Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Transcription factor AP-2β inhibits expression and secretion of leptin, an insulin-sensitizing hormone, in 3T3-L1 adipocytes

Abstract

Background:

We have previously reported an association between the activator protein-2β (AP-2β) transcription factor gene and type 2 diabetes. This gene is preferentially expressed in adipose tissue, and subjects with a disease-susceptible allele of AP-2β showed stronger AP-2β expression in adipose tissue than those without the susceptible allele. Furthermore, overexpression of AP-2β led to lipid accumulation and induced insulin resistance in 3T3-L1 adipocytes.

Result:

We found that overexpression of AP-2β in 3T3-L1 adipocytes decreased the promoter activity of leptin, and subsequently decreased both messenger RNA (mRNA) and protein expression and secretion. Furthermore, knockdown of endogenous AP-2β by RNA-interference increased mRNA and protein expression of leptin. Electrophoretic mobility shift and chromatin immunoprecipitation assays revealed specific binding of AP-2β to leptin promoter regions in vitro and in vivo. In addition, site-directed mutagenesis of the AP-2-binding site located between position +34 and +42 relative to the transcription start site abolished the inhibitory effect of AP-2β. Our results clearly showed that AP-2β directly inhibited insulin-sensitizing hormone leptin expression by binding to its promoter.

Conclusion:

AP-2β modulated the expression of leptin through direct interaction with its promoter region.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Maeda S, Tsukada S, Kanazawa A, Sekine A, Tsunoda T, Koya D et al. Genetic variations in the gene encoding TFAP2B are associated with type 2 diabetes mellitus. J Hum Genet 2005; 50: 283–292.

    Article  CAS  Google Scholar 

  2. Tsukada S, Tanaka Y, Maegawa H, Kashiwagi A, Kawamori R, Maeda S . Intronic polymorphisms within TFAP2B regulate transcriptional activity and affect adipocytokine gene expression in differentiated adipocytes. Mol Endocrinol 2006; 20: 1104–1111.

    Article  CAS  Google Scholar 

  3. Tao Y, Maegawa H, Ugi S, Ikeda K, Nagai Y, Egawa K et al. The transcription factor AP-2beta causes cell enlargement and insulin resistance in 3T3-L1 adipocytes. Endocrinology 2006; 147: 1685–1696.

    Article  CAS  Google Scholar 

  4. Ikeda K, Maegawa H, Ugi S, Tao Y, Nishio Y, Tsukada S et al. Transcription factor activating enhancer-binding protein-2beta. A negative regulator of adiponectin gene expression. J Biol Chem 2006; 281: 31245–31253.

    Article  CAS  Google Scholar 

  5. Kondo M, Maegawa H, Obata T, Ugi S, Ikeda K, Morino K et al. Transcription factor activating protein-2beta: a positive regulator of monocyte chemoattractant protein-1 gene expression. Endocrinology 2009; 150: 1654–1661.

    Article  CAS  Google Scholar 

  6. Nordquist N, Gokturk C, Comasco E, Eensoo D, Merenakk L, Veidebaum T et al. The transcription factor TFAP2B is associated with insulin resistance and adiposity in healthy adolescents. Obesity (Silver Spring) 2009; 17: 1762–1767.

    Article  CAS  Google Scholar 

  7. Lindgren CM, Heid IM, Randall JC, Lamina C, Steinthorsdottir V, Qi L et al. Genome-wide association scan meta-analysis identifies three loci influencing adiposity and fat distribution. PLoS Genet 2009; 5: e1000508.

    Article  Google Scholar 

  8. Matsuzawa Y . Adipocytokines and metabolic syndrome. Semin Vasc Med 2005; 5: 34–39.

    Article  Google Scholar 

  9. Ahima RS, Lazar MA . Adipokines and the peripheral and neural control of energy balance. Mol Endocrinol 2008; 22: 1023–1031.

