Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Interpreting different measures of glomerular filtration rate in obesity and weight loss: pitfalls for the clinician

Subjects

Abstract

To combat the increasing incidence of obesity, much research has been devoted to devising successful strategies for weight loss, including manipulation of diet and gastric surgery. Obesity itself can be associated with renal dysfunction, and the degree of reversibility of this with weight loss has being studied. However, there are significant limitations and flaws in the methods we have available to measure glomerular filtration rate (GFR) in overweight and obese subjects. Obesity is associated with changes in body composition including lean and fat mass. This has implications for assumptions that underpin creatinine-based measures such as creatinine clearance, estimated GFR and other equations devised for obesity including the Salazar–Corcoran equation. These changes in body composition also affect measures of glomerular filtration such as cystatin C and nuclear medicine isotope scans. This article will review the accuracy of these current measures of renal function in the obese and consider the evidence for adjusting for body surface area or adjusting for lean body mass. Finally, the effect of weight loss itself on serial measurements of renal function in a given individual, independent of a true change in renal function, will be reviewed. Ultimately using the Cockcroft–Gault equation with an adjustment for lean body mass seems to be the best measure for renal function in obesity. No method for measuring renal function in situations of weight loss has been shown to be unequivocally superior.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Chaston TB, Dixon JB, O’Brien PE . Changes in fat-free mass during significant weight loss: a systematic review. Int J Obes (Lond) 2007; 31: 743–750.

    Article  CAS  Google Scholar 

  2. de Boer IH, Katz R, Fried LF, Ix JH, Luchsinger J, Sarnak MJ et al. Obesity and change in estimated GFR among older adults. Am J Kidney Dis 2009; 54: 1043–1051.

    Article  Google Scholar 

  3. Gelber RP, Kurth T, Kausz AT, Manson JE, Buring JE, Levey AS et al. Association between body mass index and CKD in apparently healthy men. Am J Kidney Dis 2005; 46: 871–880.

    Article  Google Scholar 

  4. Dulloo AG, Jacquet J, Solinas G, Montani JP, Schutz Y . Body composition phenotypes in pathways to obesity and the metabolic syndrome. Int J Obes (Lond) 2010; 34 (Suppl 2): S4–S17.

    Article  Google Scholar 

  5. Hull HR, Thornton J, Wang J, Pierson Jr RN, Kaleem Z, Pi-Sunyer X et al. Fat-free mass index: changes and race/ethnic differences in adulthood. Int J Obes (Lond) 2011; 35: 121–127.

    Article  CAS  Google Scholar 

  6. Luke A . Ethnicity and the BMI-body fat relationship. Br J Nutr 2009; 102: 485–487.

    Article  CAS  Google Scholar 

  7. Zamboni M, Mazzali G, Fantin F, Rossi A, Di Francesco V . Sarcopenic obesity: a new category of obesity in the elderly. Nutr Metab Cardiovasc Dis 2008; 18: 388–395.

    Article  CAS  Google Scholar 

  8. Lorenzo C . Body composition and physical function in older adults. Obesity (Silver Spring) 2009; 17: 211–212.

    Article  Google Scholar 

  9. Forbes GB . Lean body mass-body fat interrelationships in humans. Nutr Rev 1987; 45: 225–231.

    Article  CAS  Google Scholar 

  10. Hall KD . Body fat and fat-free mass inter-relationships: Forbes's theory revisited. Br J Nutr 2007; 97: 1059–1063.

    Article  CAS  Google Scholar 

  11. Dajak M, Ignjatovic S, Jovicic S, Majkic-Singh N . The values of estimated glomerular filtration rate calculated with creatinine and cystatin C based equations in healthy adults. Clin Lab 2008; 54: 153–159.

    PubMed  Google Scholar 

  12. Thomas L, Huber AR . Renal function--estimation of glomerular filtration rate. Clin Chem Lab Med 2006; 44: 1295–1302.

    Article  CAS  Google Scholar 

  13. Johnson D . The CARI guidelines. Evaluation of renal function. Nephrology (Carlton) 2005; 10 (Suppl 4): S133–S176.

    Article  Google Scholar 

  14. Stevens LA, Coresh J, Greene T, Levey AS . Assessing kidney function--measured and estimated glomerular filtration rate. N Engl J Med 2006; 354: 2473–2483.

