Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Reviews

Neural control of white, beige and brown adipocytes

Abstract

Reports of brown-like adipocytes in traditionally white adipose tissue (WAT) depots occurred ~30 years ago, but interest in white adipocyte ‘browning’ only has gained attention more recently. We integrate some of what is known about the sympathetic nervous system (SNS) innervation of WAT and brown adipose tissue (BAT) with the few studies focusing on the sympathetic innervation of the so-called ‘brite’ or ‘beige’ adipocytes that appear when WAT sympathetic drive increases (for example, cold exposure and food deprivation). Only one brain site, the dorsomedial hypothalamic nucleus (DMH), selectively browns some (inguinal WAT (IWAT) and dorsomedial subcutaneous WAT), but not all WAT depots and only when DMH neuropeptide Y gene expression is knocked down, a browning effect is mediated by WAT SNS innervation. Other studies show that WAT sympathetic fiber density is correlated with the number of brown-like adipocytes (multilocular lipid droplets, uncoupling protein-1 immunoreactivity) at both warm and cold ambient temperatures. WAT and BAT have sensory innervation, the latter important for acute BAT cold-induced temperature increases, therefore suggesting the possible importance of sensory neural feedback from brite/beige cells for heat production. Only one report shows browned WAT capable of producing heat in vivo. Collectively, increases in WAT sympathetic drive and the phenotype of these stimulated adipocytes seems critical for the production of new and/or transdifferentiation of white to brite/beige adipocytes. Selective harnessing of WAT SNS drive to produce browning or selective browning independent of the SNS to counter increases in adiposity by increasing expenditure appears to be extremely challenging.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Harms M, Seale P . Brown and beige fat: development, function and therapeutic potential. Nat Med 2013; 19: 1252–1263.

    Article  CAS  PubMed  Google Scholar 

  2. Virtanen KA, Nuutila P . Brown adipose tissue in humans. Curr Opin Lipidol 2011; 22: 49–54.

    Article  CAS  PubMed  Google Scholar 

  3. Virtanen KA, Lidell ME, Orava J, Heglind M, Westergren R, Niemi T et al. Functional brown adipose tissue in healthy adults. N Engl J Med 2009; 360: 1518–1525.

    Article  CAS  PubMed  Google Scholar 

  4. Cypess AM, Lehman S, Williams G, Tal I, Rodman D, Goldfine AB et al. Identification and importance of brown adipose tissue in adult humans. N Engl J Med 2009; 360: 1509–1517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM, Drossaerts JM, Kemerink GJ, Bouvy ND et al. Cold-activated brown adipose tissue in healthy men. N Engl J Med 2009; 360: 1500–1508.

    Article  CAS  PubMed  Google Scholar 

  6. Zingaretti MC, Crosta F, Vitali A, Guerrieri M, Frontini A, Cannon B et al. The presence of UCP1 demonstrates that metabolically active adipose tissue in the neck of adult humans truly represents brown adipose tissue. FASEB J 2009; 23: 3113–3120.

    Article  CAS  PubMed  Google Scholar 

  7. Saito M, Okamatsu-Ogura Y, Matsushita M, Watanabe K, Yoneshiro T, Nio-Kobayashi J et al. High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity. Diabetes 2009; 58: 1526–1531.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nedergaard J, Bengtsson T, Cannon B . Unexpected evidence for active brown adipose tissue in adult humans. Am J Physiol Endocrinol Metab 2007; 293: E444–E452.

    Article  CAS  PubMed  Google Scholar 

  9. Barrington SF, Maisey MN . Skeletal muscle uptake of fluorine-18-FDG: effect of oral diazepam. J Nucl Med 1996; 37: 1127–1129.

    CAS  PubMed  Google Scholar 

  10. Engel H, Steinert H, Buck A, Berthold T, Huch Boni RA, von Schulthess GK . Whole-body PET: physiological and artifactual fluorodeoxyglucose accumulations. J Nucl Med 1996; 37: 441–446.

    CAS  PubMed  Google Scholar 

  11. Petrovic N, Walden TB, Shabalina IG, Timmons JA, Cannon B, Nedergaard J . Chronic peroxisome proliferator-activated receptor gamma (PPARgamma) activation of epididymally derived white adipocyte cultures reveals a population of thermogenically competent, UCP1-containing adipocytes molecularly distinct from classic brown adipocytes. J Biol Chem 2010; 285: 7153–7164.