    Article  CAS  Google Scholar 

  10. Halaas JL, Gajiwala KS, Maffei M, Cohen SL, Chait BT, Rabinowitz D et al. Weight-reducing effects of the plasma protein encoded by the obese gene. Science 1995; 269: 543–546.

    Article  CAS  Google Scholar 

  11. Friedman JM, Halaas JL . Leptin and the regulation of body weight in mammals. Nature 1998; 395: 763–770.

    Article  CAS  Google Scholar 

  12. Muzzin P, Eisensmith RC, Copeland KC, Woo SL . Correction of obesity and diabetes in genetically obese mice by leptin gene therapy. Proc Natl Acad Sci USA 1996; 93: 14804–14808.

    Article  CAS  Google Scholar 

  13. Montague CT, Farooqi IS, Whitehead JP, Soos MA, Rau H, Wareham NJ et al. Congenital leptin deficiency is associated with severe early-onset obesity in humans. Nature 1997; 387: 903–908.

    Article  CAS  Google Scholar 

  14. Licinio J, Caglayan S, Ozata M, Yildiz BO, de Miranda PB, O’Kirwan F et al. Phenotypic effects of leptin replacement on morbid obesity, diabetes mellitus, hypogonadism, and behavior in leptin-deficient adults. Proc Natl Acad Sci USA 2004; 101: 4531–4536.

    Article  CAS  Google Scholar 

  15. Paz-Filho G, Esposito K, Hurwitz B, Sharma A, Dong C, Andreev V et al. Changes in insulin sensitivity during leptin replacement therapy in leptin-deficient patients. Am J Physiol Endocrinol Metab 2008; 295: E1401–E1408.

    Article  CAS  Google Scholar 

  16. Shimomura I, Hammer RE, Ikemoto S, Brown MS, Goldstein JL . Leptin reverses insulin resistance and diabetes mellitus in mice with congenital lipodystrophy. Nature 1999; 401: 73–76.

    Article  CAS  Google Scholar 

  17. Oral EA, Simha V, Ruiz E, Andewelt A, Premkumar A, Snell P et al. Leptin-replacement therapy for lipodystrophy. N Engl J Med 2002; 346: 570–578.

    Article  CAS  Google Scholar 

  18. Ebihara K, Masuzaki H, Nakao K . Long-term leptin-replacement therapy for lipoatrophic diabetes. N Engl J Med 2004; 351: 615–616.

    Article  CAS  Google Scholar 

  19. Kusakabe T, Tanioka H, Ebihara K, Hirata M, Miyamoto L, Miyanaga F et al. Beneficial effects of leptin on glycaemic and lipid control in a mouse model of type 2 diabetes with increased adiposity induced by streptozotocin and a high-fat diet. Diabetologia 2009; 52: 675–683.

    Article  CAS  Google Scholar 

  20. Ugi S, Imamura T, Maegawa H, Egawa K, Yoshizaki T, Shi K et al. Protein phosphatase 2A negatively regulates insulin's metabolic signaling pathway by inhibiting Akt (protein kinase B) activity in 3T3-L1 adipocytes. Mol Cell Biol 2004; 24: 8778–8789.

    Article  CAS  Google Scholar 

  21. Egawa K, Maegawa H, Shimizu S, Morino K, Nishio Y, Bryer-Ash M et al. Protein-tyrosine phosphatase-1B negatively regulates insulin signaling in l6 myocytes and Fao hepatoma cells. J Biol Chem 2001; 276: 10207–10211.

    Article  CAS  Google Scholar 

  22. Egawa K, Sharma PM, Nakashima N, Huang Y, Huver E, Boss GR et al. Membrane-targeted phosphatidylinositol 3-kinase mimics insulin actions and induces a state of cellular insulin resistance. J Biol Chem 1999; 274: 14306–14314.

    Article  CAS  Google Scholar 

  23. Yoshizaki T, Maegawa H, Egawa K, Ugi S, Nishio Y, Imamura T et al. Protein phosphatase-2C alpha as a positive regulator of insulin sensitivity through direct activation of phosphatidylinositol 3-kinase in 3T3-L1 adipocytes. J Biol Chem 2004; 279: 22715–22726.

