Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Animal Models

Butyrate restores HFD-induced adaptations in brain function and metabolism in mid-adult obese mice

Abstract

Objective:

Midlife obesity affects cognition and increases risk of developing dementia. Recent data suggest that intake of the short chain fatty acid butyrate could improve memory function, and may protect against diet-induced obesity by reducing body weight and adiposity.

Subjects:

We examined the impact of a high-fat diet (HFD) followed by intervention with 5% (w/w) dietary butyrate, on metabolism, microbiota, brain function and structure in the low-density-lipoprotein receptor knockout (LDLr−/−) mouse model in mid and late life.

Results:

In mid-adult mice, 15 weeks of HFD-induced adiposity, liver fibrosis and neuroinflammation, increased systolic blood pressure and decreased cerebral blood flow, functional connectivity assessed with neuroimaging. The subsequent 2 months butyrate intervention restored these detrimental effects to chow-fed control levels. Both HFD and butyrate intervention decreased variance in fecal microbiota composition. In late-adult mice, HFD showed similar detrimental effects and decreased cerebral white and gray matter integrity, whereas butyrate intervention attenuated only metabolic parameters.

Conclusion:

HFD induces detrimental effects in mid- and late-adult mice, which can be attenuated by butyrate intervention. These findings are consistent with reported associations between midlife obesity and cognitive impairment and dementia in humans. We suggest that butyrate may have potential in prevention and treatment of midlife obesity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. WHO WHO. Obesity and Overweight. In, 2012.

  2. Anstey KJ, Cherbuin N, Budge M, Young J . Body mass index in midlife and late-life as a risk factor for dementia: a meta-analysis of prospective studies. Obes Rev 2011; 12: e426–e437.

    Article  CAS  Google Scholar 

  3. Emmerzaal TL, Kiliaan AJ, Gustafson DR . 2003-2013: a decade of body mass index, Alzheimer's disease, and dementia. J Alzheimers Dis 2015; 43: 739–755.

    Article  Google Scholar 

  4. Perez LM, Pareja-Galeano H, Sanchis-Gomar F, Emanuele E, Lucia A, Galvez BG . ‘Adipaging’: aging and obesity share biological hallmarks related to a dysfunctional adipose tissue. J Physiol 2016; 594: 3187–3207.

    Article  CAS  Google Scholar 

  5. Morrison CD, Pistell PJ, Ingram DK, Johnson WD, Liu Y, Fernandez-Kim SO et al. High fat diet increases hippocampal oxidative stress and cognitive impairment in aged mice: implications for decreased Nrf2 signaling. J Neurochem 2010; 114: 1581–1589.

    Article  CAS  Google Scholar 

  6. Tucsek Z, Toth P, Tarantini S, Sosnowska D, Gautam T, Warrington JP et al. Aging exacerbates obesity-induced cerebromicrovascular rarefaction, neurovascular uncoupling, and cognitive decline in mice. J Gerontol A Biol Sci Med Sci 2014; 69: 1339–1352.

    Article  CAS  Google Scholar 

  7. Jin CJ, Sellmann C, Engstler AJ, Ziegenhardt D, Bergheim I . Supplementation of sodium butyrate protects mice from the development of non-alcoholic steatohepatitis (NASH). Br J Nutr 2015; 114: 1745–1755.

    Article  CAS  Google Scholar 

  8. Canfora EE, Jocken JW, Blaak EE . Short-chain fatty acids in control of body weight and insulin sensitivity. Nat Rev Endocrinol 2015; 11: 577–591.

    Article  CAS  Google Scholar 

  9. Govindarajan N, Agis-Balboa RC, Walter J, Sananbenesi F, Fischer A . Sodium butyrate improves memory function in an Alzheimer's disease mouse model when administered at an advanced stage of disease progression. J Alzheimers Dis 2011; 26: 187–197.

    Article  CAS  Google Scholar 

  10. Elli M, Colombo O, Tagliabue A . A common core microbiota between obese individuals and their lean relatives? Evaluation of the predisposition to obesity on the basis of the fecal microflora profile. Med Hypotheses 2010; 75: 350–352.

