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Linking diet, physical activity, cardiorespiratory fitness and
obesity to serum metabolite networks: findings from a
population-based study
A Floegel1, A Wientzek1, U Bachlechner1, S Jacobs2, D Drogan1, C Prehn3, J Adamski3, J Krumsiek4, MB Schulze2, T Pischon5

and H Boeing1

OBJECTIVE: It is not yet resolved how lifestyle factors and intermediate phenotypes interrelate with metabolic pathways. We aimed
to investigate the associations between diet, physical activity, cardiorespiratory fitness and obesity with serum metabolite networks
in a population-based study.
METHODS: The present study included 2380 participants of a randomly drawn subcohort of the European Prospective Investigation
into Cancer and Nutrition-Potsdam. Targeted metabolomics was used to measure 127 serum metabolites. Additional data were
available including anthropometric measurements, dietary assessment including intake of whole-grain bread, coffee and cake and
cookies by food frequency questionnaire, and objectively measured physical activity energy expenditure and cardiorespiratory
fitness in a subsample of 100 participants. In a data-driven approach, Gaussian graphical modeling was used to draw metabolite
networks and depict relevant associations between exposures and serum metabolites. In addition, the relationship of different
exposure metabolite networks was estimated.
RESULTS: In the serum metabolite network, the different metabolite classes could be separated. There was a big group of
phospholipids and acylcarnitines, a group of amino acids and C6-sugar. Amino acids were particularly positively associated with
cardiorespiratory fitness and physical activity. C6-sugar and acylcarnitines were positively associated with obesity and inversely with
intake of whole-grain bread. Phospholipids showed opposite associations with obesity and coffee intake. Metabolite networks of
coffee intake and obesity were strongly inversely correlated (body mass index (BMI): r=− 0.57 and waist circumference: r=− 0.59).
A strong positive correlation was observed between metabolite networks of BMI and waist circumference (r= 0.99), as well as the
metabolite networks of cake and cookie intake with cardiorespiratory fitness and intake of whole-grain bread (r= 0.52 and r= 0.50;
respectively).
CONCLUSIONS: Lifestyle factors and phenotypes seem to interrelate in various metabolic pathways. A possible protective effect of
coffee could be mediated via counterbalance of pathways of obesity involving hepatic phospholipids. Experimental studies should
validate the biological mechanisms.
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INTRODUCTION
Targeted metabolomics, which simultaneously studies many well-
defined substrates and products of metabolism, is a powerful
approach to detect metabolic alterations that are linked to human
behavior such as diet and physical activity.1–3 Furthermore,
metabolite levels in body fluids may also reflect consequent
phenotypes including cardiorespiratory fitness and obesity.4–7

Therefore, targeted metabolomics may particularly help unravel
biological mechanisms and identify pathways and networks through
which behavioral factors and phenotypes are linked to metabolism.
Knowledge about these mechanisms may offer great potential in
terms of prevention of chronic diseases, which are strongly linked to
human behavior and phenotypes.8,9 Consequently, adequate dietary
and lifestyle recommendations could be generated.

Within the European Prospective Investigation into
Cancer and Nutrition (EPIC)-Potsdam study, a well-phenotyped
cohort with comprehensive behavior assessment, we applied a
targeted metabolomics platform that covers 127 serum meta-
bolites, including amino acids, acylcarnitines, choline-containing
phospholipids and hexose. In preceding analyses in the EPIC-
Potsdam study, we have studied cross-sectional associations of
diet, physical activity, cardiorespiratory fitness and obesity
measures with these serum metabolites.10–13 In the present
study, we attempted to provide a comprehensive picture of the
associations of these human behaviors and consequent
phenotypes with serum metabolite networks. To this end, we
visualized these associations in our population-based cohort by
applying an innovative network approach, and evaluated
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relationships between different lifestyle and phenotype
networks.

