Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Polyphenol-rich grape powder extract (GPE) attenuates inflammation in human macrophages and in human adipocytes exposed to macrophage-conditioned media

Abstract

Background:

Obesity-associated inflammation is characterized by an increased abundance of macrophages (MΦs) in white adipose tissue (WAT), leading to the production of inflammatory cytokines, chemokines and prostaglandins (PGs) that can cause insulin resistance. Grape powder extract (GPE) is rich in phenolic phytochemicals that possess anti-oxidant and anti-inflammatory properties.

Objective:

We examined the ability of GPE to prevent lipopolysaccharide (LPS)-mediated inflammation in human MΦs and silence the cross-talk between human MΦs and adipocytes.

Design:

We investigated the effect of GPE pretreatment on LPS-mediated activation of mitogen activated protein kinases (MAPKs), nuclear factor kappa B (NF-κB) and activator protein-1 (AP-1), and induction of inflammatory genes in human MΦs (that is, differentiated U937 cells). In addition, we determined the effect of GPE pretreatment of MΦs on inflammation and insulin resistance in primary human adipocytes incubated with LPS-challenged MΦ-conditioned medium (MΦ-CM).

Methods and Results:

Pretreatment of MΦs with GPE attenuated LPS-induction of inflammatory cytokines, such as tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and IL-1β; chemokines, such as IL-8 and interferon-γ inducible protein-10 (IP-10); and a marker of PG production, cyclooxygenase-2 (COX-2). Grape powder extract also attenuated LPS activation of MAPKs, NF-κB and AP-1 (c-Jun), as evidenced by decreased (1) phosphorylation of c-Jun NH2-terminal kinase (JNK) and p38; (2) degradation of IκBα and activation of an NF-κB reporter construct; and (3) phosphorylation of c-Jun and Elk-1. Using LPS-challenged MΦ-CM, GPE pretreatment attenuated MΦ-mediated inflammatory gene expression, activation of an NF-κB reporter and suppression of insulin-stimulated glucose uptake in human adipocytes.

Conclusion:

Collectively, these data demonstrate that GPE attenuates LPS-mediated inflammation in MΦs, possibly by decreasing the activation of MAPKs, NF-κB and AP-1, and that GPE decreases the capacity of LPS-stimulated MΦs to inflame adipocytes and cause insulin resistance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Tilg H, Moschen AR . Adipocytokines: mediators linking adipose tissue, inflammation and immunity. Nat Rev Immunol 2006; 6: 772–783.

    Article  CAS  PubMed  Google Scholar 

  2. Poirier P, Giles TD, Bray GA, Hong Y, Stern JS, Pi-Sunyer FX et al. Obesity and cardiovascular disease: pathophysiology, evaluation, and effect of weight loss: an update of the 1997 American Heart Association Scientific Statement on Obesity and Heart Disease from the Obesity Committee of the Council on Nutrition, Physical Activity, and Metabolism. Circulation 2006; 113: 898–918.

    Article  PubMed  Google Scholar 

  3. Cottam DR, Mattar SG, Barinas-Mitchell E, Eid G, Kuller L, Kelley DE et al. The chronic inflammatory hypothesis for the morbidity associated with morbid obesity: implications and effects of weight loss. Obes Surg 2004; 14: 589–600.

    Article  PubMed  Google Scholar 

  4. Trayhurn P, Wood IS . Adipokines: inflammation and the pleiotropic role of white adipose tissue. Br J Nutr 2004; 92: 347–355.

    Article  CAS  PubMed  Google Scholar 

  5. Laine PS, Schwartz EA, Wang Y, Zhang WY, Karnik SK, Musi N et al. Palmitic acid induces IP-10 expression in human macrophages via NF-kappaB activation. Biochem Biophys Res Commun 2007; 358: 150–155.

    Article  CAS  PubMed  Google Scholar 

  6. Wellen KE, Hotamisligil GS . Inflammation, stress, and diabetes. J Clin Invest 2005; 115: 1111–1119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fantuzzi G . Adipose tissue, adipokines, and inflammation. J Allergy Clin Immunol 2004; 115: 911–919.

    Article  Google Scholar 

  8. Fain JN, Madan AK, Hiler ML, Cheema P, Bahouth SW . Comparison of the release of adipokines by adipose tissue, adipose tissue matrix, and adipocytes from visceral and subcutaneous abdominal adipose tissue of obese humans. Endocrinology 2004; 145: 2273–2282.

