Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The role of imaging and molecular imaging in the early detection of metabolic and cardiovascular dysfunctions

Abstract

Despite intense effort, obesity is still rising throughout the world. Links between obesity and cardiovascular diseases are now well established. Most of the cardiovascular changes related to obesity can be followed by magnetic resonance imaging (MRI) or by magnetic resonance spectroscopy (MRS). In particular, we will see in this review that MRI/MRS is extremely well suited to depict (1) changes in cardiac mass and function, (2) changes in stroke volume, (3) accumulation of fat inside the mediastinum or even inside the cardiomyocytes, (4) cell viability and (5) molecular changes during early cardiovascular diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. Kenchaiah S, Evans JC, Levy D, Wilson PW, Benjamin EJ, Larson MG et al. Obesity and the risk of heart failure. N Engl J Med 2002; 347: 305–313.

    Google Scholar 

  2. Mokdad AH, Ford ES, Bowman BA, Dietz WH, Vinicor F, Bales VS et al. Prevalence of obesity, diabetes, and obesity-related health risk factors, 2001. JAMA 2003; 289: 76–79.

    Article  Google Scholar 

  3. McGavock JM, Victor RG, Unger RH, Szczepaniak LS . Adiposity of the heart, revisited. Ann Intern Med 2006; 144: 517–524.

    CAS  PubMed  Google Scholar 

  4. Alexander JK, Dennis EW, Smith WG, Amad KH, Duncan WC, Austin RC . Blood volume, cardiac output, and distribution of systemic blood flow in extreme obesity. Cardiovasc Res Cent Bull 1962; 1: 39–44.

    PubMed  Google Scholar 

  5. Vasan RS, Larson MG, Benjamin EJ, Evans JC, Levy D . Left ventricular dilatation and the risk of congestive heart failure in people without myocardial infarction. N Engl J Med 1997; 336: 1350–1355.

    CAS  PubMed  Google Scholar 

  6. Bellenger NG, Davies LC, Francis JM, Coats AJ, Pennell DJ . Reduction in sample size for studies of remodeling in heart failure by the use of cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2000; 2: 271–278.

    CAS  PubMed  Google Scholar 

  7. Bellenger NG, Rajappan K, Rahman SL, Lahiri A, Raval U, Webster J et al. Effects of carvedilol on left ventricular remodelling in chronic stable heart failure: a cardiovascular magnetic resonance study. Heart 2004; 90: 760–764.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Syed MA, Paterson DI, Ingkanisorn WP, Rhoads KL, Hill J, Cannon III RO et al. Reproducibility and inter-observer variability of dobutamine stress CMR in patients with severe coronary disease: implications for clinical research. J Cardiovasc Magn Reson 2005; 7: 763–768.

    PubMed  Google Scholar 

  9. Botnar RM, Nagel E . Structural and functional imaging by MRI. Basic Res Cardiol 2008; 103: 152–160.

    PubMed  Google Scholar 

  10. Finn JP, Nael K, Deshpande V, Ratib O, Laub G . Cardiac MR imaging: state of the technology. Radiology 2006; 241: 338–354.

    PubMed  Google Scholar 

  11. Levy D, Garrison RJ, Savage DD, Kannel WB, Castelli WP . Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N Engl J Med 1990; 322: 1561–1566.

    CAS  Google Scholar 

  12. McMullen JR, Jennings GL . Differences between pathological and physiological cardiac hypertrophy: novel therapeutic strategies to treat heart failure. Clin Exp Pharmacol Physiol 2007; 34: 255–262.

    CAS  PubMed  Google Scholar 

  13. Pluim BM, Zwinderman AH, van der Laarse A, van der Wall EE . The athlete's heart. A meta-analysis of cardiac structure and function. Circulation 2000; 101: 336–344.

    CAS  PubMed  Google Scholar 

  14. Pennell DJ, Sechtem UP, Higgins CB, Manning WJ, Pohost GM, Rademakers FE et al. Clinical indications for cardiovascular magnetic resonance (CMR): Consensus Panel report. Eur Heart J 2004; 25: 1940–1965.