    Article  CAS  PubMed  Google Scholar 

  12. Ishibashi J, Seale P . Medicine. Beige can be slimming. Science 2010; 328: 1113–1114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Vegiopoulos A, Muller-Decker K, Strzoda D, Schmitt I, Chichelnitskiy E, Ostertag A et al. Cyclooxygenase-2 controls energy homeostasis in mice by de novo recruitment of brown adipocytes. Science 2010; 328: 1158–1161.

    Article  CAS  PubMed  Google Scholar 

  14. Young P, Arch JR, Ashwell M . Brown adipose tissue in the parametrial fat pad of the mouse. FEBS Lett 1984; 167: 10–14.

    Article  CAS  PubMed  Google Scholar 

  15. Loncar D, Bedrica L, Mayer J, Cannon B, Nedergaard J, Afzelius BA et al. The effect of intermittent cold treatment on the adipose tissue of the cat. Apparent transformation from white to brown adipose tissue. J Ultrastruct Mol Struct Res 1986; 97: 119–129.

    Article  CAS  PubMed  Google Scholar 

  16. Loncar D . Convertible adipose tissue in mice. Cell Tissue Res 1991; 266: 149–161.

    Article  CAS  PubMed  Google Scholar 

  17. Cousin B, Cinti S, Morroni M, Raimbault S, Ricquier D, Penicaud L et al. Occurrence of brown adipocytes in rat white adipose tissue: molecular and morphological characterization. J Cell Sci 1992; 103: 931–942.

    CAS  PubMed  Google Scholar 

  18. Giordano A, Morroni M, Santone G, Marchesi GF, Cinti S . Tyrosine hydroxylase, neuropeptide Y, substance P, calcitonin gene-related peptide and vasoactive intestinal peptide in nerves of rat periovarian adipose tissue: an immunohistochemical and ultrastructural investigation. J Neurocytol 1996; 25: 125–136.

    Article  CAS  PubMed  Google Scholar 

  19. Cinti S . The adipose organ. Prostaglandins Leukot Essent Fatty Acids 2005; 73: 9–15.

    Article  CAS  PubMed  Google Scholar 

  20. Cinti S . Reversible transdifferentiation in the adipose organ. Int J Pediatr Obes 2008; 3: 21–26.

    Article  PubMed  Google Scholar 

  21. Himms-Hagen J, Cui J, Danforth E, Taatjes DJ, Lang SS, Waters BL et al. Effect of CL-316 243, a thermogenic beta-3 agonist, on energy balance and brown and white adipose tissues in rats. Am J Physiol 1994; 266: R1371–R1382.

    CAS  PubMed  Google Scholar 

  22. Demas GE, Bowers RR, Bartness TJ, Gettys TW . Photoperiodic regulation of gene expression in brown and white adipose tissue of Siberian hamsters (Phodopus sungorus). Am J Physiol 2002; 282: R114–R121.

    CAS  Google Scholar 

  23. Wade GN, Bartness TJ . Effects of photoperiod and gonadectomy on food intake, body weight and body composition in Siberian hamsters. Am J Physiol 1984; 246: R26–R30.

    CAS  PubMed  Google Scholar 

  24. Youngstrom TG, Bartness TJ . Catecholaminergic innervation of white adipose tissue in the Siberian hamster. Am J Physiol 1995; 268: R744–R751.

    CAS  PubMed  Google Scholar 

  25. Ye L, Wu J, Cohen P, Kazak L, Khandekar MJ, Jedrychowski MP et al. Fat cells directly sense temperature to activate thermogenesis. Proc Natl Acad Sci USA 2013; 110: 12480–12485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bartness TJ, Shrestha YB, Vaughan CH, Schwartz GJ, Song CK . Sensory and sympathetic nervous system control of white adipose tissue lipolysis. Mol Cell Endocrinol 2010; 318: 34–43.

    Article  CAS  PubMed  Google Scholar 

  27. Bartness TJ, Bamshad M . Innervation of mammalian white adipose tissue: Implications for the regulation of total body fat. Am J Physiol 1998; 275: R1399–R1411.

    CAS  PubMed  Google Scholar 

  28. Lafontan M, Sengenes C, Galitzky J, Berlan M, de GI, Crampes F et al. Recent developments on lipolysis regulation in humans and discovery of a new lipolytic pathway. Int J Obes Relat Metab Disord 2000; 24: S47–S52.

