Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Abnormal expressions of circadian-clock and circadian clock-controlled genes in the livers and kidneys of long-term, high-fat-diet-treated mice

Abstract

Objectives:

Physiological and behavioral circadian rhythmicities are exhibited by all mammals and are generated by intracellular levels of circadian oscillators, which are composed of transcriptional/translational feedback loops involving a set of circadian-clock genes, such as Clock, Per1–3, Cry1–2, Bmal1, Dbp, E4BP4 and CK1ɛ. These circadian-clock genes play important roles in regulating circadian rhythms and also energy homeostasis and metabolism. Determining whether obesity induced by high-fat diet affected the expressions of circadian-clock genes and their related genes in peripheral tissues, was the main focus of this study. To address this issue, we fed male C57BL/6 mice a high-fat diet for 11 months to induce obesity, hyperglycemic, hypercholesterolemic and hyperinsulinemic symptoms, and used quantitative real-time reverse transcription-PCR to measure gene expression levels.

Results:

We found that the expressions of circadian-clock genes and circadian clock-controlled genes, including Per1–3, Cry1–2, Bmal1, Dbp, E4BP4, CK1ɛ, PEPCK, PDK4 and NHE3, were altered in the livers and/or kidneys.

Conclusions:

These results indicate that obesity induced by high-fat diet alters the circadian-clock system, and obesity and metabolic syndrome are highly correlated with the expressions of circadian-clock genes and their downstream, circadian clock-controlled genes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Anderson LH, Martinson BC, Crain AL, Pronk NP, Whitebird RR, O'Connor PJ et al. Health care charges associated with physical inactivity, overweight, and obesity. Prev Chronic Dis 2005; 2: A09.

    PubMed  PubMed Central  Google Scholar 

  2. Laaksonen DE, Niskanen L, Lakka HM, Lakka TA, Uusitupa M . Epidemiology and treatment of the metabolic syndrome. Ann Med 2004; 36: 332–346.

    Article  CAS  PubMed  Google Scholar 

  3. Association AD . Standards of medical care in diabetes—2006. Diabetes Care 2006; 29 (Suppl 1): S4–S42.

    Google Scholar 

  4. Reaven GM . Role of insulin resistance in the pathophysiology of non-insulin dependent diabetes mellitus. Diabetes Metab Rev 1993; 9 (Suppl 1): 5S–12S.

    Article  PubMed  Google Scholar 

  5. Reaven GM, Chen YD . Role of insulin in regulation of lipoprotein metabolism in diabetes. Diabetes Metab Rev 1988; 4: 639–652.

    Article  CAS  PubMed  Google Scholar 

  6. Spurlock ME, Gabler NK . The development of porcine models of obesity and the metabolic syndrome. J Nutr 2008; 138: 397–402.

    Article  CAS  PubMed  Google Scholar 

  7. Gekakis N, Staknis D, Nguyen HB, Davis FC, Wilsbacher LD, King DP et al. Role of the CLOCK protein in the mammalian circadian mechanism. Science 1998; 280: 1564–1569.

    Article  CAS  PubMed  Google Scholar 

  8. Dunlap JC . Molecular bases for circadian clocks. Cell 1999; 96: 271–290.

    Article  CAS  PubMed  Google Scholar 

  9. Eide EJ, Kang H, Crapo S, Gallego M, Virshup DM . Casein kinase I in the mammalian circadian clock. Methods Enzymol 2005; 393: 408–418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Eide EJ, Woolf MF, Kang H, Woolf P, Hurst W, Camacho F et al. Control of mammalian circadian rhythm by CKIepsilon-regulated proteasome-mediated PER2 degradation. Mol Cell Biol 2005; 25: 2795–2807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Whitmore D, Cermakian N, Crosio C, Foulkes NS, Pando MP, Travnickova Z et al. A clockwork organ. Biol Chem 2000; 381: 793–800.

    Article  CAS  PubMed  Google Scholar 

  12. Preitner N, Damiola F, Lopez-Molina L, Zakany J, Duboule D, Albrecht U et al. The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell 2002; 110: 251–260.