    PubMed  Google Scholar 

  15. Dulce MC, Mostbeck GH, Friese KK, Caputo GR, Higgins CB . Quantification of the left ventricular volumes and function with cine MR imaging: comparison of geometric models with three-dimensional data. Radiology 1993; 188: 371–376.

    CAS  PubMed  Google Scholar 

  16. Spottiswoode BS, Zhong X, Hess AT, Kramer CM, Meintjes EM, Mayosi BM et al. Tracking myocardial motion from cine DENSE images using spatiotemporal phase unwrapping and temporal fitting. IEEE Trans Med Imaging 2007; 26: 15–30.

    CAS  PubMed  Google Scholar 

  17. Wen H, Marsolo KA, Bennett EE, Kutten KS, Lewis RP, Lipps DB et al. Adaptive postprocessing techniques for myocardial tissue tracking with displacement-encoded MR imaging. Radiology 2008; 246: 229–240.

    PubMed  PubMed Central  Google Scholar 

  18. Hyacinthe JN, Ivancevic MK, Daire JL, Vallee JP . Feasibility of complementary spatial modulation of magnetization tagging in the rat heart after manganese injection. NMR Biomed 2008; 21: 15–21.

    CAS  PubMed  Google Scholar 

  19. Mewton N, Croisille P, Revel D, Weber O, Higgins CB, Saeed M . Left ventricular postmyocardial infarction remodeling studied by combining MR-tagging with delayed MR contrast enhancement. Invest Radiol 2008; 43: 219–228.

    PubMed  Google Scholar 

  20. Dixon WT . Simple proton spectroscopic imaging. Radiology 1984; 153: 189–194.

    CAS  PubMed  Google Scholar 

  21. Kellman P, Hernando D, Shah S, Zuehlsdorff S, Jerecic R, Mancini C et al. Multiecho dixon fat and water separation method for detecting fibrofatty infiltration in the myocardium. Magn Reson Med 2009; 61: 215–221.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Reeder SB, Robson PM, Yu H, Shimakawa A, Hines CD, McKenzie CA et al. Quantification of hepatic steatosis with MRI: the effects of accurate fat spectral modeling. J Magn Reson Imaging 2009; 29: 1332–1339.

    PubMed  PubMed Central  Google Scholar 

  23. Ma J . Dixon techniques for water and fat imaging. J Magn Reson Imaging 2008; 28: 543–558.

    PubMed  Google Scholar 

  24. Lee WJ, Fattal G . Mediastinal lipomatosis in simple obesity. Chest 1976; 70: 308–309.

    CAS  PubMed  Google Scholar 

  25. Lamb HJ, van der Meer RW, de Roos A, Bax JJ . Cardiovascular molecular MR imaging. Eur J Nucl Med Mol Imaging 2007; 34 (Suppl 1): S99–S104.

    CAS  PubMed  Google Scholar 

  26. Ingwall JS . How high does intracellular sodium rise during acute myocardial ischaemia? A view from NMR spectroscopy. Cardiovasc Res 1995; 29: 279.

    CAS  PubMed  Google Scholar 

  27. Ouwerkerk R, Weiss RG, Bottomley PA . Measuring human cardiac tissue sodium concentrations using surface coils, adiabatic excitation, and twisted projection imaging with minimal T2 losses. J Magn Reson Imaging 2005; 21: 546–555.

    PubMed  Google Scholar 

  28. Szczepaniak LS, Dobbins RL, Metzger GJ, Sartoni-D'Ambrosia G, Arbique D, Vongpatanasin W et al. Myocardial triglycerides and systolic function in humans: in vivo evaluation by localized proton spectroscopy and cardiac imaging. Magn Reson Med 2003; 49: 417–423.

    CAS  PubMed  Google Scholar 

  29. van der Meer RW, Doornbos J, Kozerke S, Schar M, Bax JJ, Hammer S et al. Metabolic imaging of myocardial triglyceride content: reproducibility of 1H MR spectroscopy with respiratory navigator gating in volunteers. Radiology 2007; 245: 251–257.

    PubMed  Google Scholar 

  30. Smith HL, Willius F . Adiposity of the heart: a clinical and pathologic study of one hundred and thirty-six obese patients. Arch int med 1933; 52: 911–931.