    Article  CAS  PubMed  Google Scholar 

  9. Clément K, Viguerie N, Poitou C, Carette C, Pelloux V, Curat CA et al. Weight loss regulates inflammation-related genes in white adipose tissue of obese subjects. FASEB J 2004; 18: 1657–1669.

    Article  PubMed  Google Scholar 

  10. Curat CA, Wegner V, Sengenes C, Miranville A, Tonus C, Busse R et al. Macrophages in human visceral adipose tissue: increased accumulation in obesity and a source of resistin and visfatin. Diabetologia 2006; 49: 744–747.

    Article  CAS  PubMed  Google Scholar 

  11. Kanda H, Tateya S, Tamori Y, Kotani K, Hiasa K, Kitazawa R . MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J Clin Invest 2006; 116: 1494–1505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Skurk T, Herder C, Kraft I, Muller-Scholze S, Hauner H, Kolb H . Production and release of macrophage migration inhibitory factor from human adipocytes. Endocrinology 2005; 146: 1006–1011.

    Article  CAS  PubMed  Google Scholar 

  13. Lumeng C, Deyoung S, Saltiel A . Macrophages block insulin action in adipcytes by altering expression of signaling and glucose transport proteins. Am J Physiol 2007; 292: E166–E174.

    CAS  Google Scholar 

  14. Arkan MC, Hevener AL, Greten FR, Maeda S, Li ZW, Long JM et al. IKK-beta links inflammation to obesity-induced insulin resistance. Nat Med 2005; 11: 191–198.

    Article  CAS  PubMed  Google Scholar 

  15. Weisberg SP, Hunter D, Huber R, Lemieux J, Slaymaker S, Vaddi K et al. CCR2 modulates inflammatory and metabolic effects of high-fat feeding. J Clin Invest 2005; 116: 115–124.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Cani PD, Bibiloni R, Knauf C, Waget A, Neyrinck AM, Delzenne NM et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat fed mice-induced obesity and diabetes. Diabetes 2008; 57: 1470–1481.

    Article  CAS  PubMed  Google Scholar 

  17. Sakurai T, Kitadateb K, Nishiokab H, Fujiib H, Kizakia T, Kondohc Y et al. Oligomerized grape seed polyphenols attenuate inflammatory changes due to antioxidative properties in coculture of adipocytes and macrophages. J Nutr Biochem 2010; 21: 47–54.

    Article  CAS  PubMed  Google Scholar 

  18. Terra X, Valls J, Vitrac X, Mérrillon JM, Arola L, Ardèvol A et al. Grape-seed procyanidins act as antiinflammatory agents in endotoxin-stimulated RAW 264.7 macrophages by inhibiting NFkB signaling pathway. J Agric Food Chem 2007; 55: 4357–4365.

    Article  CAS  PubMed  Google Scholar 

  19. Brown JM, Sandberg-Boysen M, Chung S, Fabiyi O, Morrision R, Mandrup S et al. Conjugated linoleic acid (CLA) induces human adipocyte delipidation: autocrine/ paracrine regulation of MEK/ERK signaling by adipocytokines. J Biol Chem 2004; 279: 26735–26747.

    Article  CAS  PubMed  Google Scholar 

  20. Chung S, Lapoint K, Martinez K, Kennedy A, Boysen Sandberg M, McIntosh MK . Preadipocytes mediate lipopolysaccharide-induced inflammation and insulin resistance in primary cultures of newly differentiated human adipocytes. Endocrinology 2006; 147: 5340–5351.

    Article  CAS  PubMed  Google Scholar 

  21. Seymour EM, Singer AA, Bennink MR, Parikh RV, Kirakosyan A, Kaufman PB et al. Chronic intake of phytochemical-enriched diet reduces cardiac fibrosis and diastolic dysfunction caused by prolonged salt-sensitive hypertension. J Gerontol A Biol Sci Med Sci 2008; 63: 1034–1042.

    Article  CAS  PubMed  Google Scholar 

  22. Xie G, Zhao A, Li P, Li L, Jia W . Fingerprint analysis of Rhizoma chuanxiong by pressurized capillary electrochromatography and high-performance liquid chromatography. Biomed Chromatogr 2007; 21: 867–875.

    Article  CAS  PubMed  Google Scholar 

  23. Suganami T, Nishida H, Ogawa Y . A paracrine loop between adipocytes and macrophages aggravates inflammatory changes: Role of free fatty acids and TNFα. Arterioscler Throm Vasc Biol 2005; 25: 2062–2068.