    Article  CAS  Google Scholar 

  15. Gaspari F, Perico N, Matalone M, Signorini O, Azzollini N, Mister M et al. Precision of plasma clearance of iohexol for estimation of GFR in patients with renal disease. J Am Soc Nephrol 1998; 9: 310–313.

    CAS  PubMed  Google Scholar 

  16. Perrone RD, Steinman TI, Beck GJ, Skibinski CI, Royal HD, Lawlor M et al. Utility of radioisotopic filtration markers in chronic renal insufficiency: simultaneous comparison of 125I-iothalamate, 169Yb-DTPA, 99mTc-DTPA, and inulin. The Modification of Diet in Renal Disease Study. Am J Kidney Dis 1990; 16: 224–235.

    Article  CAS  Google Scholar 

  17. Stevens LA, Levey AS . Measured GFR as a confirmatory test for estimated GFR. J Am Soc Nephrol 2009; 20: 2305–2313.

    Article  Google Scholar 

  18. Levey AS, Bosch JP, Lewis JB, Greene T, Rogers N, Roth D . A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Ann Intern Med 1999; 130: 461–470.

    Article  CAS  Google Scholar 

  19. Salazar DE, Corcoran GB . Predicting creatinine clearance and renal drug clearance in obese patients from estimated fat-free body mass. Am J Med 1988; 84: 1053–1060.

    Article  CAS  Google Scholar 

  20. Cockcroft DW, Gault MH . Prediction of creatinine clearance from serum creatinine. Nephron 1976; 16: 31–41.

    Article  CAS  Google Scholar 

  21. Rigalleau V, Lasseur C, Perlemoine C, Barthe N, Raffaitin C, Chauveau P et al. Cockcroft-Gault formula is biased by body weight in diabetic patients with renal impairment. Metabolism 2006; 55: 108–112.

    Article  CAS  Google Scholar 

  22. Spruill WJ, Wade WE, Cobb 3rd HH . Estimating glomerular filtration rate with a modification of diet in renal disease equation: implications for pharmacy. Am J Health Syst Pharm 2007; 64: 652–660.

    Article  Google Scholar 

  23. Rostoker G, Andrivet P, Pham I, Griuncelli M, Adnot S . A modified Cockcroft-Gault formula taking into account the body surface area gives a more accurate estimation of the glomerular filtration rate. J Nephrol 2007; 20: 576–585.

    PubMed  Google Scholar 

  24. Levey AS, Kramer H . Obesity, glomerular hyperfiltration, and the surface area correction. Am J Kidney Dis 2010; 56: 255–258.

    Article  Google Scholar 

  25. Gault MH, Longerich LL, Harnett JD, Wesolowski C . Predicting glomerular function from adjusted serum creatinine. Nephron 1992; 62: 249–256.

    Article  CAS  Google Scholar 

  26. Ozmen S, Kaplan MA, Kaya H, Akin D, Danis R, Kizilkan B et al. Role of lean body mass for estimation of glomerular filtration rate in patients with chronic kidney disease with various body mass indices. Scand J Urol Nephrol 2009; 43: 171–176.

    Article  CAS  Google Scholar 

  27. Lim WH, Lim EM, McDonald S . Lean body mass-adjusted Cockcroft and Gault formula improves the estimation of glomerular filtration rate in subjects with normal-range serum creatinine. Nephrology (Carlton) 2006; 11: 250–256.

    Article  CAS  Google Scholar 

  28. Pierrat A, Gravier E, Saunders C, Caira MV, Ait-Djafer Z, Legras B et al. Predicting GFR in children and adults: a comparison of the Cockcroft-Gault, Schwartz, and modification of diet in renal disease formulas. Kidney Int 2003; 64: 1425–1436.

    Article  Google Scholar 

  29. Friedman AN, Strother M, Quinney SK, Hall S, Perkins SM, Brizendine EJ et al. Measuring the glomerular filtration rate in obese individuals without overt kidney disease. Nephron Clin Pract 2010; 116: c224–c234.

    Article  Google Scholar 

  30. Bird NJ, Peters C, Michell AR, Peters AM . Reliability of the MDRD method for estimating glomerular filtration rate in relation to gender, body mass index and extracellular fluid volume. Eur J Clin Invest 2008; 38: 486–493.

    Article  CAS  Google Scholar 

  31. Froissart M, Rossert J, Jacquot C, Paillard M, Houillier P . Predictive performance of the modification of diet in renal disease and Cockcroft-Gault equations for estimating renal function. J Am Soc Nephrol 2005; 16: 763–773.