    Google Scholar 

  31. Zhou YT, Grayburn P, Karim A, Shimabukuro M, Higa M, Baetens D et al. Lipotoxic heart disease in obese rats: implications for human obesity. Proc Natl Acad Sci USA 2000; 97: 1784–1789.

    CAS  PubMed  Google Scholar 

  32. Ouwens DM, Boer C, Fodor M, de Galan P, Heine RJ, Maassen JA et al. Cardiac dysfunction induced by high-fat diet is associated with altered myocardial insulin signalling in rats. Diabetologia 2005; 48: 1229–1237.

    CAS  PubMed  Google Scholar 

  33. Hammer S, Snel M, Lamb HJ, Jazet IM, van der Meer RW, Pijl H et al. Prolonged caloric restriction in obese patients with type 2 diabetes mellitus decreases myocardial triglyceride content and improves myocardial function. J Am Coll Cardiol 2008; 52: 1006–1012.

    CAS  PubMed  Google Scholar 

  34. Lamb HJ, Smit JW, van der Meer RW, Hammer S, Doornbos J, de Roos A et al. Metabolic MRI of myocardial and hepatic triglyceride content in response to nutritional interventions. Curr Opin Clin Nutr Metab Care 2008; 11: 573–579.

    CAS  PubMed  Google Scholar 

  35. Luss H, Schafers M, Neumann J, Hammel D, Vahlhaus C, Baba HA et al. Biochemical mechanisms of hibernation and stunning in the human heart. Cardiovasc Res 2002; 56: 411–421.

    CAS  PubMed  Google Scholar 

  36. Bolli R, Marban E . Molecular and cellular mechanisms of myocardial stunning. Physiol Rev 1999; 79: 609–634.

    CAS  PubMed  Google Scholar 

  37. Braunwald E, Kloner RA . The stunned myocardium: prolonged, postischemic ventricular dysfunction. Circulation 1982; 66: 1146–1149.

    CAS  PubMed  Google Scholar 

  38. Heyndrickx GR, Millard RW, McRitchie RJ, Maroko PR, Vatner SF . Regional myocardial functional and electrophysiological alterations after brief coronary artery occlusion in conscious dogs. J Clin Invest 1975; 56: 978–985.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Narula J, Dawson MS, Singh BK, Amanullah A, Acio ER, Chaudhry FA et al. Noninvasive characterization of stunned, hibernating, remodeled and nonviable myocardium in ischemic cardiomyopathy. J Am Coll Cardiol 2000; 36: 1913–1919.

    CAS  PubMed  Google Scholar 

  40. Gowda RM, Khan IA, Vasavada BC, Sacchi TJ . Reversible myocardial dysfunction: basics and evaluation. Int J Cardiol 2004; 97: 349–353.

    PubMed  Google Scholar 

  41. Rahimtoola SH . The hibernating myocardium. Am Heart J 1989; 117: 211–221.

    CAS  PubMed  Google Scholar 

  42. Allman KC, Shaw LJ, Hachamovitch R, Udelson JE . Myocardial viability testing and impact of revascularization on prognosis in patients with coronary artery disease and left ventricular dysfunction: a meta-analysis. J Am Coll Cardiol 2002; 39: 1151–1158.

    PubMed  Google Scholar 

  43. Judd RM, Kim RJ . Imaging time after Gd-DTPA injection is critical in using delayed enhancement to determine infarct size accurately with magnetic resonance imaging. Circulation 2002; 106: e6; author reply e6.

    PubMed  Google Scholar 

  44. Oshinski JN, Yang Z, Jones JR, Mata JF, French BA . Imaging time after Gd-DTPA injection is critical in using delayed enhancement to determine infarct size accurately with magnetic resonance imaging. Circulation 2001; 104: 2838–2842.

    CAS  PubMed  Google Scholar 

  45. Marcu CB, Beek AM, van Rossum AC . Clinical applications of cardiovascular magnetic resonance imaging. CMAJ 2006; 175: 911–917.

    PubMed  PubMed Central  Google Scholar 

  46. Vogel-Claussen J, Rochitte CE, Wu KC, Kamel IR, Foo TK, Lima JA et al. Delayed enhancement MR imaging: utility in myocardial assessment. Radiographics 2006; 26: 795–810.

