Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

A unique genetic defect on chromosome 3 is responsible for juvenile obesity in the Berlin Fat Mouse

Abstract

Objective:

This study aimed at the mapping and estimation of genetic and sex effects contributing to the obese phenotype of the Berlin Fat Mouse Inbred line 860 (BFMI860). This mouse line is predisposed for juvenile obesity. BFMI860 mice accumulate 24% total fat mass at 10 weeks of age under a standard maintenance diet.

Design:

A total of 471 mice of a (BFMI860 × C57BL/6NCrl) F2 intercross population were fed a standard maintenance diet and were analysed for body composition at 10 weeks when they finished their rapid growth phase.

Results:

The most striking result was the identification of a novel obesity locus on chromosome 3 (Chr 3) at 40 Mb, explaining 39% of the variance of total fat mass in the F2 population under a standard diet. This locus was named jObes1 (juvenile obesity 1). The BFMI860 allele effect was recessive. Males and females homozygous at jObes1 had on average 3.0 and 3.3 g more total fat mass at 10 weeks than the other two genotype classes, respectively. The effect was evident in all white adipose tissues, brown adipose tissue and also in liver. The position of the Chr 3 effect is syntenic to an obesity locus in humans. Additional loci for total fat mass and different white adipose tissue weights with minor effects were detected on mouse Chr 5 and 6. Another locus on Chr 4 had influence especially on liver weight. Many loci including jObes1 affected males and females to a different extent.

Conclusion:

The major locus on Chr 3 for juvenile obesity and its interaction with sex is unique and makes the BFMI860 mice an interesting resource for the discovery of novel genetic factors predisposing obesity, which might also contribute to obesity in humans. The results suggested that metabolic and regulatory pathways differed between the sexes.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Barsh GS, Farooqi IS, O’Rahilly S . Genetics of body-weight regulation. Nature 2000; 404: 644–651.

    Article  CAS  PubMed  Google Scholar 

  2. Roth CL, Ludwig M, Woelfle J, Fan ZC, Brumm H, Biebermann H et al. A novel melanocortin-4 receptor gene mutation in a female patient with severe childhood obesity. Endocrine 2009; 36: 52–59.

    Article  CAS  PubMed  Google Scholar 

  3. Ochoa MC, Azcona C, Biebermann H, Brumm H, Razquin C, Wermter AK et al. A novel mutation Thr162Arg of the melanocortin 4 receptor gene in a Spanish children and adolescent population. Clin Endocrinol (Oxf) 2007; 66: 652–658.

    Article  CAS  Google Scholar 

  4. Hinney A, Bettecken T, Tarnow P, Brumm H, Reichwald K, Lichtner P et al. Prevalence, spectrum, and functional characterization of melanocortin-4 receptor gene mutations in a representative population-based sample and obese adults from Germany. J Clin Endocrinol Metab 2006; 91: 1761–1769.

    Article  CAS  PubMed  Google Scholar 

  5. Hinney A, Nguyen TT, Scherag A, Friedel S, Bronner G, Muller TD et al. Genome wide association (GWA) study for early onset extreme obesity supports the role of fat mass and obesity associated gene (FTO) variants. PLoS ONE 2007; 2: e1361.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Rampersaud E, Mitchell BD, Pollin TI, Fu M, Shen H, O’Connell JR et al. Physical activity and the association of common FTO gene variants with body mass index and obesity. Arch Intern Med 2008; 168: 1791–1797.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Lindgren CM, Heid IM, Randall JC, Lamina C, Steinthorsdottir V, Qi L et al. Genome-wide association scan meta-analysis identifies three loci influencing adiposity and fat distribution. PLoS Genet 2009; 5: e1000508.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Thorleifsson G, Walters GB, Gudbjartsson DF, Steinthorsdottir V, Sulem P, Helgadottir A et al. Genome-wide association yields new sequence variants at seven loci that associate with measures of obesity. Nat Genet 2009; 41: 18–24.

    Article  CAS  PubMed  Google Scholar 

  9. Willer CJ, Speliotes EK, Loos RJ, Li S, Lindgren CM, Heid IM et al. Six new loci associated with body mass index highlight a neuronal influence on body weight regulation. Nat Genet 2009; 41: 25–34.

    Article  CAS  PubMed  Google Scholar 

  10. Speakman J, Hambly C, Mitchell S, Krol E . The contribution of animal models to the study of obesity. Lab Anim 2008; 42: 413–432.

    Article  CAS  PubMed  Google Scholar 

  11. Wuschke S, Dahm S, Schmidt C, Joost HG, Al-Hasani H . A meta-analysis of quantitative trait loci associated with body weight and adiposity in mice. Int J Obes (Lond) 2007; 31: 829–841.