    Article  CAS  Google Scholar 

  24. Hashimoto T, Nakamura T, Maegawa H, Nishio Y, Egawa K, Kashiwagi A . Regulation of ATP-sensitive potassium channel subunit Kir6.2 expression in rat intestinal insulin-producing progenitor cells. J Biol Chem 2005; 280: 1893–1900.

    Article  CAS  Google Scholar 

  25. Latasa MJ, Griffin MJ, Moon YS, Kang C, Sul HS . Occupancy and function of the −150 sterol regulatory element and −65 E-box in nutritional regulation of the fatty acid synthase gene in living animals. Mol Cell Biol 2003; 23: 5896–5907.

    Article  CAS  Google Scholar 

  26. Kadowaki T, Hara K, Yamauchi T, Terauchi Y, Tobe K, Nagai R . Molecular mechanism of insulin resistance and obesity. Exp Biol Med 2003; 228: 1111–1117.

    Article  CAS  Google Scholar 

  27. Satoda M, Zhao F, Diaz GA, Burn J, Goodship J, Davidson HR et al. Mutations in TFAP2B cause Char syndrome, a familial form of patent ductus arteriosus. Nat Genet 2000; 25: 42–46.

    Article  CAS  Google Scholar 

  28. Zhao F, Weismann CG, Satoda M, Pierpont ME, Sweeney E, Thompson EM et al. Novel TFAP2B mutations that cause Char syndrome provide a genotype–phenotype correlation. Am J Hum Genet 2001; 69: 695–703.

    Article  CAS  Google Scholar 

  29. Tummala R, Romano RA, Fuchs E, Sinha S . Molecular cloning and characterization of AP-2 epsilon, a fifth member of the AP-2 family. Gene 2003; 321: 93–102.

    Article  CAS  Google Scholar 

  30. Williams T, Admon A, Luscher B, Tjian R . Cloning and expression of AP-2, a cell-type-specific transcription factor that activates inducible enhancer elements. Genes Dev 1988; 2 (Suppl 12A): 1557–1569.

    Article  CAS  Google Scholar 

  31. Zhao F, Satoda M, Licht JD, Hayashizaki Y, Gelb BD . Cloning and characterization of a novel mouse AP-2 transcription factor, AP-2delta, with unique DNA binding and transactivation properties. J Biol Chem 2001; 276: 40755–40760.

    Article  CAS  Google Scholar 

  32. Moser M, Imhof A, Pscherer A, Bauer R, Amselgruber W, Sinowatz F et al. Cloning and characterization of a second AP-2 transcription factor: AP-2 beta. Development 1995; 121: 2779–2788.

    CAS  PubMed  Google Scholar 

  33. Bosher JM, Totty NF, Hsuan JJ, Williams T, Hurst HC . A family of AP-2 proteins regulates c-erbB-2 expression in mammary carcinoma. Oncogene 1996; 13: 1701–1707.

    CAS  PubMed  Google Scholar 

  34. Guilherme A, Virbasius JV, Puri V, Czech MP . Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nat Rev Mol Cell Biol 2008; 9: 367–377.

    Article  CAS  Google Scholar 

  35. Kallen CB, Lazar MA . Antidiabetic thiazolidinediones inhibit leptin (ob) gene expression in 3T3-L1 adipocytes. Proc Natl Acad Sci USA 1996; 93: 5793–5796.

    Article  CAS  Google Scholar 

  36. Hollenberg AN, Susulic VS, Madura JP, Zhang B, Moller DE, Tontonoz P et al. Functional antagonism between CCAAT/enhancer binding protein-alpha and peroxisome proliferator-activated receptor-gamma on the leptin promoter. J Biol Chem 1997; 272: 5283–5290.