    PubMed  Google Scholar 

  47. Atkinson DJ, Burstein D, Edelman RR . First-pass cardiac perfusion: evaluation with ultrafast MR imaging. Radiology 1990; 174: 757–762.

    CAS  PubMed  Google Scholar 

  48. Ding S, Wolff SD, Epstein FH . Improved coverage in dynamic contrast-enhanced cardiac MRI using interleaved gradient-echo EPI. Magn Reson Med 1998; 39: 514–519.

    CAS  PubMed  Google Scholar 

  49. Lubbers DD, Janssen CH, Kuijpers D, van Dijkman PR, Overbosch J, Willems TP et al. The additional value of first pass myocardial perfusion imaging during peak dose of dobutamine stress cardiac MRI for the detection of myocardial ischemia. Int J Cardiovasc Imaging 2008; 24: 69–76.

    PubMed  Google Scholar 

  50. Schreiber WG, Schmitt M, Kalden P, Mohrs OK, Kreitner KF, Thelen M . Dynamic contrast-enhanced myocardial perfusion imaging using saturation-prepared TrueFISP. J Magn Reson Imaging 2002; 16: 641–652.

    PubMed  Google Scholar 

  51. Vitanis V, Manka R, Boesiger P, Kozerke S . Accelerated cardiac perfusion imaging using k-t SENSE with SENSE training. Magn Reson Med 2009; 62: 955–965.

    PubMed  Google Scholar 

  52. Cochet AA, Lorgis L, Lalande A, Zeller M, Beer JC, Walker PM et al. Major prognostic impact of persistent microvascular obstruction as assessed by contrast-enhanced cardiac magnetic resonance in reperfused acute myocardial infarction. Eur Radiol 2009; 19: 2117–2126.

    PubMed  Google Scholar 

  53. Hombach V, Grebe O, Merkle N, Waldenmaier S, Hoher M, Kochs M et al. Sequelae of acute myocardial infarction regarding cardiac structure and function and their prognostic significance as assessed by magnetic resonance imaging. Eur Heart J 2005; 26: 549–557.

    PubMed  Google Scholar 

  54. Baer FM, Voth E, Schneider CA, Theissen P, Schicha H, Sechtem U . Comparison of low-dose dobutamine-gradient-echo magnetic resonance imaging and positron emission tomography with fluorodeoxyglucose in patients with chronic coronary artery disease. A functional and morphological approach to the detection of residual myocardial viability. Circulation 1995; 91: 1006–1015.

    CAS  PubMed  Google Scholar 

  55. Cury RC, Cattani CA, Gabure LA, Racy DJ, de Gois JM, Siebert U et al. Diagnostic performance of stress perfusion and delayed-enhancement MR imaging in patients with coronary artery disease. Radiology 2006; 240: 39–45.

    PubMed  Google Scholar 

  56. Klem I, Heitner JF, Shah DJ, Sketch Jr MH, Behar V, Weinsaft J et al. Improved detection of coronary artery disease by stress perfusion cardiovascular magnetic resonance with the use of delayed enhancement infarction imaging. J Am Coll Cardiol 2006; 47: 1630–1638.

    PubMed  Google Scholar 

  57. Booth AJ, Csencsits-Smith K, Wood SC, Lu G, Lipson KE, Bishop DK . Connective tissue growth factor promotes fibrosis downstream of TGFbeta and IL-6 in chronic cardiac allograft rejection. Am J Transplant 2009; 10: 220–230.

    PubMed  PubMed Central  Google Scholar 

  58. Hirata Y, Soeki T, Akaike M, Sakai Y, Igarashi T, Sata M . Synthetic prostacycline agonist, ONO-1301, ameliorates left ventricular dysfunction and cardiac fibrosis in cardiomyopathic hamsters. Biomed Pharmacother 2009; 63: 781–786.

    CAS  PubMed  Google Scholar 

  59. Black MJ, D'Amore A, Auden A, Stamp L, Osicka T, Panagiotopoulos S et al. Chronic type 1 diabetes in spontaneously hypertensive rats leads to exacerbated cardiac fibrosis. Cardiovasc Pathol 2009 (in press).