    Article  CAS  Google Scholar 

  24. Jang S, Kelley KW, Johnson RW . Luteolin reduces IL-6 production in microglia by inhibiting JNK phosphorylation and activation of AP-1. Proc Natl Acad Sci USA 2008; 105: 7534–7539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chen CY, Peng WH, Tsai KD, Hsu SL . Luteolin suppresses inflammation-associated gene expression by blocking NF-kappaB and AP-1 activation pathway in mouse alveolar macrophages. Life Sci 2007; 81: 1602–1614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest 2003; 112: 1821–1830.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante Jr AW . Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 2003; 112: 1796–1808.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Permana PA, Menge C, Reaven PD . Macrophage-secreted factors induce adipocyte inflammation and insulin resistance. Biochem Biophys Res Commun 2006; 341: 507–514.

    Article  CAS  PubMed  Google Scholar 

  29. Leifert W, Abeywardena M . Cardioprotective actions of grape polyphenols. Nutr Res 2008; 28: 729–737.

    Article  CAS  PubMed  Google Scholar 

  30. Perez-Jimenez J, Saurea-Calixto F . Grape products and cardiovascular disease risk factors. Nutr Res Rev 2008; 21: 158–173.

    Article  CAS  PubMed  Google Scholar 

  31. Castilla P, Dávalos A, Teruel JL, Cerrato F, Fernández-Lucas M, Merino JL et al. Comparative effects of dietary supplementation with red grape juice and vitamin E on production of superoxide by circulating neutrophil NADPH oxidase in hemodialysis patients. Am J Clin Nutr 2008; 87: 1053–1061.

    Article  CAS  PubMed  Google Scholar 

  32. O’Bryne DJ, Devaraj S, Grundy SM, Jialal I . Comparison of the antioxidant effects of Concord grape juice flavonoids α-tocopherol on markers of oxidative stress in healthy adults. Am J Clin Nutr 2002; 76: 1367–1374.

    Article  Google Scholar 

  33. Zern TL, Wood RJ, Greene C, West KL, Liu Y, Aggarwal D et al. Grape polyphenols exert a cardioprotective effect in pre- and postmenopausal women by lowering plasma lipids and reducing oxidative stress. J Nutr 2005; 135: 1911–1917.

    Article  CAS  PubMed  Google Scholar 

  34. Pignatelli P, Ghiselli A, Buchetti B, Carnevale R, Natella F, Germanó G et al. Polyphenols synergestically inhibit oxidative stress in subjects given red and white wine. Atherosclerosis 2006; 188: 77–83.

    Article  CAS  PubMed  Google Scholar 

  35. Terra X, Montagut G, Bustos M, Llopiz N, Ardèvol A, Bladé C et al. Grape-seed procyanidins prevent low-grade inflammation by modulating cytokine expression in rats fed a high-fat diet. J Nutr Biochem 2009; 20: 210–218.

    Article  CAS  PubMed  Google Scholar 

  36. Fuhrman B, Volkova N, Coleman R, Aviram M . Grape powder polyphenols attenuate atherosclerosis development in apolipoprotein E deficient (E0) mice and reduce macrophage atherogenicity. J Nutr 2005; 135: 722–728.

    Article  CAS  PubMed  Google Scholar 

  37. Vinson JA, Mandarano MA, Shuta DL, Bagchi M, Bagchi D . Beneficial effects of novel IH636 grape seed proanthocyanidin extract and niacin-bound chromium in a hamster atherosclerosis model. Mol Cell Biochem 2002; 240: 99–103.

    Article  CAS  PubMed  Google Scholar 

  38. Terra X, Fernández-Larrea J, Pujadas G, Ardèvol A, Bladé C, Salvadó J et al. Inhibitory effects of grape seed procyanidins on foam cell formation in vitro. J Agric Food Chem 2009; 57: 2588–2594.

    Article  CAS  PubMed  Google Scholar 

  39. Chacón MR, Ceperuelo-Mallafré V, Maymó-Masip E, Mateo-Sanz JM, Arola L, Guitiérrez C et al. Grape-seed procyanidins modulate inflammation on human differentiated adipocytes in vitro. Cytokine 2009; 47: 137–142.