    Article  CAS  PubMed  Google Scholar 

  29. de Glisezinski I, Larrouy D, Bajzova M, Koppo K, Polak J, Berlan M et al. Adrenaline but not noradrenaline is a determinant of exercise-induced lipid mobilization in human subcutaneous adipose tissue. J Physiol 2009; 587: 3393–3404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Vitali A, Murano I, Zingaretti MC, Frontini A, Ricquier D, Cinti S . The adipose organ of obesity-prone C57BL/6J mice is composed of mixed white and brown adipocytes. J Lipid Res 2012; 53: 619–629.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Barbatelli G, Murano I, Madsen L, Hao Q, Jimenez M, Kristiansen K et al. The emergence of cold-induced brown adipocytes in mouse white fat depots is determined predominantly by white to brown adipocyte transdifferentiation. Am J Physiol Endocrinol Metab 2010; 298: E1244–E1253.

    Article  CAS  PubMed  Google Scholar 

  32. Jimenez M, Barbatelli G, Allevi R, Cinti S, Seydoux J, Giacobino JP et al. Beta 3-adrenoceptor knockout in C57BL/6J mice depresses the occurrence of brown adipocytes in white fat. Eur J Biochem 2003; 270: 699–705.

    Article  CAS  PubMed  Google Scholar 

  33. Granneman JG, Li P, Zhu Z, Lu Y . Metabolic and cellular plasticity in white adipose tissue I: effects of beta3-adrenergic receptor activation. Am J Physiol Endocrinol Metab 2005; 289: E608–E616.

    Article  CAS  PubMed  Google Scholar 

  34. Bowen WP, Flint DJ, Vernon RG . Regional and interspecific differences in the ligand binding properties of beta-adrenergic receptors of individual white adipose tissue depots in the sheep and rat. Biochem Pharmacol 1992; 44: 681–686.

    Article  CAS  PubMed  Google Scholar 

  35. Leibel RL, Hirsch J . Site- and sex-related differences in adrenoreceptor status of human adipose tissue. J Clin Endocr Metab 1987; 64: 1205–1210.

    Article  CAS  PubMed  Google Scholar 

  36. Umekawa T, Yoshida T, Sakane N, Kondo M . Effect of CL316 243, a highly specific beta (3)-adrenoceptor agonist, on lipolysis of epididymal, mesenteric and subcutaneous adipocytes in rats. Endocr J 1997; 44: 181–185.

    Article  CAS  PubMed  Google Scholar 

  37. Lafontan M, Berlan M, Carpene C . Fat cell adrenoceptors: inter- and intraspecific differences and hormone regulation. Int J Obes 1985; 9: 117–127.

    CAS  PubMed  Google Scholar 

  38. Lafontan M, Berlan M . Fat cell a2-adrenoceptors: the regulation of fat cell function and lipolysis. Endocrine Rev 1995; 16: 716–738.

    CAS  Google Scholar 

  39. De MR, Ricquier D, Cinti S . TH-, NPY-, SP-, and CGRP-immunoreactive nerves in interscapular brown adipose tissue of adult rats acclimated at different temperatures: an immunohistochemical study. J Neurocytol 1998; 27: 877–886.

    Article  Google Scholar 

  40. Cooper JR, Bloom FE, Roth RH (eds). The Biochemical Basis of Neuropharmacology. Oxford University Press: New York, NY, USA, 1982.

    Google Scholar 

  41. Bamshad M, Aoki VT, Adkison MG, Warren WS, Bartness TJ . Central nervous system origins of the sympathetic nervous system outflow to white adipose tissue. Am J Physiol 1998; 275: R291–R299.

    CAS  PubMed  Google Scholar 

  42. Bamshad M, Song CK, Bartness TJ . CNS origins of the sympathetic nervous system outflow to brown adipose tissue. Am J Physiol 1999; 276: R1569–R1578.

    CAS  PubMed  Google Scholar 

  43. Bartness TJ, Liu Y, Shrestha YB, Ryu V . Neural innervation of white adipose tissue and the control of lipolysis. Front Neuroendocrinol 2014; 35: 473–493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chao PT, Yang L, Aja S, Moran TH, Bi S . Knockdown of NPY expression in the dorsomedial hypothalamus promotes development of brown adipocytes and prevents diet-induced obesity. Cell Metab 2011; 13: 573–583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Foster MT, Bartness TJ . Sympathetic but not sensory denervation stimulates white adipocyte proliferation. Am J Physiol Regul Integr Comp Physiol 2006; 291: R1630–R1637.

    Article  CAS  PubMed  Google Scholar 

  46. Giordano A, Song CK, Bowers RR, Ehlen JC, Frontini A, Cinti S et al. White adipose tissue lacks significant vagal innervation and immunohistochemical evidence of parasympathetic innervation. Am J Physiol 2006; 291: R1243–R1255.