SUBJECTS AND METHODS
Study population
EPIC-Potsdam is part of the multicenter EPIC-study, a prospective cohort
study conducted in 23 European centers, with the scope of investigating
diet and cancer risk that also includes other risk factors and chronic
diseases. EPIC-Potsdam is the largest German study center and recruited
27 548 adults of the Potsdam area aged mainly 35–65 years between 1994
and 1998.14 The EPIC-Potsdam study was approved by the ethics
committee of the Medical Society of the State of Brandenburg. Participants
provided written informed consent before they participated in the baseline
examination, which included anthropometric and blood pressure
measurements, a blood sample collection as well as a personal interview
on medical history, a sociodemographic and lifestyle questionnaire and a
self-administered food frequency questionnaire; further details are given
below.15 All measurements were conducted by qualified staff following
standardized procedures.15 During the blood sample collection, 30 ml of
venous blood were drawn, rapidly processed and fractionated into serum,
plasma, ‘buffy coat’ (leukocytes) and erythrocytes, which were stored in
straws at − 196 °C until metabolomic analysis.15

Of all the EPIC-Potsdam participants who had provided blood samples at
baseline (n=26444), a subcohort of 2500 participants was randomly drawn
for biomarker measurements.16 By randomly selecting the subcohort, it
was assured that the results are representative of the full cohort. For the
present analysis, the EPIC-Potsdam subcohort was used, and participants
with implausible energy intakes (o800 and >6000 kcal per day) or missing
information on serum metabolite concentrations and covariates were
excluded (n= 120). Baseline characteristics of the included participants
have been published previously.10 In brief, participants were 61% women
with mean age of 49.8 years and mean body mass index (BMI) of
26.1 kgm−2. Of the participants, 4.5% had prevalent type 2 diabetes, and
those were more likely to have increased hexose levels.
In 2007, a subgroup of 208 EPIC-Potsdam participants took part in a

validation study for physical activity assessment, which also included
repeated objective measurement of physical activity and cardiorespiratory
fitness and a blood sample collection at two time points 4 months apart.
Note that this subgroup was independent of the previously described
subcohort. Blood was drawn from participants who had fasted over night
by qualified staff using monovette tubes with coagulation inhibitor. Serum
was fractionated by centrifugation and stored in a freezer at − 80 °C until
metabolomic analysis. Of the 208 participants, 50 men and 50 women
with blood samples available were randomly selected for metabolomic
measurements.

Dietary assessment
At baseline, diet was assessed by a self-administered semiquantitative food
frequency questionnaire containing 148 items. It captured average food
and beverage intake during the preceding 12 months with details on
frequencies and portion sizes. The estimation of the portion sizes was
facilitated by providing photos of standard portion sizes and household
measures of different foods. In addition, fat content of dairy products, fat
quality of fat spreads as well as preparation of certain foods were assessed.
The average intake of each food item was calculated as the product of
frequency and portion size and reported in g per day. Previously, the food
frequency questionnaire was validated and reproducibility of the results
was demonstrated.17–20

Anthropometric measurements
During the baseline examination, anthropometric measurements were
conducted in the study center by trained staff following standardized
protocols.15 These included measurement of weight and height in light
underwear and without shoes. BMI was calculated as the ratio of weight
(kg) to squared height (m2). Waist circumference in cm was measured at
the midpoint between the lower ribs and the iliac crest.

Objective measurement of physical activity in a substudy
In the EPIC-Potsdam validation study for physical activity assessment
instruments, objectively measured cardiorespiratory fitness and physical
activity were measured. This study has been described in detail previously.21

In brief, cardiorespiratory fitness was assessed by an 8-min step test
(200-mm step; Reebok, Lancaster, UK). It was obtained by extrapolating a
regression line between an age-related maximum heart rate and workload
and was reported as VO2max in ml kg− 1 min− 1.22 Physical activity was
measured by a combined heart rate and movement sensor (Actiheart,
CamNtech, Cambridge, UK) with a sampling frequency of 32 Hz.23 The
Actiheart was worn by the participants with two electrocardiography
electrodes attached to the chest at two time points continuously for
4 days. Therefore, activity intensity (J min− 1 kg−1) was estimated from heart
rate and acceleration. Physical activity energy expenditure was calculated by
summing the activity intensity time series and reported in kJ kg− 1 per day.
Finally, the mean value of cardiorespiratory fitness and physical activity
energy expenditure from both time points was calculated, which was
weighted by the test duration and probability of wear, respectively.