    Article  CAS  PubMed  Google Scholar 

  13. Sato TK, Panda S, Miraglia LJ, Reyes TM, Rudic RD, McNamara P et al. A functional genomics strategy reveals Rora as a component of the mammalian circadian clock. Neuron 2004; 43: 527–537.

    Article  CAS  PubMed  Google Scholar 

  14. Ueda HR, Hayashi S, Chen W, Sano M, Machida M, Shigeyoshi Y et al. System-level identification of transcriptional circuits underlying mammalian circadian clocks. Nat Genet 2005; 37: 187–192.

    Article  CAS  PubMed  Google Scholar 

  15. Lowrey PL, Takahashi JS . Mammalian circadian biology: elucidating genome-wide levels of temporal organization. Annu Rev Genomics Hum Genet 2004; 5: 407–441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Reppert SM, Weaver DR . Coordination of circadian timing in mammals. Nature 2002; 418: 935–941.

    Article  CAS  PubMed  Google Scholar 

  17. Ripperger JA, Schibler U . Circadian regulation of gene expression in animals. Curr Opin Cell Biol 2001; 13: 357–362.

    Article  CAS  PubMed  Google Scholar 

  18. Shieh KR . Distribution of the rhythm-related genes rPERIOD1, rPERIOD2, and rCLOCK, in the rat brain. Neuroscience 2003; 118: 831–843.

    Article  CAS  PubMed  Google Scholar 

  19. Shieh KR, Yang SC, Lu XY, Akil H, Watson SJ . Diurnal rhythmic expression of the rhythm-related genes, rPeriod1, rPeriod2, and rClock, in the rat brain. J Biomed Sci 2005; 12: 209–217.

    Article  CAS  PubMed  Google Scholar 

  20. Rudic RD, McNamara P, Curtis AM, Boston RC, Panda S, Hogenesch JB et al. BMAL1 and CLOCK, two essential components of the circadian clock, are involved in glucose homeostasis. PLoS Biol 2004; 2: e377.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Turek FW, Joshu C, Kohsaka A, Lin E, Ivanova G, McDearmon E et al. Obesity and metabolic syndrome in circadian Clock mutant mice. Science 2005; 308: 1043–1045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zvonic S, Ptitsyn AA, Conrad SA, Scott LK, Floyd ZE, Kilroy G et al. Characterization of peripheral circadian clocks in adipose tissues. Diabetes 2006; 55: 962–970.

    Article  CAS  PubMed  Google Scholar 

  23. Yanagihara H, Ando H, Hayashi Y, Obi Y, Fujimura A . High-fat feeding exerts minimal effects on rhythmic mRNA expression of clock genes in mouse peripheral tissues. Chronobiol Int 2006; 23: 905–914.

    Article  CAS  PubMed  Google Scholar 

  24. Satoh Y, Kawai H, Kudo N, Kawashima Y, Mitsumoto A . Time-restricted feeding entrains daily rhythms of energy metabolism in mice. Am J Physiol Regul Integr Comp Physiol 2006; 290: R1276–R1283.

    Article  CAS  PubMed  Google Scholar 

  25. Bray MS, Young ME . Diurnal variations in myocardial metabolism. Cardiovasc Res 2008; 79: 228–237.

    Article  CAS  PubMed  Google Scholar 

  26. Kohsaka A, Laposky AD, Ramsey KM, Estrada C, Joshu C, Kobayashi Y et al. High-fat diet disrupts behavioral and molecular circadian rhythms in mice. Cell Metab 2007; 6: 414–421.

    Article  CAS  PubMed  Google Scholar 

  27. Rutter J, Reick M, McKnight SL . Metabolism and the control of circadian rhythms. Annu Rev Biochem 2002; 71: 307–331.

    Article  CAS  PubMed  Google Scholar 

  28. Rutter J, Reick M, Wu LC, McKnight SL . Regulation of clock and NPAS2 DNA binding by the redox state of NAD cofactors. Science 2001; 293: 510–514.

    Article  CAS  PubMed  Google Scholar 

  29. Lin JD, Liu C, Li S . Integration of energy metabolism and the mammalian clock. Cell Cycle 2008; 7: 453–457.

    Article  CAS  PubMed  Google Scholar 

  30. Liu C, Li S, Liu T, Borjigin J, Lin JD . Transcriptional coactivator PGC-1alpha integrates the mammalian clock and energy metabolism. Nature 2007; 447: 477–481.