    CAS  Google Scholar 

  47. Rooks CR, Penn DM, Kelso E, Bowers RR, Bartness TJ, Harris RB . Sympathetic denervation does not prevent a reduction in fat pad size of rats or mice treated with peripherally administered leptin. Am J Physiol Regul Integr Comp Physiol 2005; 289: R92–102.

    Article  CAS  PubMed  Google Scholar 

  48. Vaughan CH, Zarebidaki E, Ehlen JC, Bartness TJ . Analysis and measurement of the sympathetic and sensory innervation of white and brown adipose tissue. Methods Enzymol 2014; 537: 199–225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bi S . Dorsomedial hypothalamic NPY modulation of adiposity and thermogenesis. Physiol Behav 2013; 121: 56–60.

    Article  CAS  PubMed  Google Scholar 

  50. Shi H, Song CK, Giordano A, Cinti S, Bartness TJ . Sensory or sympathetic white adipose tissue denervation differentially affects depot growth and cellularity. Am J Physiol Regul Integr Comp Physiol 2005; 288: R1028–R1037.

    Article  CAS  PubMed  Google Scholar 

  51. Giordano A, Morroni M, Carle F, Gesuita R, Marchesi GF, Cinti S . Sensory nerves affect the recruitment and differentiation of rat periovarian brown adipocytes during cold acclimation. J Cell Sci 1998; 111: 2587–2594.

    CAS  PubMed  Google Scholar 

  52. Song CK, Bartness TJ . Central Projections of the Sensory Nerves Innervating Brown Adipose Tissue. Society for Neuroscience: San Diego, CA, USA, 2007. Neuroscience Meeting Planner.

    Google Scholar 

  53. Vaughan CH, Bartness TJ . Anterograde transneuronal viral tract tracing reveals central sensory circuits from brown fat and sensory denervation alters its thermogenic responses. Am J Physiol Regul Integr Comp Physiol 2012; 302: R1049–R1058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Murphy KT, Schwartz GJ, Nguyen NL, Mendez JM, Ryu V, Bartness TJ . Leptin-sensitive sensory nerves innervate white fat. Am J Physiol Endocrinol Metab 2013; 304: E1338–E1347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Niijima A . Afferent signals from leptin sensors in the white adipose tissue of the epididymis, and their reflex effect in the rat. J Auton Nerv Syst 1998; 73: 19–25.

    Article  CAS  PubMed  Google Scholar 

  56. Niijima A . Reflex effects from leptin sensors in the white adipose tissue of the epididymis to the efferent activity of the sympathetic and vagus nerve in the rat. Neurosci Lett 1999; 262: 125–128.

    Article  CAS  PubMed  Google Scholar 

  57. Ryu V, Bartness TJ . Short and long sympathetic-sensory feedback loops in white fat. Am J Physiol Regul Integr Comp Physiol 2014; 306: R886–R900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ryu V, Garretson JT, Liu Y, Vaughan CH, Bartness TJ . Brown adipose tissue has sympathetic-sensory feedback circuits. J Neurosci 2015; 35: 2181–2190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Jastroch M, Hirschberg V, Klingenspor M . Functional characterization of UCP1 in mammalian HEK293 cells excludes mitochondrial uncoupling artefacts and reveals no contribution to basal proton leak. Biochim Biophys Acta 2012; 1817: 1660–1670.

    Article  CAS  PubMed  Google Scholar 

  60. Shabalina IG, Ost M, Petrovic N, Vrbacky M, Nedergaard J, Cannon B . Uncoupling protein-1 is not leaky. Biochim Biophys Acta 2010; 1797: 773–784.

    Article  CAS  PubMed  Google Scholar 

  61. Kreier F, Kap YS, Mettenleiter TC, van HC, van dV, Kalsbeek A et al. Tracing from fat tissue, liver, and pancreas: a neuroanatomical framework for the role of the brain in type 2 diabetes. Endocrinology 2006; 147: 1140–1147.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health Grant R37 DK35254 to TJB.

Disclaimer

This article is published as part of a supplement sponsored by the Université Laval’s Research Chair in Obesity, in an effort to inform the public on the causes, consequences, treatments and prevention of obesity.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T J Bartness.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bartness, T., Ryu, V. Neural control of white, beige and brown adipocytes. Int J Obes Supp 5 (Suppl 1), S35–S39 (2015). https://doi.org/10.1038/ijosup.2015.9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijosup.2015.9

This article is cited by

Search

Quick links