  60. Ihm SH, Chang K, Kim HY, Baek SH, Youn HJ, Seung KB et al. Peroxisome proliferator-activated receptor-gamma activation attenuates cardiac fibrosis in type 2 diabetic rats: the effect of rosiglitazone on myocardial expression of receptor for advanced glycation end products and of connective tissue growth factor. Basic Res Cardiol 2009; 105: 399–407.

    PubMed  Google Scholar 

  61. Moreo A, Ambrosio G, De Chiara B, Pu M, Tran T, Mauri F et al. Influence of myocardial fibrosis on left ventricular diastolic function: noninvasive assessment by cardiac magnetic resonance and echo. Circ Cardiovasc Imaging 2009; 2: 437–443.

    PubMed  PubMed Central  Google Scholar 

  62. Alfakih K, Sparrow P, Plein S, Sivananthan MU, Walters K, Ridgway JP et al. Delayed enhancement imaging: standardised segmental assessment of myocardial viability in patients with ST-elevation myocardial infarction. Eur J Radiol 2008; 66: 42–47.

    PubMed  Google Scholar 

  63. Messroghli DR, Greiser A, Frohlich M, Dietz R, Schulz-Menger J . Optimization and validation of a fully-integrated pulse sequence for modified look-locker inversion-recovery (MOLLI) T1 mapping of the heart. J Magn Reson Imaging 2007; 26: 1081–1086.

    PubMed  Google Scholar 

  64. Messroghli DR, Walters K, Plein S, Sparrow P, Friedrich MG, Ridgway JP et al. Myocardial T1 mapping: application to patients with acute and chronic myocardial infarction. Magn Reson Med 2007; 58: 34–40.

    PubMed  Google Scholar 

  65. Sparrow P, Messroghli DR, Reid S, Ridgway JP, Bainbridge G, Sivananthan MU . Myocardial T1 mapping for detection of left ventricular myocardial fibrosis in chronic aortic regurgitation: pilot study. Am J Roentgenol 2006; 187: W630–W635.

    Google Scholar 

  66. Bottomley PA, Foster TH, Argersinger RE, Pfeifer LM . A review of normal tissue hydrogen NMR relaxation times and relaxation mechanisms from 1–100 MHz: dependence on tissue type, NMR frequency, temperature, species, excision, and age. Med Phys 1984; 11: 425–448.

    CAS  PubMed  Google Scholar 

  67. Lauterbur P, Dias M, Rudin A . Augmentation of tissue water proton spin-lattice relaxation rates in vivo by addition of paramagnetic ions. Academic Press: New York, 1978.

    Google Scholar 

  68. Mendonca-Dias MH, Gaggelli E, Lauterbur PC . Paramagnetic contrast agents in nuclear magnetic resonance medical imaging. Semin Nucl Med 1983; 13: 364–376.

    CAS  PubMed  Google Scholar 

  69. Hunter DR, Haworth RA, Berkoff HA . Cellular manganese uptake by the isolated perfused rat heart: a probe for the sarcolemma calcium channel. J Mol Cell Cardiol 1981; 13: 823–832.

    CAS  PubMed  Google Scholar 

  70. Ochi R . The slow inward current and the action of manganese ions in guinea-pig's myocardium. Pflugers Arch 1970; 316: 81–94.

    CAS  PubMed  Google Scholar 

  71. Skjold A, Vangberg TR, Kristoffersen A, Haraldseth O, Jynge P, Larsson HB . Relaxation enhancing properties of MnDPDP in human myocardium. J Magn Reson Imaging 2004; 20: 948–952.

    PubMed  Google Scholar 

  72. Haworth RA, Goknur AB, Berkoff HA . Measurement of Ca channel activity of isolated adult rat heart cells using 54Mn. Arch Biochem Biophys 1989; 268: 594–604.

    CAS  PubMed  Google Scholar 

  73. Hu TC, Pautler RG, MacGowan GA, Koretsky AP . Manganese-enhanced MRI of mouse heart during changes in inotropy. Magn Reson Med 2001; 46: 884–890.