Measurement of serum metabolites
Metabolite concentrations were measured in 10 μl baseline serum samples
of the EPIC-Potsdam subcohort and in serum samples of 100 participants
of the validation study for physical activity assessment with the
AbsolueIDQ p150 kit (BIOCRATES, Innsbruck, Austria).24,25 The targeted
metabolomics method simultaneously determined concentrations of 163
predefined metabolites including acylcarnitines (Cx:y), amino acids, hexose
(sum of six-carbon monosaccharides, including glucose, but without
distinction of isomers) and choline-containing phospholipids (lyso-, diacyl-
and acyl-alkyl-phosphatidylcholines and sphingomyelins). For the lipid
derivates, fatty-acid side chains were abbreviated Cx:y, where x repre-
sented the number of carbon atoms and y the number of double bonds.
For the phosphatidylcholines, only the total number of carbon atoms and
double bonds across two fatty-acid side chains could be determined. Lyso-
phosphatidylcholines, sphingomyelins and acylcarnitines contained a
single fatty-acid side chain that was detected. All samples were analyzed
at the Genome Analysis Center (Helmholtz Zentrum München) between
2009 and 2010. Sample preparation and metabolite quantification of these
cohort samples has been described previously in full detail.26,27 In brief, an
automated robotic system (Hamilton ML Star, Bonaduz, Switzerland)
conducted the following procedure: 10 μl of serum was pipetted onto
filters with stable isotope-labeled internal standards in 96-well plates and
dried in nitrogen stream. Amino acids were derivatized with 5%
phenylisothiocyanat reagent and the plates were dried again. The other
metabolites and internal standards were extracted using 5mM ammonium
acetate in methanol, and then centrifuged and filtrated. Final extracts were
diluted with mass spectrometry running solvent and analyzed using an API
4000 triple quadrupole mass spectrometer (AB Sciex, Darmstadt, Germany).
Metabolites were quantified by multiple reaction monitoring in combina-
tion with internal standards, and metabolite concentrations were
calculated with the MetIQ software package (BIOCRATES). The metabo-
lomics method has been validated by the manufacturer according to the
Food and Drug Administration guideline ‘Guidance for industry—-
Bioanalytical Method Validation, May 2011’, which implies proof of
reproducibility in a certain error range. The limit of detection for the
individual metabolites was set to three times the values of the buffer-
only-containing samples.
The median coefficients of analytical variation were 7.3% within plate

and 11.3% between plates for the EPIC-Potsdam samples.26 The
coefficients of variation, limit of detection and lower and upper
quantification limits for the individual metabolites in this data set have
been published previously26 and are available online (http://www.plosone.
org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0021103#s5).
Those metabolites below the limit of detection and with high analytical

variation (mainly hydroxyacylcarnitines) were excluded and, consequently,
the final metabolite set comprised 127 metabolites (17 acylcarnitines,
14 amino acids, 1 hexose, 34 diacyl-phosphatidylcholines, 37 acyl-alkyl-
phosphatidylcholines, 10 lyso-phosphatidylcholines and 14 sphingomyelins).

Statistical analysis
Within the subcohort, the metabolite network was calculated using
Gaussian graphical modeling.28 In brief, Gaussian graphical modeling is a
data-driven method that uses the high degree of correlation between
metabolites to construct metabolite networks. Each node in the network
represents one metabolite and each edge between two nodes represents
the dependency of two metabolites reflected by their partial correlation.
Pearson's partial correlation coefficients between each possible pair of
metabolites were calculated with adjustment for all the other metabolites,
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to eliminate the indirect effects, and the covariates age and sex, in
accordance with previous studies.28,29 As we used 127 metabolites, the
metabolite network contained 127 nodes and could possibly contain
127
2

� �
=8001 edges. We chose a cutoff of >0.20 for the absolute value of

the partial correlation coefficient between metabolites for the edges to be
depicted. Therefore, the number of edges was reduced to 206. All
calculations were done with SAS version 9.2 (SAS Institute Inc, Cary, NC,
USA). Metabolite networks were then visualized with the yEd graph editor
(yWorks GmbH, Tuebingen; http://www.yworks.com).
In the next step, we considered different exposures. To reflect dietary

behavior, we selected three foods that were previously found to be linked
to serum metabolites and chronic disease risk in this population.10,30 This
included low intake of whole-grain bread, as an established risk factor, as
well as low intakes of coffee and cake and cookies as less-established risk
factors.30 Physical activity was reflected by objectively measured physical
activity energy expenditure. To mirror consequent phenotypes, we
selected cardiorespiratory fitness and two obesity measures, BMI to reflect
total body fat and waist circumference to reflect abdominal fat. The
exposure information—namely, the respective exposure-metabolite asso-
ciation measures—was included as colors in the metabolite network.
Therefore, we used the association measures of diet, physical activity,
cardiorespiratory fitness and obesity with the single metabolites that we
previously obtained.10–12 These were β-coefficient from linear mixed
models regression analysis for physical activity and cardiorespiratory
fitness, and Spearman's partial correlation coefficients for diet and obesity
measures. Physical activity and cardiorespiratory fitness data were
additionally z-transformed to make the β-coefficients directly comparable.
All of the association measures were multivariable adjusted for age, sex,
alcohol intake, smoking, education and, if applicable, prevalent diseases
and the other exposures. Note that the adjustment models differed slightly
for different exposures as they were based on our previous studies.10–12