    Article  CAS  Google Scholar 

  11. Ma Y, Wang W, Zhang J, Lu Y, Wu W, Yan H et al. Hyperlipidemia and atherosclerotic lesion development in Ldlr-deficient mice on a long-term high-fat diet. PLoS One 2012; 7: e35835.

    Article  CAS  Google Scholar 

  12. Radonjic M, Wielinga PY, Wopereis S, Kelder T, Goelela VS, Verschuren L et al. Differential effects of drug interventions and dietary lifestyle in developing type 2 diabetes and complications: a systems biology analysis in LDLr-/- mice. PLoS One 2013; 8: e56122.

    Article  CAS  Google Scholar 

  13. Liang W, Menke AL, Driessen A, Koek GH, Lindeman JH, Stoop R et al. Establishment of a general NAFLD scoring system for rodent models and comparison to human liver pathology. PLoS One 2014; 9: e115922.

    Article  Google Scholar 

  14. Morrison M, Mulder P, Salic K, Verheij J, Liang W, van Duyvenvoorde W et al. Intervention with a caspase-1 inhibitor reduces obesity-associated hyperinsulinemia, non-alcoholic steatohepatitis and hepatic fibrosis in LDLR−/−. Leiden mice. Int J Obes 2016; 40: 1416–1423.

    Article  CAS  Google Scholar 

  15. Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG . Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol 2010; 8: e1000412.

    Article  Google Scholar 

  16. Wielinga PY, Harthoorn LF, Verschuren L, Schoemaker MH, Jouni ZE, van Tol EA et al. Arachidonic acid/docosahexaenoic acid-supplemented diet in early life reduces body weight gain, plasma lipids, and adiposity in later life in ApoE*3Leiden mice. Mol Nutr Food Res 2012; 56: 1081–1089.

    Article  CAS  Google Scholar 

  17. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci USA 2011; 108: 4516–4522.

    Article  CAS  Google Scholar 

  18. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 2009; 75: 7537–7541.

    Article  CAS  Google Scholar 

  19. Eren AM, Morrison HG, Lescault PJ, Reveillaud J, Vineis JH, Sogin ML . Minimum entropy decomposition: Unsupervised oligotyping for sensitive partitioning of high-throughput marker gene sequences. ISME J 2015; 9: 968–979.

    Article  CAS  Google Scholar 

  20. Hamady M, Lozupone C, Knight R . Fast UniFrac: facilitating high-throughput phylogenetic analyses of microbial communities including analysis of pyrosequencing and PhyloChip data. ISME J 2010; 4: 17–27.

    Article  CAS  Google Scholar 

  21. White JR, Nagarajan N, Pop M . Statistical methods for detecting differentially abundant features in clinical metagenomic samples. PLoS Comput Biol 2009; 5: e1000352.

    Article  Google Scholar 

  22. Arnoldussen IA, Zerbi V, Wiesmann M, Noordman RH, Bolijn S, Mutsaers MP et al. Early intake of long-chain polyunsaturated fatty acids preserves brain structure and function in diet-induced obesity. J Nutr Biochem 2016; 30: 177–188.

    Article  CAS  Google Scholar 

  23. Zerbi V, Wiesmann M, Emmerzaal TL, Jansen D, Van Beek M, Mutsaers MP et al. Resting-state functional connectivity changes in aging apoE4 and apoE-KO mice. J Neurosci 2014; 34: 13963–13975.

    Article  Google Scholar 

  24. Mulder P, Morrison MC, Wielinga PY, Van Duyvenvoorde W, Kooistra T, Kleemann R . Surgical removal of inflamed epididymal white adipose tissue attenuates the development of non-alcoholic steatohepatitis in obesity. Int J Obes 2015; 40: 675–684.

    Article  Google Scholar 

  25. Janssen CI, Zerbi V, Mutsaers MP, De Jong BS, Wiesmann M, Arnoldussen IA et al. Impact of dietary n-3 polyunsaturated fatty acids on cognition, motor skills and hippocampal neurogenesis in developing C57BL/6J mice. J Nutr Biochem 2015; 26: 24–35.