    CAS  PubMed  Google Scholar 

  74. Vander Elst L, Colet JM, Muller RN . Spectroscopic and metabolic effects of MnCl2 and MnDPDP on the isolated and perfused rat heart. Invest Radiol 1997; 32: 581–588.

    CAS  PubMed  Google Scholar 

  75. Wendland MF . Applications of manganese-enhanced magnetic resonance imaging (MEMRI) to imaging of the heart. NMR Biomed 2004; 17: 581–594.

    CAS  PubMed  Google Scholar 

  76. Flacke S, Allen JS, Chia JM, Wible JH, Periasamy MP, Adams MD et al. Characterization of viable and nonviable myocardium at MR imaging: comparison of gadolinium-based extracellular and blood pool contrast materials versus manganese-based contrast materials in a rat myocardial infarction model. Radiology 2003; 226: 731–738.

    PubMed  Google Scholar 

  77. Storey P, Danias PG, Post M, Li W, Seoane PR, Harnish PP et al. Preliminary evaluation of EVP 1001-1: a new cardiac-specific magnetic resonance contrast agent with kinetics suitable for steady-state imaging of the ischemic heart. Invest Radiol 2003; 38: 642–652.

    CAS  PubMed  Google Scholar 

  78. Krombach GA, Saeed M, Higgins CB, Novikov V, Wendland MF . Contrast-enhanced MR delineation of stunned myocardium with administration of MnCl(2) in rats. Radiology 2004; 230: 183–190.

    PubMed  Google Scholar 

  79. Grangier C, Tourniaire J, Mentha G, Schiau R, Howarth N, Chachuat A et al. Enhancement of liver hemangiomas on T1-weighted MR SE images by superparamagnetic iron oxide particles. J Comput Assist Tomogr 1994; 18: 888–896.

    CAS  PubMed  Google Scholar 

  80. Montet X, Lazeyras F, Howarth N, Mentha G, Rubbia-Brandt L, Becker CD et al. Specificity of SPIO particles for characterization of liver hemangiomas using MRI. Abdom Imaging 2004; 29: 60–70.

    CAS  PubMed  Google Scholar 

  81. Montet-Abou K, Montet X, Weissleder R, Josephson L . Transfection agent induced nanoparticle cell loading. Mol Imaging 2005; 4: 165–171.

    PubMed  Google Scholar 

  82. Montet-Abou K, Montet X, Weissleder R, Josephson L . Cell internalization of magnetic nanoparticles using transfection agents. Mol Imaging 2007; 6: 1–9.

    CAS  PubMed  Google Scholar 

  83. Kanno S, Wu YJ, Lee PC, Dodd SJ, Williams M, Griffith BP et al. Macrophage accumulation associated with rat cardiac allograft rejection detected by magnetic resonance imaging with ultrasmall superparamagnetic iron oxide particles. Circulation 2001; 104: 934–938.

    CAS  PubMed  Google Scholar 

  84. Jaffer FA, Libby P, Weissleder R . Molecular and cellular imaging of atherosclerosis: emerging applications. J Am Coll Cardiol 2006; 47: 1328–1338.

    CAS  PubMed  Google Scholar 

  85. Kooi ME, Cappendijk VC, Cleutjens KB, Kessels AG, Kitslaar PJ, Borgers M et al. Accumulation of ultrasmall superparamagnetic particles of iron oxide in human atherosclerotic plaques can be detected by in vivo magnetic resonance imaging. Circulation 2003; 107: 2453–2458.

    CAS  PubMed  Google Scholar 

  86. Schmitz SA, Taupitz M, Wagner S, Coupland SE, Gust R, Nikolova A et al. Iron-oxide-enhanced magnetic resonance imaging of atherosclerotic plaques: postmortem analysis of accuracy, inter-observer agreement, and pitfalls. Invest Radiol 2002; 37: 405–411.

    CAS  PubMed  Google Scholar 

  87. Trivedi RA, JM UK-I, Graves MJ, Cross JJ, Horsley J, Goddard MJ et al. In vivo detection of macrophages in human carotid atheroma: temporal dependence of ultrasmall superparamagnetic particles of iron oxide-enhanced MRI. Stroke 2004; 35: 1631–1635.