    Article  PubMed  Google Scholar 

  40. Iyori M, Kataoka H, Shamsul HM, Kiura K, Yasuda M, Nakata T et al. Resveratrol modulates phagocytosis of bacteria through an NF-kappaB-dependent gene program. Antimicrob Agents Chemother 2008; 52: 121–127.

    Article  CAS  PubMed  Google Scholar 

  41. Moon SO, Kim W, Sung MJ, Lee S, Kang KP, Kim DH et al. Resveratrol suppresses tumor necrosis factor-alpha-induced fractalkine expression in endothelial cells. Mol Pharmacol 2006; 70: 112–119.

    CAS  PubMed  Google Scholar 

  42. Okoko T, Oruambo IF . Inhibitory activity of quercetin and its metabolite on lipopolysaccharide-induced activation of macrophage U937 cells. Food Chem Toxicol 2009; 47: 809–812.

    Article  CAS  PubMed  Google Scholar 

  43. Kaneko M, Takimoto H, Sugiyama T, Seki Y, Kawaguchi K, Kumazawa Y . Suppressive effects of the flavonoids quercetin and luteolin on the accumulation of lipid rafts after signal transduction via receptors. Immunopharmacol Immunotoxicol 2008; 30: 867–882.

    Article  CAS  PubMed  Google Scholar 

  44. Necela BM, Su W, Thompson EA . Toll-like receptor 4 mediates cross-talk between peroxisome proliferator-activated receptor γ and nuclear factor-κB in macrophages. Immunology 2008; 125: 344–358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Su CG, Wen X, Bailey ST, Jiang W, Rangwala SM, Keilbaugh SA et al. A novel therapy for colitis utilizing PPAR-gamma ligands to inhibit the epithelial inflammatory response. J Clin Invest 1999; 104: 383–389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Desreumaux P, Dubuquoy L, Nutten S, Peuchmaur M, Englaro W, Schoonjans K et al. Attenuation of colon inflammation through activators of the retinoid X receptor(RXR)/peroxisome proliferator-activated receptor gamma(PPARgamma) heterodimer. A basis for new therapeutic strategies. J Exp Med 2001; 193: 827–838.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Saubermann LJ, Nakajima A, Wada K, Zhao S, Terauchi Y, Kadowaki T et al. Peroxisome proliferator-activated receptor gamma agonist ligands stimulate a Th2 cytokine response and prevent acute colitis. Inflamm Bowel Dis 2002; 8: 330–339.

    Article  PubMed  Google Scholar 

  48. Katayama K, Wada K, Nakajima A, Mizuguchi H, Hayakawa T, Nakagawa S et al. A novel PPAR gamma gene therapy to control inflammation associated with inflammatory bowel disease in a murine model. Gastroenterology 2003; 124: 1315–1324.

    Article  CAS  PubMed  Google Scholar 

  49. Lytle C, Tod TJ, Vo KT, Lee JW, Atkinson RD, Straus DS . The peroxisome proliferator-activated receptor gamma ligand rosiglitazone delays the onset of inflammatory bowel disease in mice with interleukin 10 deficiency. Inflamm Bowel Dis 2005; 11: 231–243.

    Article  PubMed  Google Scholar 

  50. Schaefer KL, Denevich S, Ma C, Cooley SR, Nakajima A, Wada K et al. Intestinal anti-inflammatory effects of thiazolidenedione peroxisome proliferator-activated receptor-gamma ligands on T helper type 1 chemokine regulation include nontranscriptional control mechanisms. Inflamm Bowel Dis 2005; 11: 244–252.

    Article  PubMed  Google Scholar 

  51. Nagy L, Tontonoz P, Alvarez JG, Chen H, Evans RM . Oxidized LDL regulates macrophage gene expression through ligand activation of PPARgamma. Cell 1998; 93: 229–240.

    Article  CAS  PubMed  Google Scholar 

  52. Tontonoz P, Nagy L, Alvarez JG, Thomazy VA, Evans RM . PPARgamma promotes monocyte/macrophage differentiation and uptake of oxidized LDL. Cell 1998; 93: 241–252.

    Article  CAS  PubMed  Google Scholar 

  53. Li AC, Brown KK, Silvestre MJ, Willson TM, Palinski W, Glass CK . Peroxisome proliferator-activated receptor gamma ligands inhibit development of atherosclerosis in LDL receptor-deficient mice. J Clin Invest 2000; 106: 523–531.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhang L, Chawla A . Role of PPARgamma in macrophage biology and atherosclerosis. Trends Endocrinol Metab 2004; 15: 500–505.

