering of OTUs assigned to module 1 of the
weighted network (both correlated and anticorre-
lated to the eigengene of this module), demonstrating
that the patterns of seasonal succession identified in
this module are particularly prominent.

To corroborate the patterns at 25m and uncover
additional information as to how the genomic content
of taxonomic groups may vary over time, we used
weighted co-occurrence network analysis to explore
the temporal patterns of protein-coding ortholog
clusters within the abundant taxa in our 25m
metagenomic samples (Supplementary Figure S17).
As expected, we observed that ortholog clusters from
the same taxonomic group tended to cluster together
into the same module, consistent with read abun-
dance for ortholog clusters being influenced mainly
by microbial abundances. Some ortholog clusters,
however, were placed in different modules than the
majority of clusters from the same taxa, suggesting the
presence of microdiversity within these clades that
might not co-vary uniformly with clade abundance.
These orthologs may belong to genomic islands
present only in certain ecotypes within a clade, or to
mobile elements present only in some microbial
groups. Confirmation of these observations awaits
more complete reference data sets (from single-cell
genomes or larger metagenomes), to allow mapping of
these genes on specific ecotypes over time.

Analysis of the ortholog cluster temporal profiles at
25m corroborated and extended our other analytical
approaches. For example, the eigengenes of modules
containing most cyanophage and clade SAR324
ortholog clusters, co-varied significantly with season-
ally variable parameters (Supplementary Table S13
and Supplementary Figure S17). SAR324 in particular
was positively associated with a deeper mixed layer,
reflecting its greater predominance in deeper waters.
In addition, eigengenes of some of the smaller modules
significantly correlated with total autotrophic biomass,
nitrate+nitrite and particulate carbon concentrations.
Module 1, containing the largest number of ortholog
clusters, did not significantly correlate with any
measured environmental parameters, being primarily
composed of core genes in phylogenetic groups that
are abundant throughout the year (Prochlorococcus,
SAR11) (see Supplementary Table S3).

The majority of SAR116 genes were found
in modules 1 and 6 suggesting that although many
SAR116 types are present throughout the year, some of
its variants change in abundance. Several SAR116
ortholog clusters present in module 6 were associated
with cofactor and vitamin metabolism, flagellar bio-
synthesis, several transporters and many housekeeping
genes (most positively correlated with module 6 and
peaking in abundance in spring and summer months).
Similarly, module 10 was positively associated with
solar radiation and contained a number of SAR11
ortholog clusters annotated as transporters and genes
involved in central carbon and amino acid metabolism
(all positively correlated with module 10 and peaking
in abundance in the summer) (see Supplementary

Table S3). Interestingly, module 10 also included two
Prochlorococcus ortholog clusters annotated as PhoB
and PhoR, which are involved in phosphate acquisi-
tion during phosphate-limiting conditions, and were
more abundant in the summer.

Conclusion

The results of this study support the hypothesis that
the dampened seasonal variation in the physical
environment at the NPSG may provide greater
sensitivity for the detection of microbial community
responses to non-seasonal phenomena. Research
at Station ALOHA conducted by the HOT program
over the past 25 years has shown that episodic
(for example, mesoscale eddies) and inter-annual-
scale (Pacific Decadal Oscillation and El Niño-
Southern Oscillation), as well as seasonal processes,
all may be important in carbon cycling and plankton
dynamics (Letelier et al., 2000; Fong et al., 2008;
Bidigare et al., 2009; Karl et al., 2012). Over a 2-year
period, in the absence of strong interannual variation
we observed that episodic variation in wind
speed was the predominant correlate of variability
in microbial alpha diversity, but that seasonal
variation, in particular solar irradiation, was key to
microbial beta diversity. The former feature may be
unique to the NPSG, but the latter appears to be a
common feature in other marine surface water
systems around the globe.

Future work that leverages long-term time-series
analyses on a variety of spatial and temporal scales
has significant potential to further enhance our
understanding of the temporal dynamics and varia-
bility of microbial community diversity. Advances in
technologies that increase the number of available
reference genomes from indigenous ecotypes (Swan
et al., 2013), that allow greater sequencing depth to
facilitate more complete metagenomic assemblies
(Sharon and Banfield, 2013), and that enable more
automated, highly resolved sampling over a broader
array of nested temporal scales (Robidart et al.,
2014), all promise to improve our ability to observe
the microbial ocean over increasingly resolved and
relevant scales of space and time.
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