    PubMed  Google Scholar 

  88. Montet-Abou K, Daire JL, Hyacinthe JN, Jorge-Costa M, Grosdemange K, Mach F et al. In vivo labelling of resting monocytes in the reticuloendothelial system with fluorescent iron oxide nanoparticles prior to injury reveals that they are mobilized to infarcted myocardium. Eur Heart J 2009; 31: 1410–1420.

    PubMed  Google Scholar 

  89. Spuentrup E, Ruhl KM, Botnar RM, Wiethoff AJ, Buhl A, Jacques V et al. Molecular magnetic resonance imaging of myocardial perfusion with EP-3600, a collagen-specific contrast agent: initial feasibility study in a swine model. Circulation 2009; 119: 1768–1775.

    CAS  PubMed  Google Scholar 

  90. Wang X, Jin PP, Zhou T, Zhao YP, Ding QL, Wang DB et al. MR molecular imaging of thrombus: development and application of a Gd-based novel contrast agent targeting to P-selectin. Clin Appl Thromb Hemost 2009; 16: 177–183.

    PubMed  Google Scholar 

  91. Ye F, Wu X, Jeong EK, Jia Z, Yang T, Parker D et al. A peptide targeted contrast agent specific to fibrin-fibronectin complexes for cancer molecular imaging with MRI. Bioconjug Chem 2008; 19: 2300–2303.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Edwards WB, Xu B, Akers W, Cheney PP, Liang K, Rogers BE et al. Agonist-antagonist dilemma in molecular imaging: evaluation of a monomolecular multimodal imaging agent for the somatostatin receptor. Bioconjug Chem 2008; 19: 192–200.

    CAS  PubMed  Google Scholar 

  93. Kung HF, Kung MP, Wey SP, Lin KJ, Yen TC . Clinical acceptance of a molecular imaging agent: a long march with [99mTc]TRODAT. Nucl Med Biol 2007; 34: 787–789.

    CAS  PubMed  Google Scholar 

  94. Chen Y, Dhara S, Banerjee SR, Byun Y, Pullambhatla M, Mease RC et al. A low molecular weight PSMA-based fluorescent imaging agent for cancer. Biochem Biophys Res Commun 2009; 390: 624–629.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Funovics M, Montet X, Reynolds F, Weissleder R, Josephson L . Nanoparticles for the optical imaging of tumor E-selectin. Neoplasia 2005; 7: 904–911.

    CAS  PubMed  Google Scholar 

  96. Wyss C, Schaefer SC, Juillerat-Jeanneret L, Lagopoulos L, Lehr HA, Becker CD et al. Molecular imaging by micro-CT: specific E-selectin imaging. Eur Radiol 2009; 19: 2487–2494.

    PubMed  Google Scholar 

  97. Borden MA, Zhang H, Gillies RJ, Dayton PA, Ferrara KW . A stimulus-responsive contrast agent for ultrasound molecular imaging. Biomaterials 2008; 29: 597–606.

    CAS  PubMed  Google Scholar 

  98. Klibanov AL, Rychak JJ, Yang WC, Alikhani S, Li B, Acton S et al. Targeted ultrasound contrast agent for molecular imaging of inflammation in high-shear flow. Contrast Media Mol Imaging 2006; 1: 259–266.

    CAS  PubMed  Google Scholar 

  99. Lange N, Becker CD, Montet X . Molecular imaging in a (pre-) clinical context. Acta Gastroenterol Belg 2008; 71: 308–317.

    PubMed  Google Scholar 

  100. Louie AY, Huber MM, Ahrens ET, Rothbacher U, Moats R, Jacobs RE et al. In vivo visualization of gene expression using magnetic resonance imaging. Nat Biotechnol 2000; 18: 321–325.

    CAS  PubMed  Google Scholar 

  101. Bogdanov Jr A, Matuszewski L, Bremer C, Petrovsky A, Weissleder R . Oligomerization of paramagnetic substrates result in signal amplification and can be used for MR imaging of molecular targets. Mol Imaging 2002; 1: 16–23.