    Article  CAS  Google Scholar 

  26. Van Zutphen LFMBV, Ohl F . Handboek Proefdierkunde5th edition edn (Elsevier Gezondheidszorg: Maarssen, 2009.

    Google Scholar 

  27. Jakobsdottir G, Xu J, Molin G, Ahrne S, Nyman M . High-fat diet reduces the formation of butyrate, but increases succinate, inflammation, liver fat and cholesterol in rats, while dietary fibre counteracts these effects. PLoS One 2013; 8: e80476.

    Article  Google Scholar 

  28. Gao Z, Yin J, Zhang J, Ward RE, Martin RJ, Lefevre M et al. Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes 2009; 58: 1509–1517.

    Article  CAS  Google Scholar 

  29. Bocarsly ME, Fasolino M, Kane GA, LaMarca EA, Kirschen GW, Karatsoreos IN et al. Obesity diminishes synaptic markers, alters microglial morphology, and impairs cognitive function. Proc Natl Acad Sci USA 2015; 112: 15731–15736.

    CAS  PubMed  Google Scholar 

  30. Lin HV, Frassetto A, Kowalik EJ Jr., Nawrocki AR, Lu MM, Kosinski JR et al. Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms. PLoS One 2012; 7: e35240.

    Article  CAS  Google Scholar 

  31. Marcil V, Delvin E, Seidman E, Poitras L, Zoltowska M, Garofalo C et al. Modulation of lipid synthesis, apolipoprotein biogenesis, and lipoprotein assembly by butyrate. Am J Physiol Gastrointest Liver Physiol 2002; 283: G340–G346.

    Article  CAS  Google Scholar 

  32. Den Besten G, Van Eunen K, Groen AK, Venema K, Reijngoud D-J, Bakker BM . The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res 2013; 54: 2325–2340.

    Article  CAS  Google Scholar 

  33. Den Besten G, Bleeker A, Gerding A, Van Eunen K, Havinga R, Van Dijk TH et al. Short-chain fatty acids protect against high-fat diet–induced obesity via a PPARγ-dependent switch from lipogenesis to fat oxidation. Diabetes 2015; 64: 2398.

    Article  CAS  Google Scholar 

  34. Kilgore M, Miller CA, Fass DM, Hennig KM, Haggarty SJ, Sweatt JD et al. Inhibitors of class 1 histone deacetylases reverse contextual memory deficits in a mouse model of Alzheimer's disease. Neuropsychopharmacology 2010; 35: 870–880.

    Article  CAS  Google Scholar 

  35. Krauss RM, Winston M, Fletcher BJ, Grundy SM . Obesity: impact on cardiovascular disease. Circulation 1998; 98: 1472–1476.

    Article  Google Scholar 

  36. Weisbrod RM, Shiang T, Al Sayah L, Fry JL, Bajpai S, Reinhart-King CA et al. Arterial stiffening precedes systolic hypertension in diet-induced obesity. Hypertension 2013; 62: 1105–1110.

    Article  CAS  Google Scholar 

  37. Bink DI, Ritz K, Aronica E, Van Der Weerd L, Daemen MJ . Mouse models to study the effect of cardiovascular risk factors on brain structure and cognition. J Cereb Blood Flow Metab 2013; 33: 1666–1684.

    Article  Google Scholar 

  38. Alosco ML, Spitznagel MB, Raz N, Cohen R, Sweet LH, Colbert LH et al. Obesity interacts with cerebral hypoperfusion to exacerbate cognitive impairment in older adults with heart failure. Cerebrovasc Dis Extra 2012; 2: 88–98.

    Article  Google Scholar 

  39. Debette S, Wolf C, Lambert J-C, Crivello F, Soumaré A, Zhu Y-C et al. Abdominal obesity and lower gray matter volume: a Mendelian randomization study. Neurobiol Aging 2014; 35: 378–386.