    Article  Google Scholar 

  32. Verhave JC, Fesler P, Ribstein J, du Cailar G, Mimran A . Estimation of renal function in subjects with normal serum creatinine levels: influence of age and body mass index. Am J Kidney Dis 2005; 46: 233–241.

    Article  CAS  Google Scholar 

  33. Chudleigh RA, Dunseath G, Peter R, Harvey JN, Ollerton RL, Luzio S et al. Influence of body weight on the performance of glomerular filtration rate estimators in subjects with type 2 diabetes. Diabetes Care 2008; 31: 47–49.

    Article  Google Scholar 

  34. Levey AS, Eckardt KU, Tsukamoto Y, Levin A, Coresh J, Rossert J et al. Definition and classification of chronic kidney disease: a position statement from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int 2005; 67: 2089–2100.

    Article  Google Scholar 

  35. Demirovic JA, Pai AB, Pai MP . Estimation of creatinine clearance in morbidly obese patients. Am J Health Syst Pharm 2009; 66: 642–648.

    Article  CAS  Google Scholar 

  36. Pai MP . Estimating the glomerular filtration rate in obese adult patients for drug dosing. Adv Chronic Kidney Dis 2010; 17: e53–e62.

    Article  Google Scholar 

  37. Kampmann J, Siersbaek-Nielsen K, Kristensen M, Hansen JM . Rapid evaluation of creatinine clearance. Acta Med Scand 1974; 196: 517–520.

    Article  CAS  Google Scholar 

  38. Spinler SA, Nawarskas JJ, Boyce EG, Connors JE, Charland SL, Goldfarb S . Predictive performance of ten equations for estimating creatinine clearance in cardiac patients. Ann Pharmacother 1998; 32: 1275–1283.

    Article  CAS  Google Scholar 

  39. Raju DL, Grover VK, Shoker A . Limitations of glomerular filtration rate equations in the renal transplant patient. Clin Transplant 2005; 19: 259–268.

    Article  Google Scholar 

  40. Apperloo JJ, Gerlag PG, Beerenhout CH, Vader HL . Estimating renal function based on creatinine clearance: application of different formulas and correction for obese patients. Ned Tijdschr Geneeskd 2007; 151: 1016–1023.

    CAS  PubMed  Google Scholar 

  41. Saracino A, Morrone LF, Suriano V, Niccoli-Asabella A, Ramunni A, Fanelli M et al. A simple method for correcting overestimated glomerular filtration rate in obese subjects evaluated by the Cockcroft and Gault formula: a comparison with 51Cr EDTA clearance. Clin Nephrol 2004; 62: 97–103.

    Article  CAS  Google Scholar 

  42. Randers E, Kristensen JH, Erlandsen EJ, Danielsen H . Serum cystatin C as a marker of the renal function. Scand J Clin Lab Invest 1998; 58: 585–592.

    Article  CAS  Google Scholar 

  43. Steffes MW . Estimating GFR from cystatin C in serum: seeking to enhance its clinical application. Am J Kidney Dis 2006; 48: 842–843.

    Article  Google Scholar 

  44. Stevens LA, Coresh J, Schmid CH, Feldman HI, Froissart M, Kusek J et al. Estimating GFR using serum cystatin C alone and in combination with serum creatinine: a pooled analysis of 3,418 individuals with CKD. Am J Kidney Dis 2008; 51: 395–406.

    Article  CAS  Google Scholar 

  45. Larsson A, Palm M, Hansson LO, Axelsson O . Cystatin C and modification of diet in renal disease (MDRD) estimated glomerular filtration rate differ during normal pregnancy. Acta Obstet Gynecol Scand 2010; 89: 939–944.

    Article  CAS  Google Scholar 

  46. Weinert LS, Prates AB, do Amaral FB, Vaccaro MZ, Camargo JL, Silveiro SP . Gender does not influence cystatin C concentrations in healthy volunteers. Clin Chem Lab Med 2010; 48: 405–408.

    Article  CAS  Google Scholar 

  47. Erlandsen EJ, Randers E, Kristensen JH . Reference intervals for serum cystatin C and serum creatinine in adults. Clin Chem Lab Med 1998; 36: 393–397.