    Article  CAS  PubMed  Google Scholar 

  31. Ando H, Yanagihara H, Hayashi Y, Obi Y, Tsuruoka S, Takamura T et al. Rhythmic messenger ribonucleic acid expression of clock genes and adipocytokines in mouse visceral adipose tissue. Endocrinology 2005; 146: 5631–5636.

    Article  CAS  PubMed  Google Scholar 

  32. Gomez-Abellan P, Hernandez-Morante JJ, Lujan JA, Madrid JA, Garaulet M . Clock genes are implicated in the human metabolic syndrome. Int J Obes (Lond) 2008; 32: 121–128.

    Article  CAS  Google Scholar 

  33. Scott EM, Carter AM, Grant PJ . Association between polymorphisms in the Clock gene, obesity and the metabolic syndrome in man. Int J Obes (Lond) 2008; 32: 658–662.

    Article  CAS  Google Scholar 

  34. Shimba S, Ishii N, Ohta Y, Ohno T, Watabe Y, Hayashi M et al. Brain and muscle Arnt-like protein-1 (BMAL1), a component of the molecular clock, regulates adipogenesis. Proc Natl Acad Sci USA 2005; 102: 12071–12076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bunger MK, Walisser JA, Sullivan R, Manley PA, Moran SM, Kalscheur VL et al. Progressive arthropathy in mice with a targeted disruption of the Mop3/Bmal-1 locus. Genesis 2005; 41: 122–132.

    Article  CAS  PubMed  Google Scholar 

  36. Kondratov RV, Kondratova AA, Gorbacheva VY, Vykhovanets OV, Antoch MP . Early aging and age-related pathologies in mice deficient in BMAL1, the core component of the circadian clock. Genes Dev 2006; 20: 1868–1873.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hwang LL, Wang CH, Li TL, Chang SD, Lin LC, Chen CP et al. Sex differences in high-fat diet-induced obesity, metabolic alterations and learning and synaptic plasticity deficits in mice. Obesity 2009; In Press. DOI:10.1038/oby.2009.273.

    Article  PubMed  Google Scholar 

  38. Hofman MA, Swaab DF . Living by the clock: the circadian pacemaker in older people. Ageing Res Rev 2006; 5: 33–51.

    Article  CAS  PubMed  Google Scholar 

  39. Scarbrough K, Losee-Olson S, Wallen EP, Turek FW . Aging and photoperiod affect entrainment and quantitative aspects of locomotor behavior in Syrian hamsters. Am J Physiol 1997; 272: R1219–R1225.

    CAS  PubMed  Google Scholar 

  40. Yamazaki S, Straume M, Tei H, Sakaki Y, Menaker M, Block GD . Effects of aging on central and peripheral mammalian clocks. Proc Natl Acad Sci USA 2002; 99: 10801–10806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Asai M, Yoshinobu Y, Kaneko S, Mori A, Nikaido T, Moriya T et al. Circadian profile of Per gene mRNA expression in the suprachiasmatic nucleus, paraventricular nucleus, and pineal body of aged rats. J Neurosci Res 2001; 66: 1133–1139.

    Article  CAS  PubMed  Google Scholar 

  42. Claustrat F, Fournier I, Geelen G, Brun J, Corman B, Claustrat B . [Aging and circadian clock gene expression in peripheral tissues in rats]. Pathol Biol (Paris) 2005; 53: 257–260.

    Article  CAS  Google Scholar 

  43. Kolker DE, Fukuyama H, Huang DS, Takahashi JS, Horton TH, Turek FW . Aging alters circadian and light-induced expression of clock genes in golden hamsters. J Biol Rhythms 2003; 18: 159–169.

    Article  CAS  PubMed  Google Scholar 

  44. Weinert D . Age-dependent changes of the circadian system. Chronobiol Int 2000; 17: 261–283.

    Article  CAS  PubMed  Google Scholar 

  45. Stavinoha MA, Rayspellicy JW, Hart-Sailors ML, Mersmann HJ, Bray MS, Young ME . Diurnal variations in the responsiveness of cardiac and skeletal muscle to fatty acids. Am J Physiol Endocrinol Metab 2004; 287: E878–E887.