We colored the network based on the direction and strength of association
between each exposure and the metabolites, and thus ended up with one
metabolite network for each exposure.
To compare the metabolite networks of different exposures, we

additionally calculated the correlation of the association measures
between the different exposures and 127 serum metabolites, so essentially
‘the correlation of the correlation coefficients’. As an example to obtain the
correlation of the metabolite networks of BMI and coffee, we calculated
the correlation of the correlation coefficients between BMI and 127 serum
metabolites with the correlation coefficients between coffee intake and
127 serum metabolites. As these were normally distributed for all
exposures, we calculated Pearson's correlation coefficients. Therefore, we
obtained the correlation of metabolite networks of different exposures.

RESULTS
On the basis of their partial correlations, the 127 serum
metabolites measured in 2380 EPIC-Potsdam participants were
depicted in a metabolite network (Figure 1). In the metabolite
network, there was a big cluster of phospholipids and acylcarni-
tines, one cluster of amino acids and C6-sugar. Within the network
of the phospholipids, subgroups of sphingomyelins, lyso-
phosphatidylcholines, diacyl-phosphatidylcholines and acyl-alkyl-
phosphatidylcholines with different chain length and fatty-acid
desaturation emerged. The center of the network was dominated
by diacyl-phosphatidylcholines and their hydrolysis products
(lyso-phosphatidylcholines). These were also partly connected to
acyl-alkyl-phosphatidylcholines, sphingomyelins and acylcarnitines.
Amino acids and C6-sugar were not connected to the phospholipids.
Seven individual metabolites were not connected to any other
metabolite, namely, hexose, ornithine, proline and C9-acyl-
carnitine, as well as diacyl-phosphatidylcholine C42:4, and
acyl-alkyl-phosphatidylcholines C42:1 and C44:3. Free carnitine
and propionyl-carnitine were linked as a pair. Although this
network approach was purely data-driven, those phospholipids
that are known to be only one reaction step apart were often
strongly positively correlated, and thus, neighboring in
the network, for example, sphingomyelins C18:0 and C18:1
(desaturase) and C16:1 and C18:1 (elongase) or amino acids
glycine and serine (hydroxyl-methyl-transferase).

When looking at the association between diet, physical activity,
cardiorespiratory fitness and obesity with the serum metabolite
network, it was observed that the phenotypes (obesity and
cardiorespiratory fitness) were more strongly linked to the
metabolite network compared with the behavioral characteristics
(diet and physical activity; Figures 2–4). The amino acids were
particularly positively linked to cardiorespiratory fitness and
physical activity, and differentially with the other exposures.
C6-sugar was positively associated with BMI and waist circumference.
It was inversely associated with cardiorespiratory fitness and physical
activity, as well as intake of whole-grain bread and cake and
cookies. Acylcarnitines were positively associated with obesity
measures, and inversely associated with intake of whole-grain
bread, coffee and cake and cookies. Sphingomyelins were
particularly positively related to cardiorespiratory fitness and coffee
intake, and inversely with the intake of whole-grain bread.
Acyl-alkyl-phosphatidylcholines were positively linked to cardio-
respiratory fitness and coffee intake, and inversely with obesity
measures. Most lyso-phosphatidylcholines were positively asso-
ciated with cardiorespiratory fitness, physical activity and coffee
intake, and inversely with the intake of whole-grain bread and cake
and cookies. Diacyl-phosphatidylcholines were positively associated
with obesity measures and cardiorespiratory fitness, and inversely
with intake of whole-grain bread, coffee and cake and cookies.
We additionally calculated the correlation of metabolite net-

works of different exposures (Table 1). The strongest positive
correlation was observed between the metabolite networks of BMI
and waist circumference (r= 0.99). The metabolite networks of
these two obesity measures were strongly inversely associated
with the metabolite network of coffee intake (BMI: r=− 0.57 and
waist circumference: r=− 0.59). The metabolite network of
cardiorespiratory fitness was positively correlated with the
metabolite networks of intake of cake and cookies (r= 0.52) and
physical activity (r= 0.46). The metabolite network of intake of
cake and cookies was positively correlated with the metabolite
network of intake of whole-grain bread (r= 0.50).