    CAS  PubMed  Google Scholar 

  102. Perez JM, Josephson L, O'Loughlin T, Hogemann D, Weissleder R . Magnetic relaxation switches capable of sensing molecular interactions. Nat Biotechnol 2002; 20: 816–820.

    CAS  PubMed  Google Scholar 

  103. Nahrendorf M, Sosnovik D, Chen JW, Panizzi P, Figueiredo JL, Aikawa E et al. Activatable magnetic resonance imaging agent reports myeloperoxidase activity in healing infarcts and noninvasively detects the antiinflammatory effects of atorvastatin on ischemia-reperfusion injury. Circulation 2008; 117: 1153–1160.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Mocatta TJ, Pilbrow AP, Cameron VA, Senthilmohan R, Frampton CM, Richards AM et al. Plasma concentrations of myeloperoxidase predict mortality after myocardial infarction. J Am Coll Cardiol 2007; 49: 1993–2000.

    CAS  PubMed  Google Scholar 

  105. Sipkins DA, Cheresh DA, Kazemi MR, Nevin LM, Bednarski MD, Li KC . Detection of tumor angiogenesis in vivo by alphaVbeta3-targeted magnetic resonance imaging. Nat Med 1998; 4: 623–626.

    CAS  PubMed  Google Scholar 

  106. Winter PM, Morawski AM, Caruthers SD, Fuhrhop RW, Zhang H, Williams TA et al. Molecular imaging of angiogenesis in early-stage atherosclerosis with alpha(v)beta3-integrin-targeted nanoparticles. Circulation 2003; 108: 2270–2274.

    CAS  PubMed  Google Scholar 

  107. Bulte JW, Douglas T, Witwer B, Zhang SC, Strable E, Lewis BK et al. Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells. Nat Biotechnol 2001; 19: 1141–1147.

    CAS  PubMed  Google Scholar 

  108. Flacke S, Fischer S, Scott MJ, Fuhrhop RJ, Allen JS, McLean M et al. Novel MRI contrast agent for molecular imaging of fibrin: implications for detecting vulnerable plaques. Circulation 2001; 104: 1280–1285.

    CAS  PubMed  Google Scholar 

  109. Montet X, Funovics M, Montet-Abou K, Weissleder R, Josephson L . Multivalent effects of RGD peptides obtained by nanoparticle display. J Med Chem 2006; 49: 6087–6093.

    CAS  PubMed  Google Scholar 

  110. Montet X, Montet-Abou K, Reynolds F, Weissleder R, Josephson L . Nanoparticle imaging of integrins on tumor cells. Neoplasia 2006; 8: 214–222.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Reynolds PR, Larkman DJ, Haskard DO, Hajnal JV, Kennea NL, George AJ et al. Detection of vascular expression of E-selectin in vivo with MR imaging. Radiology 2006; 241: 469–476.

    PubMed  Google Scholar 

  112. Nahrendorf M, Jaffer FA, Kelly KA, Sosnovik DE, Aikawa E, Libby P et al. Noninvasive vascular cell adhesion molecule-1 imaging identifies inflammatory activation of cells in atherosclerosis. Circulation 2006; 114: 1504–1511.

    CAS  PubMed  Google Scholar 

  113. Sosnovik DE, Schellenberger EA, Nahrendorf M, Novikov MS, Matsui T, Dai G et al. Magnetic resonance imaging of cardiomyocyte apoptosis with a novel magneto-optical nanoparticle. Magn Reson Med 2005; 54: 718–724.

    PubMed  Google Scholar 

  114. Sosnovik DE, Nahrendorf M, Panizzi P, Matsui T, Aikawa E, Dai G et al. Molecular MRI detects low levels of cardiomyocyte apoptosis in a transgenic model of chronic heart failure. Circ Cardiovasc Imaging 2009; 2: 468–475.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Swiss National Science Foundation (Grant Number: 320030-116813 to XM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X Montet.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Montet-Abou, K., Viallon, M., Hyacinthe, JN. et al. The role of imaging and molecular imaging in the early detection of metabolic and cardiovascular dysfunctions. Int J Obes 34 (Suppl 2), S67–S81 (2010). https://doi.org/10.1038/ijo.2010.242

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2010.242

Keywords

Search

Quick links