    Article  CAS  PubMed  Google Scholar 

  46. Young ME, Wilson CR, Razeghi P, Guthrie PH, Taegtmeyer H . Alterations of the circadian clock in the heart by streptozotocin-induced diabetes. J Mol Cell Cardiol 2002; 34: 223–231.

    Article  CAS  PubMed  Google Scholar 

  47. De Feo P, Lucidi P . Liver protein synthesis in physiology and in disease states. Curr Opin Clin Nutr Metab Care 2002; 5: 47–50.

    Article  CAS  PubMed  Google Scholar 

  48. Raubenheimer PJ, Nyirenda MJ, Walker BR . A choline-deficient diet exacerbates fatty liver but attenuates insulin resistance and glucose intolerance in mice fed a high-fat diet. Diabetes 2006; 55: 2015–2020.

    Article  CAS  PubMed  Google Scholar 

  49. Rossmeisl M, Rim JS, Koza RA, Kozak LP . Variation in type 2 diabetes-related traits in mouse strains susceptible to diet-induced obesity. Diabetes 2003; 52: 1958–1966.

    Article  CAS  PubMed  Google Scholar 

  50. Cersosimo E, Garlick P, Ferretti J . Renal glucose production during insulin-induced hypoglycemia in humans. Diabetes 1999; 48: 261–266.

    Article  CAS  PubMed  Google Scholar 

  51. Cersosimo E, Garlick P, Ferretti J . Renal substrate metabolism and gluconeogenesis during hypoglycemia in humans. Diabetes 2000; 49: 1186–1193.

    Article  CAS  PubMed  Google Scholar 

  52. Ekberg K, Landau BR, Wajngot A, Chandramouli V, Efendic S, Brunengraber H et al. Contributions by kidney and liver to glucose production in the postabsorptive state and after 60 h of fasting. Diabetes 1999; 48: 292–298.

    Article  CAS  PubMed  Google Scholar 

  53. Meyer C, Dostou JM, Welle SL, Gerich JE . Role of human liver, kidney, and skeletal muscle in postprandial glucose homeostasis. Am J Physiol Endocrinol Metab 2002; 282: E419–E427.

    Article  CAS  PubMed  Google Scholar 

  54. Hall JE . The kidney, hypertension, and obesity. Hypertension 2003; 41: 625–633.

    Article  PubMed  Google Scholar 

  55. Kramer H . Obesity and chronic kidney disease. Contrib Nephrol 2006; 151: 1–18.

    PubMed  Google Scholar 

  56. Saifur Rohman M, Emoto N, Nonaka H, Okura R, Nishimura M, Yagita K et al. Circadian clock genes directly regulate expression of the Na(+)/H(+) exchanger NHE3 in the kidney. Kidney Int 2005; 67: 1410–1419.

    Article  PubMed  Google Scholar 

  57. Nishinaga H, Komatsu R, Doi M, Fustin JM, Yamada H, Okura R et al. Circadian expression of the Na+/H+ exchanger NHE3 in the mouse renal medulla. Biomed Res 2009; 30: 87–93.

    Article  CAS  PubMed  Google Scholar 

  58. Young ME, Razeghi P, Taegtmeyer H . Clock genes in the heart: characterization and attenuation with hypertrophy. Circ Res 2001; 88: 1142–1150.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Mr DP Chamberlin for editorial assistance with the paper. This study was supported in part by the National Science Council of Taiwan (NSC95-2320-B-320-006-MY2 to KRS and NSC97-2314-B-277-001-MY3 to SCY), Tzu Chi Foundation (TCIRP95006-01 to KRS) and National Health Research Institutes, Taiwan (NHRI-EX96-9605NI to LLH and NHRI-BP-093-PP-11 to CTC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K-R Shieh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hsieh, MC., Yang, SC., Tseng, HL. et al. Abnormal expressions of circadian-clock and circadian clock-controlled genes in the livers and kidneys of long-term, high-fat-diet-treated mice. Int J Obes 34, 227–239 (2010). https://doi.org/10.1038/ijo.2009.228

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2009.228

Keywords

This article is cited by

Search

Quick links