DISCUSSION
The present study used an innovative approach to generate
multiple metabolite networks for different human behaviors and
phenotypes, and compared these networks in the setting of a
population study. Although the generation of the metabolite
network was purely data driven, the metabolites were separated
by their different biochemical classes. This was particularly
achieved for amino acids, C6-sugar and acylcarnitines. The cluster
of different phospholipids could not be completely differentiated,
for example, there were still some direct connections between
sphingomyelins and phosphatidylcholines. Biosynthesis of sphingo-
myelins includes the transfer of phosphocholine from phos-
phatidylcholines to ceramide,31 so there is a biological plausible
link of these two groups. However, the direct link of these two
different classes could also be a result of the limitations of the
metabolomics measurements. The manufacturer of the meta-
bolomics kit reported about possible interferences between
individual metabolites.32 This could, for example, have affected
hydroxy-sphingomyelin C14:1 and acyl-alkyl-phosphatidylcholine
C30:1, two metabolites that were inversely correlated and
neighboring in our metabolite network. Nevertheless, it was often
the case that metabolites that are one reaction step apart in
biological pathways were direct neighbors in our metabolite
network. Krumsiek et al.28 previously showed in the Cooperative
Health Research in the Region of Augsburg (KORA) cohort that the
statistical method Gaussian graphical modeling could discriminate
a pathway distance of one for most of these phospholipids with
sensitivity and specificity ranging between 0.75 and 1.0. This
previous study also showed that a pathway distance of two is
indicated by strong negative correlations. This was also observed
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in our study, for example, sphingomyelins C16:1 and C18:0
(desaturation and elongation), and diacyl-phosphatidylcholines
C36:5 and C40:5 (two elongations). In summary, the metabolite
network of our study population that was drawn with the data-
driven method Gaussian graphical modeling could differentiate
the metabolite classes and seemed to generally reflect biological
plausible pathways.
In our study, we observed several associations between lifestyle

factors and phenotypes with serum metabolite networks. As our

study is of an observational design, we cannot prove biological
mechanisms or demonstrate tissue origins of systemic metabolite
changes. Nevertheless, our study may give some first ideas about
possible mechanisms and pathways, which are discussed in the
following paragraphs, but should be cautiously interpreted and
confirmed in experimental studies.
We observed that obesity and cardiorespiratory fitness were

more strongly linked to serum metabolite networks compared
with diet and physical activity. Our results are in agreement with a

 0.4

 0.2

 0

-0.2

-0.4

Spearman‘s Rho,
Multivariable-adjusted

Figure 2. Association between BMI (a) and waist circumference (b) and the serum metabolite network of the EPIC-Potsdam subcohort.
Presented are partial correlation coefficients adjusted for age, sex, education, alcohol consumption, smoking and physical activity, adapted
from Bachlechner et al.12 Red color implies positive association and blue color inverse association between exposure and metabolite. Intensity
of the color reflects the strength of association.
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previous study,4 which reported that low cardiorespiratory fitness
and high levels of visceral adipose tissue were strong predictors
for impaired cardiometabolic health. This included altered
lipoprotein-lipid profiles, deranged glucose-insulin homeostasis
and increased inflammatory markers. However, our results have to
be interpreted with caution as the different exposures were
assessed with different methods. Particularly, diet was not
measured objectively but self-reported in a food frequency
questionnaire. Thus, it cannot be ruled out that imprecision of

the dietary assessment may lead to underestimation of the true
effect of diet. In contrast, both cardiorespiratory fitness and
physical activity were measured objectively with heart rate and
movement sensors and may be better comparable. Therefore, our
results indicate that cardiorespiratory fitness may be stronger
linked to metabolite networks than physical activity. Physical
activity represents a lifestyle, whereas cardiorespiratory fitness can
be considered a phenotype, which may not only be influenced by
physical activity or inactivity but also by past physical activity,