    Article  CAS  Google Scholar 

  12. Chadt A, Leicht K, Deshmukh A, Jiang LQ, Scherneck S, Bernhardt U et al. Tbc1d1 mutation in lean mouse strain confers leanness and protects from diet-induced obesity. Nat Genet 2008; 40: 1354–1359.

    Article  CAS  PubMed  Google Scholar 

  13. Wagener A, Schmitt AO, Aksu S, Schlote W, Neuschl C, Brockmann GA . Genetic, sex, and diet effects on body weight and obesity in the Berlin Fat Mouse Inbred lines. Physiol Genomics 2006; 27: 264–270.

    Article  CAS  PubMed  Google Scholar 

  14. Meyer CW, Wagener A, Rink N, Hantschel C, Heldmaier G, Klingenspor M et al. High energy digestion efficiency and altered lipid metabolism contribute to obesity in BFMI mice. Obesity (Silver Spring) 2009; 17: 1988–1993.

    Article  CAS  Google Scholar 

  15. Taicher GZ, Tinsley FC, Reiderman A, Heiman ML . Quantitative magnetic resonance (QMR) method for bone and whole-body-composition analysis. Anal Bioanal Chem 2003; 377: 990–1002.

    Article  CAS  PubMed  Google Scholar 

  16. Tinsley FC, Taicher GZ, Heiman ML . Evaluation of a quantitative magnetic resonance method for mouse whole body composition analysis. Obes Res 2004; 12: 150–160.

    Article  PubMed  Google Scholar 

  17. Bevova MR, Aulchenko YS, Aksu S, Renne U, Brockmann GA . Chromosome-wise dissection of the genome of the extremely big mouse line DU6i. Genetics 2006; 172: 401–410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Stam P . Construction of integrated genetic linkage maps by means of a new computer package: Join Map. Plant J 1993; 3: 739–744.

    Article  CAS  Google Scholar 

  19. Shifman S, Bell JT, Copley RR, Taylor MS, Williams RW, Mott R et al. A high-resolution single nucleotide polymorphism genetic map of the mouse genome. PLoS Biol 2006; 4: e395.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Cox A, Ackert-Bicknell CL, Dumont BL, Ding Y, Bell JT, Brockmann GA et al. A new standard genetic map for the laboratory mouse. Genetics 2009; 182: 1335–1344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Seaton G, Hernandez J, Grunchec JA, White I, Allen J, de Koning DJ et al. GridQTL: A grid portal for QTL mapping of compute intensive datasets. World Congress on Genetics Applied to Livestock Production. Proceedings of the 8th World Congress on Genetics Applied to Livestock Production, Abstract No. 27_633-916. 2006. Belo Horizonte, Brazil.

  22. Haley CS, Knott SA . A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity 1992; 69: 315–324.

    Article  CAS  PubMed  Google Scholar 

  23. Li R, Lyons MA, Wittenburg H, Paigen B, Churchill GA . Combining data from multiple inbred line crosses improves the power and resolution of quantitative trait loci mapping. Genetics 2005; 169: 1699–1709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Carlborg O, Brockmann GA, Haley CS . Simultaneous mapping of epistatic QTL in DU6i x DBA/2 mice. Mamm Genome 2005; 16: 481–494.

    Article  CAS  PubMed  Google Scholar 

  25. Brockmann GA, Karatayli E, Neuschl C, Stylianou IM, Aksu S, Ludwig A et al. Genetic control of lipids in the mouse cross DU6i x DBA/2. Mamm Genome 2007; 18: 757–766.

    Article  CAS  PubMed  Google Scholar 

  26. Churchill GA, Doerge RW . Empirical threshold values for quantitative trait mapping. Genetics 1994; 138: 963–971.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Visscher PM, Thompson R, Haley CS . Confidence intervals in QTL mapping by bootstrapping. Genetics 1996; 143: 1013–1020.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Reed DR, Bachmanov AA, Tordoff MG . Forty mouse strain survey of body composition. Physiol Behav 2007; 91: 593–600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Svenson KL, Von SR, Magnani PA, Suetin HR, Paigen B, Naggert JK et al. Multiple trait measurements in 43 inbred mouse strains capture the phenotypic diversity characteristic of human populations. J Appl Physiol 2007; 102: 2369–2378.