    Article  Google Scholar 

  40. Karlsson HK, Tuulari JJ, Hirvonen J, Lepomäki V, Parkkola R, Hiltunen J et al. Obesity is associated with white matter atrophy: a combined diffusion tensor imaging and voxel-based morphometric study. Obesity 2013; 21: 2530–2537.

    Article  Google Scholar 

  41. Liu D, Andrade SP, Castro PR, Treacy J, Ashworth J, Slevin M . Low concentration of sodium butyrate from ultrabraid+NaBu suture, promotes angiogenesis and tissue remodelling in tendon-bones injury. Sci Rep 2016; 6: 34649.

    Article  CAS  Google Scholar 

  42. Verschuren L, Kooistra T, Bernhagen J, Voshol PJ, Ouwens DM, Van Erk M et al. MIF-deficiency reduces chronic inflammation in white adipose tissue and impairs the development of insulin resistance, glucose intolerance and associated atherosclerotic disease. Circ Res 2009; 105: 99–107.

    Article  CAS  Google Scholar 

  43. Merat S, Fruebis J, Sutphin M, Silvestre M, Reaven PD . Effect of aging on aortic expression of the vascular cell adhesion molecule-1 and atherosclerosis in murine models of atherosclerosis. J Gerontol A Biol Sci Med Sci 2000; 55: B85–B94.

    Article  CAS  Google Scholar 

  44. Thirumangalakudi L, Prakasam A, Zhang R, Bimonte-Nelson H, Sambamurti K, Kindy MS et al. High cholesterol-induced neuroinflammation and amyloid precursor protein processing correlate with loss of working memory in mice. J Neurochem 2008; 106: 475–485.

    Article  CAS  Google Scholar 

  45. Vieira EL, Leonel AJ, Sad AP, Beltrao NR, Costa TF, Ferreira TM et al. Oral administration of sodium butyrate attenuates inflammation and mucosal lesion in experimental acute ulcerative colitis. J Nutr Biochem 2012; 23: 430–436.

    Article  CAS  Google Scholar 

  46. Nilsson NE, Kotarsky K, Owman C, Olde B . Identification of a free fatty acid receptor, FFA2R, expressed on leukocytes and activated by short-chain fatty acids. Biochem Biophys Res Commun 2003; 303: 1047–1052.

    Article  CAS  Google Scholar 

  47. Nohr MK, Egerod KL, Christiansen SH, Gille A, Offermanns S, Schwartz TW et al. Expression of the short chain fatty acid receptor GPR41/FFAR3 in autonomic and somatic sensory ganglia. Neuroscience 2015; 290: 126–137.

    Article  CAS  Google Scholar 

  48. Tazoe H, Otomo Y, Karaki S, Kato I, Fukami Y, Terasaki M et al. Expression of short-chain fatty acid receptor GPR41 in the human colon. Biomed Res 2009; 30: 149–156.

    Article  CAS  Google Scholar 

  49. Zhang C, Zhang M, Pang X, Zhao Y, Wang L, Zhao L . Structural resilience of the gut microbiota in adult mice under high-fat dietary perturbations. ISME J 2012; 6: 1848–1857.

    Article  CAS  Google Scholar 

  50. Rajilić-Stojanović M, De Vos WM . The first 1000 cultured species of the human gastrointestinal microbiota. FEMS Microbiol Rev 2014; 38: 996–1047.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Andor Veltien, Anouk Tengeler, Bram Geenen, Jos Dederen, Tim Emmerzaal for their great scientific support. We would like to acknowledge Nicole Bakker and the bio-technicians at TNO Leiden, PRIME and the Central Animal Laboratory of the Radboud university medical center for taking excellent care of our mice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A J Kiliaan.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on International Journal of Obesity website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arnoldussen, I., Wiesmann, M., Pelgrim, C. et al. Butyrate restores HFD-induced adaptations in brain function and metabolism in mid-adult obese mice. Int J Obes 41, 935–944 (2017). https://doi.org/10.1038/ijo.2017.52

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2017.52

This article is cited by

Search

Quick links