 0.4

 0.2

 0

-0.2

-0.4

Beta coefficient,
Multivariable-adjusted

Figure 3. Association between cardiorespiratory fitness (a) and physical activity energy expenditure (b), and the serum metabolite network of
the EPIC-Potsdam subcohort. Presented are β-coefficients adjusted for age, sex, education, alcohol consumption, smoking, BMI, waist
circumference and measurement occasion, adopted from Wientzek et al.11 Red color implies positive association and blue color inverse
association between exposure and metabolite. Intensity of the color reflects the strength of association.
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other environmental and lifestyle factors and genetics.33 There-
fore, cardiorespiratory fitness may reflect long-term exposure and
be stronger linked to serum metabolites than physical activity.
On the level of metabolite classes, we observed that amino

acids were particularly positively linked to cardiorespiratory fitness
and physical activity. Morris et al.5 found that amino-acid excretion
was reduced in participants with high fitness as indicated by lower
urinary levels of amino acids. In contrast, in this previous study
also plasma levels of many amino acids were lower in the high
fitness group. With high energy expenditure, oxidation of
branched chain amino acids is generally increased.34 However,
as response to exercise, amino-acid biosynthesis as well as protein

breakdown in skeletal muscle may increase.35,36 This could
possibly increase the systemic pool of amino acids.
In the present study, C6-sugar was particularly positively linked

to obesity measures. This may be a result of impaired glucose
metabolism and insulin resistance in obese individuals. It has
previously been reported that obesity correlated positively with
levels of fasting plasma glucose.37 A recent intervention study
could show that people with abdominal obesity were able to
improve their levels of fasting plasma glucose with a combined
physical activity and dietary intervention.38 This is in line with our
findings that C6-sugar was further inversely correlated with
cardiorespiratory fitness, physical activity and whole-grain bread

Table 1. Correlation of metabolite networks of different exposures

Fitness
network

Physical activity
network

Whole-grain
bread network

Coffee network Cake & cookies
network

BMI network Waist circumference
network

Fitness network 1.00 0.46 (0.31; 0.59) 0.28 (0.11; 0.43) 0.02 (�0.15; 0.20) 0.52 (0.38; 0.63) �0.29 (�0.43; �0.12) �0.28 (�0.43; �0.11)
Physical activity network 1.00 0.36 (0.20; 0.50) �0.02 (�0.20; 0.15) 0.31 (0.14; 0.46) �0.14 (�0.31; 0.03) �0.11 (�0.28; 0.06)
Whole-grain bread network 1.00 �0.09 (�0.26; 0.08) 0.50 (0.35; 0.62) �0.23 (�0.39; �0.06) �0.21 (�0.37; �0.04)
Coffee network 1.00 0.15 (�0.03; 0.32) �0.57 (�0.67; �0.44) �0.59 (�0.69; �0.46)
Cake & cookies network 1.00 �0.24 (�0.39; �0.06) �0.24 (�0.39; �0.07)
BMI network 1.00 0.99 (0.99; 1.00)
Waist circumference network 1.00

Abbreviation: BMI, body mass index. Presented are Pearson’s correlation coefficients (95% confidence interval).

 0.4

 0.2

 0

-0.2

-0.4

Spearman‘s Rho,
Multivariable-adjusted

Figure 4. Association between intake of whole-grain bread (a), coffee (b), cake and cookies (c), and the serum metabolite network of the EPIC-
Potsdam subcohort. Presented are partial correlation coefficients adjusted for age, sex, education, alcohol consumption, smoking, physical
activity, BMI, waist circumference, prevalent hypertension and prevalent diabetes. Red color implies positive association and blue color inverse
association between exposure and metabolite. Intensity of the color reflects the strength of association.
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intake. In our study population, we previously found that
increased levels of C6-sugars were linked to a higher risk of type 2
diabetes.39 Thus, via this pathway, lifestyle modifications may offer
potential for prevention of chronic diseases.
Acylcarnitines showed similar correlations with lifestyle factors and

phenotypes as C6-sugar. Adams et al.40 reported increased levels of
acylcarnitines in African Americans with type 2 diabetes, which may
be a result of incomplete fatty-acid oxidation and via pro-
inflammatory pathways trigger development of insulin resistance.
In rats, fed with a ‘cafeteria diet’ with high-fat and low-fiber content,
a serum accumulation of acylcarnitines was observed reflective of
systemic mitochondrial dysfunction.41 This eventually led to tissue
inflammation and development of obesity and metabolic syndrome.
Thus, increased serum acylcarnitines may be reflective of inflamma-
tory processes and oxidative stress involved in obesity.
Among the phospholipids, sphingomyelins, lyso- and acyl-