    Article  CAS  PubMed  Google Scholar 

  30. Hill WG, Goddard ME, Visscher PM . Data and theory point to mainly additive genetic variance for complex traits. PLoS Genet 2008; 4: e1000008.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Hager R, Cheverud JM, Wolf JB . Relative contribution of additive, dominance and imprinting effects to phenotypic variation in body size and growth between divergent selection lines of mice. Evolution 2009; 63: 1118–1128.

    Article  PubMed  Google Scholar 

  32. Brockmann GA, Kratzsch J, Haley CS, Renne U, Schwerin M, Karle S . Single QTL effects, epistasis, and pleiotropy account for two-thirds of the phenotypic F2 variance of growth and obesity in DU6i x DBA/2 mice. Genome Res 2000; 10: 1941–1957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Shao H, Reed DR, Tordoff MG . Genetic loci affecting body weight and fatness in a C57BL/6J x PWK/PhJ mouse intercross. Mamm Genome 2007; 18: 839–851.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Lewis CE, North KE, Arnett D, Borecki IB, Coon H, Ellison RC et al. Sex-specific findings from a genome-wide linkage analysis of human fatness in non-Hispanic whites and African Americans: the HyperGEN study. Int J Obes (Lond) 2005; 29: 639–649.

    Article  CAS  Google Scholar 

  35. Luke A, Wu X, Zhu X, Kan D, Su Y, Cooper R . Linkage for BMI at 3q27 region confirmed in an African-American population. Diabetes 2003; 52: 1284–1287.

    Article  CAS  PubMed  Google Scholar 

  36. Wu X, Cooper RS, Borecki I, Hanis C, Bray M, Lewis CE et al. A combined analysis of genomewide linkage scans for body mass index from the National Heart, Lung, and Blood Institute Family Blood Pressure Program. Am J Hum Genet 2002; 70/5: 1247–1256.

    Article  Google Scholar 

  37. Zhu X, Cooper RS, Luke A, Chen G, Wu X, Kan D et al. A genome-wide scan for obesity in African-Americans. Diabetes 2002; 51: 541–544.

    Article  CAS  PubMed  Google Scholar 

  38. Kissebah AH, Sonnenberg GE, Myklebust J, Goldstein M, Broman K, James RG et al. Quantitative trait loci on chromosomes 3 and 17 influence phenotypes of the metabolic syndrome. Proc Natl Acad Sci USA 2000; 97: 14478–14483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rankinen T, Zuberi A, Chagnon YC, Weisnagel SJ, Argyropoulos G, Walts B et al. The human obesity gene map: the 2005 update. Obesity (Silver Spring) 2006; 14: 529–644.

    Article  Google Scholar 

  40. Rocha JL, Eisen EJ, Van Vleck LD, Pomp D . A large-sample QTL study in mice: II. Body composition. Mamm Genome 2004; 15: 100–113.

    Article  CAS  PubMed  Google Scholar 

  41. Brockmann GA, Haley CS, Renne U, Knott SA, Schwerin M . Quantitative trait loci affecting body weight and fatness from a mouse line selected for extreme high growth. Genetics 1998; 150: 369–381.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Farber CR, Corva PM, Medrano JF . Genome-wide isolation of growth and obesity QTL using mouse speed congenic strains. BMC Genomics 2006; 7: 102.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Farber CR, Medrano JF . Fine mapping reveals sex bias in quantitative trait loci affecting growth, skeletal size and obesity-related traits on mouse chromosomes 2 and 11. Genetics 2007; 175: 349–360.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Wang S, Yehya N, Schadt EE, Wang H, Drake TA, Lusis AJ . Genetic and genomic analysis of a fat mass trait with complex inheritance reveals marked sex specificity. PLoS Genet 2006; 2: e15.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Fawcett GL, Roseman CC, Jarvis JP, Wang B, Wolf JB, Cheverud JM . Genetic architecture of adiposity and organ weight using combined generation QTL analysis. Obesity (Silver Spring) 2008; 16: 1861–1868.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Wenhua Wei and Anna Wolc for their efforts and valuable comments. Furthermore, we appreciate the help of Ralf Bortfeldt and Mark Kendell Clement in bioinformatical issues. This research was supported by the German National Genome Research Network (NGFN Plus (01GS0829) and by the German Research Foundation (DFG) Graduate College 1208 ‘Hormonal Regulation of Energy Metabolism, Body Weight and Growth’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G A Brockmann.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on International Journal of Obesity website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neuschl, C., Hantschel, C., Wagener, A. et al. A unique genetic defect on chromosome 3 is responsible for juvenile obesity in the Berlin Fat Mouse. Int J Obes 34, 1706–1714 (2010). https://doi.org/10.1038/ijo.2010.97

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2010.97

Keywords

This article is cited by

Search

Quick links