    Article  CAS  Google Scholar 

  37. Mason MM, He Y, Chen H, Quon MJ, Reitman M . Regulation of leptin promoter function by Sp1, C/EBP, and a novel factor. Endocrinology 1998; 139: 1013–1022.

    Article  CAS  Google Scholar 

  38. Tanaka T, Masuzaki H, Yasue S, Ebihara K, Shiuchi T, Ishii T et al. Central melanocortin signaling restores skeletal muscle AMP-activated protein kinase phosphorylation in mice fed a high-fat diet. Cell Metab 2007; 5: 395–402.

    Article  CAS  Google Scholar 

  39. Tanaka T, Hidaka S, Masuzaki H, Yasue S, Minokoshi Y, Ebihara K et al. Skeletal muscle AMP-activated protein kinase phosphorylation parallels metabolic phenotype in leptin transgenic mice under dietary modification. Diabetes 2005; 54: 2365–2374.

    Article  CAS  Google Scholar 

  40. Minokoshi Y, Kim YB, Peroni OD, Fryer LG, Muller C, Carling D et al. Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase. Nature 2002; 415: 339–343.

    Article  CAS  Google Scholar 

  41. Wang MY, Lee Y, Unger RH . Novel form of lipolysis induced by leptin. J Biol Chem 1999; 274: 17541–17544.

    Article  CAS  Google Scholar 

  42. Orci L, Cook WS, Ravazzola M, Wang MY, Park BH, Montesano R et al. Rapid transformation of white adipocytes into fat-oxidizing machines. Proc Natl Acad Sci USA 2004; 101: 2058–2063.

    Article  CAS  Google Scholar 

  43. Daval M, Foufelle F, Ferre P . Functions of AMP-activated protein kinase in adipose tissue. J Physiol 2006; 574 (Pt 1): 55–62.

    Article  CAS  Google Scholar 

  44. Rossmeisl M, Flachs P, Brauner P, Sponarova J, Matejkova O, Prazak T et al. Role of energy charge and AMP-activated protein kinase in adipocytes in the control of body fat stores. Int J Obes Relat Metab Disord 2004; 28 (Suppl 4): S38–S44.

    Article  CAS  Google Scholar 

  45. De Vos P, Lefebvre AM, Miller SG, Guerre-Millo M, Wong K, Saladin R et al. Thiazolidinediones repress ob gene expression in rodents via activation of peroxisome proliferator-activated receptor gamma. J Clin Invest 1996; 98: 1004–1009.

    Article  CAS  Google Scholar 

  46. Farooqi IS, Keogh JM, Kamath S, Jones S, Gibson WT, Trussell R et al. Partial leptin deficiency and human adiposity. Nature 2001; 414: 34–35.

    Article  CAS  Google Scholar 

  47. Maffei M, Halaas J, Ravussin E, Pratley RE, Lee GH, Zhang Y et al. Leptin levels in human and rodent: measurement of plasma leptin and ob RNA in obese and weight-reduced subjects. Nat Med 1995; 1: 1155–1161.

    Article  CAS  Google Scholar 

  48. Ravussin E, Pratley RE, Maffei M, Wang H, Friedman JM, Bennett PH et al. Relatively low plasma leptin concentrations precede weight gain in Pima Indians. Nat Med 1997; 3: 238–240.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank JM Olefsky (University of California, San Diego, CA, USA) for providing 3T3-L1 adipocytes. We also thank Ms K Kosaka for excellent technical assistance. This study was supported in part by a Grant-in-Aid from the Ministry of Education, Culture, Sports, Science and Technology, Japan (to SU and HM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H Maegawa.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fuke, T., Yoshizaki, T., Kondo, M. et al. Transcription factor AP-2β inhibits expression and secretion of leptin, an insulin-sensitizing hormone, in 3T3-L1 adipocytes. Int J Obes 34, 670–678 (2010). https://doi.org/10.1038/ijo.2009.295

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2009.295

Keywords

This article is cited by

Search

Quick links