alkyl-phosphatidylcholines were positively associated with coffee
intake, and the latter class was inversely associated with
obesity. It was previously observed that levels of acyl-alkyl-
phosphatidylcholines were reduced in obese individuals.42 In
addition, these phospholipid classes have been linked to lower
risk of type 2 diabetes in this study population, whereas diacyl-
phosphatidylcholines were linked to higher risk.39 In the present
study, diacyl-phosphatidylcholines were positively associated with
obesity and inversely with coffee intake. All of these phospholipids
are primarily synthesized in the liver and secreted as part of blood
lipoproteins.43 In a previous study, we could show that acyl-alkyl-
phosphatidylcholines were positively correlated with high-density
lipoprotein cholesterol, whereas diacyl-phosphatidylcholines were
positively correlated with plasma triglycerides.39 Coffee intake has
been associated with decreased risk of chronic diseases in
prospective cohort studies, and particularly with lower risk of
type 2 diabetes.30,44 However, the biological mechanisms are not
yet understood. In the present study, it was additionally observed
that the metabolite network of coffee was strongly inversely
correlated with the metabolite network of obesity. Thus, our results
indicate that the suggested protective effect of coffee could be
mediated via counterbalance of pathways of obesity, in particular,
on the level of phospholipids that are supplied from hepatic
synthesis. Thus, our findings may point toward a crucial role of the
liver. These assumptions may be supported by the fact that higher
coffee intake has also been associated with lower risk of fibrosis in
patients with non-alcoholic fatty liver disease.45 In addition, in an
experimental study, coffee prevented induced liver cirrhosis in
rats.46 Finally, coffee consumption has also been associated with
lower risk of liver cancer in prospective cohort studies.47

The metabolite network of cake and cookies was positively
associated with the metabolite networks of cardiorespiratory
fitness and intake of whole-grain bread. This finding was rather
unexpected. Nevertheless, it is in line with the observation that
cake and cookie intake was inversely associated with risk of
chronic diseases in this study population.30 It is still to debate and
see in other studies whether this observation has a biological
background or is the result of some type of reporting bias, that is,
that people with lower levels of cardiorespiratory fitness and low
intake of whole-grain bread tend to under-report their cake and
cookie intake compared with their counterparts. At this point, we
can only conclude that the observation is interesting and that this
issue should be investigated further.
The strengths of the present study include that we provided a

comprehensive overview of the associations between phenotypes
and lifestyle characteristics with serum metabolite networks. We
conducted metabolomics analyses in a large population-based
cohort measuring 127 metabolites in more than 2300 participants.
In addition, we integrated data on objectively measured physical
activity and cardiorespiratory fitness, obesity measures and
questionnaire-based dietary assessment with metabolomics data
using an innovative network approach. Study limitations include

that we used a commercial metabolomics kit and could only
investigate those metabolites that were included by the
manufacturer. Therefore, we might have missed associations of
other important metabolites, for example, other amino acids or
lipid derivates. It would be very interesting to study a broader
range of metabolites with different targeted or untargeted
metabolomics platforms in future studies. Furthermore, our main
focus in the discussion was on the level of metabolite classes.
Nevertheless, in some conditions, metabolite changes were
different for individual metabolites within the same class, which
is to be expected, as individual metabolites, for example, different
amino acids, may carry very distinct metabolic functions. Another
limitation of the study is that the assessment instruments of
exposures were different. Therefore, they may be differentially
prone to measurement error and, consequently, association
measures between different exposures and serum metabolites
may not be directly comparable. In addition, we used a cross-
sectional design, which illustrates associations but not necessarily
temporality and causality. However, knowledge is scarce about the
association of these lifestyle factors and phenotypes with
metabolite networks in a population setting.
In summary, we could visualize a metabolite network that

reflected biological pathways with a data-driven approach based
on 2380 EPIC-Potsdam participants. Our results support the concept
that different lifestyle factors and phenotypes are reflected in
metabolic pathways. Amino-acid metabolism seems to be particu-
larly linked to cardiorespiratory fitness and physical activity, whereas
levels of acylcarnitines and C6-sugar were linked to obesity and low
intake of whole-grain bread. In addition, the metabolite networks of
coffee and obesity were strongly inversely correlated. Therefore, a
possible protective effect of coffee on chronic disease risk may be
particularly mediated by hepatic phospholipids. Experimental studies
need to further validate these findings.
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