    Article  CAS  PubMed  Google Scholar 

  55. Hammad H, de Heer HJ, Soullie T, Angeli V, Trottein F, Hoogsteden HC et al. Activation of peroxisome proliferator activated receptor-gamma in dendritic cells inhibits the development of eosinophilic airway inflammation in a mouse model of asthma. Am J Pathol 2004; 164: 263–271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Woerly G, Honda K, Loyens M, Papin JP, Auwerx J, Staels B et al. Peroxisome proliferator-activated receptors alpha and gamma down-regulate allergic inflammation and eosinophil activation. J Exp Med 2003; 198: 411–421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Trifilieff A, Bench A, Hanley M, Bayley D, Campbell E, Whittaker P . PPAR-alpha and -gamma but not -delta agonists inhibit airway inflammation in a murine model of asthma: in vitro evidence for an NF-kappaB-independent effect. Br J Pharmacol 2003; 139: 163–171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Demerjian M, Man MQ, Choi EH, Brown BE, Crumrine D, Chang S et al. Topical treatment with thiazolidinediones, activators of peroxisome proliferator-activated receptor-gamma, normalizes epidermal homeostasis in a murine hyperproliferative disease model. Exp Dermatol 2006; 15: 154–160.

    Article  CAS  PubMed  Google Scholar 

  59. Hasegawa H, Takano H, Zou Y, Qin Y, Hizukuri K, Odaka K et al. Pioglitazone, a peroxisome proliferator activated receptor gamma activator, ameliorates experimental autoimmune myocarditis by modulating Th1/Th2 balance. J Mol Cell Cardiol 2005; 38: 257–265.

    Article  CAS  PubMed  Google Scholar 

  60. Yuan ZY, Liu Y, Liu Y, Zhang JJ, Kishimoto C, Wang YN et al. PPAR-gamma ligands inhibit the expression of inflammatory cytokines and attenuate autoimmune myocarditis. Chin Med J (Engl) 2004; 117: 1253–1255.

    CAS  Google Scholar 

  61. Natarajan C, Bright JJ . Peroxisome proliferator-activated receptor-gamma agonists inhibit experimental allergic encephalomyelitis by blocking IL-12 production, IL-12 signaling and Th1differentiation. Genes Immun 2002; 3: 59–70.

    Article  CAS  PubMed  Google Scholar 

  62. Diab A, Deng C, Smith JD, Hussain RZ, Phanavanh B, Lovett-Racke AE et al. Peroxisome proliferator-activated receptor-gamma agonist 15-deoxy-Delta(12,14)-prostaglandinJ(2) ameliorates experimental autoimmune encephalomyelitis. J Immunol 2002; 168: 2508–2515.

    Article  CAS  PubMed  Google Scholar 

  63. Wang Q, Xia M, Liu C, Guo H, Ye Q, Hu Y et al. Cyanidin-3-O-beta-glucoside inhibits iNOS and COX-2 expression by inducing liver X receptor alpha activation in THP-1 macrophages. Life Sci 2008; 83: 176–184.

    Article  CAS  PubMed  Google Scholar 

  64. Xia M, Hou M, Zhu H, Ma J, Tang Z, Wang Q et al. Anthocyanins induce cholesterol efflux from mouse peritoneal macrophages: the role of the peroxisome proliferator-activated receptor {gamma}-liver X receptor {alpha}-ABCA1 pathway. J Biol Chem 2005; 280: 36792–36801.

    Article  CAS  PubMed  Google Scholar 

  65. Szanto A, Rõszer T . Nuclear receptors in macrophages: A link between metabolism and inflammation. FEBS Lett 2008; 582: 106–116.

    Article  CAS  PubMed  Google Scholar 

  66. Varga T, Nagy L . Nuclear receptors, transcription factors linking lipid metabolism and immunity: the case of peroxisome proliferator-activated receptor gamma. Eur J Clin Invest 2008; 38: 695–707.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the California Table Grape Commission for providing the grape powder. We also thank the WB Kellogg Institute for Food and Marketing for providing financial support for these studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M McIntosh.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Overman, A., Bumrungpert, A., Kennedy, A. et al. Polyphenol-rich grape powder extract (GPE) attenuates inflammation in human macrophages and in human adipocytes exposed to macrophage-conditioned media. Int J Obes 34, 800–808 (2010). https://doi.org/10.1038/ijo.2009.296

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2009.296

Keywords

This article is cited by

Search

Quick links