    Article  CAS  Google Scholar 

  48. Knight EL, Verhave JC, Spiegelman D, Hillege HL, de Zeeuw D, Curhan GC et al. Factors influencing serum cystatin C levels other than renal function and the impact on renal function measurement. Kidney Int 2004; 65: 1416–1421.

    Article  CAS  Google Scholar 

  49. Vupputuri S, Fox CS, Coresh J, Woodward M, Muntner P . Differential estimation of CKD using creatinine- versus cystatin C-based estimating equations by category of body mass index. Am J Kidney Dis 2009; 53: 993–1001.

    Article  CAS  Google Scholar 

  50. Schuck O, Teplan V, Stollova M, Skibova J . Estimation of glomerular filtration rate in obese patients with chronic renal impairment based on serum cystatin C levels. Clin Nephrol 2004; 62: 92–96.

    Article  CAS  Google Scholar 

  51. Young JA, Hwang SJ, Sarnak MJ, Hoffmann U, Massaro JM, Levy D et al. Association of visceral and subcutaneous adiposity with kidney function. Clin J Am Soc Nephrol 2008; 3: 1786–1791.

    Article  Google Scholar 

  52. Naour N, Fellahi S, Renucci JF, Poitou C, Rouault C, Basdevant A et al. Potential contribution of adipose tissue to elevated serum cystatin C in human obesity. Obesity (Silver Spring) 2009; 17: 2121–2126.

    Article  CAS  Google Scholar 

  53. Baxmann AC, Ahmed MS, Marques NC, Menon VB, Pereira AB, Kirsztajn GM et al. Influence of muscle mass and physical activity on serum and urinary creatinine and serum cystatin C. Clin J Am Soc Nephrol 2008; 3: 348–354.

    Article  CAS  Google Scholar 

  54. Macdonald JH, Marcora MJ, Kumweda MJ, Jibani M, Roberts G, Glover R et al. The relationship between estimated glomerular filtration rate, demographic and anthropometric variables is mediated by muscle mass in non-diabetics with chronic kidney disease. Nephrol Dial Transplant 2006; 21: 3488–3494.

    Article  CAS  Google Scholar 

  55. Currie A, Chetwood A, Ahmed AR . Bariatric surgery and renal function. Obes Surg 2011; 21: 528–539.

    Article  Google Scholar 

  56. Saliba J, Kasim NR, Tamboli RA, Isbell JM, Marks P, Feurer ID et al. Roux-en-Y gastric bypass reverses renal glomerular but not tubular abnormalities in excessively obese diabetics. Surgery 2010; 147: 282–287.

    Article  Google Scholar 

  57. Serpa Neto A, Bianco Rossi FM, Dal Moro Amarante R, Alves Buriti N, Cunha Barbosa Saheb G, Rossi M . Effect of weight loss after Roux-en-Y gastric bypass, on renal function and blood pressure in morbidly obese patients. J Nephrol 2009; 22: 637–646.

    CAS  PubMed  Google Scholar 

  58. Navarro-Diaz M, Serra A, Romero R, Bonet J, Bayes B, Homs M et al. Effect of drastic weight loss after bariatric surgery on renal parameters in extremely obese patients: long-term follow-up. J Am Soc Nephrol 2006; 17: S213–S217.

    Article  Google Scholar 

  59. Tamboli RA, Hossain HA, Marks PA, Eckhauser AW, Rathmacher JA, Phillips SE et al. Body composition and energy metabolism following Roux-en-Y gastric bypass surgery. Obesity (Silver Spring) 2010; 18: 1718–1724.

    Article  CAS  Google Scholar 

  60. Chagnac A, Weinstein T, Herman M, Hirsh J, Gafter U, Ori Y . The effects of weight loss on renal function in patients with severe obesity. J Am Soc Nephrol 2003; 14: 1480–1486.

    Article  Google Scholar 

  61. Schuster DP, Teodorescu M, Mikami D, Foreman K, Rogers P, Needleman BJ . Effect of bariatric surgery on normal and abnormal renal function. Surg Obes Relat Dis 2011; 7: 459–464.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D R Jesudason.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jesudason, D., Clifton, P. Interpreting different measures of glomerular filtration rate in obesity and weight loss: pitfalls for the clinician. Int J Obes 36, 1421–1427 (2012). https://doi.org/10.1038/ijo.2011.242

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2011.242

Keywords

This article is cited by

Search

Quick links