Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Pediatric Review
  • Published:

The accelerator hypothesis: a review of the evidence for insulin resistance as the basis for type I as well as type II diabetes

Abstract

Although some 40 years have passed since type I diabetes was first defined, its cause remains unknown. The autoimmunity paradigm of immune dysregulation has not offered an explanation for its rising incidence, nor means of preventing it, and there is arguably good reason to consider alternatives. The accelerator hypothesis is a singular, unifying concept that argues that type I and type II diabetes are the same disorder of insulin resistance, set against different genetic backgrounds. The hypothesis does not deny the role of autoimmuniy, only its primacy in the process. It distinguishes type I and type II diabetes only by tempo, the faster tempo reflecting the more susceptible genotype and (inevitably) earlier presentation. Insulin resistance is closely related to the rise in overweight and obesity, a trend that the hypothesis deems central to the rising incidence of all diabetes in the developed and developing world. Rather than overlap between the two types of diabetes, the accelerator hypothesis envisages overlay—each a subset of the general population differing from each other only by genotype. Indeed, it views type I and type II diabetes as a continuum, where the infinitely variable interaction between insulin resistance and genetic response determines the age at which β-cell loss becomes critical. Adult diabetes is not viewed as an entity, but rather as diabetes presenting in adulthood. Childhood diabetes, similarly, is diabetes presenting in childhood. The increasing incidence of both is primarily the result of lifestyle change and the rise in body weight that has resulted

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Molbak AG, Christau B, Marner B, Borch-Johnsen K, Nerup J . Incidence of insulin-dependent diabetes in age groups over 30 years in Denmark. Diabet Med 1994; 11: 650–655.

    CAS  PubMed  Google Scholar 

  2. Rosenbloom AL, Joe JR, Young RS, Winter WE . Emerging epidemic of type 2 diabetes in youth. Diabetes Care 1999; 22: 345–354.

    CAS  PubMed  Google Scholar 

  3. Aizawa T, Funase Y, Katakura M, Asanuma N, Yamauchi K, Yoshizawa K et al. Ketosis-onset diabetes in young adults with subsequent non-insulin-dependency, a link between IDDM and NIDDM? Diabet Med 1997; 14: 989–991.

    CAS  PubMed  Google Scholar 

  4. Gale EA . Declassifying diabetes. Diabetologia 2006; 49: 1989–1995.

    CAS  PubMed  Google Scholar 

  5. Wilkin TJ . Changing perspectives in diabetes: their impact on its classification. Diabetologia 2007; 50: 1587–1592.

    CAS  PubMed  Google Scholar 

  6. Wilkin TJ . The accelerator hypothesis: weight gain as the missing link between type I and type II diabetes. Diabetologia 2001; 44: 914–922.

    CAS  PubMed  Google Scholar 

  7. Kibirige M, Metcalf B, Renuka R, Wilkin TJ . Testing the accelerator hypothesis: the relationship between body mass and age at diagnosis of type 1 diabetes. Diabetes Care 2003; 26: 2865–2870.

    CAS  PubMed  Google Scholar 

  8. Betts P, Mulligan J, Ward P, Smith B, Wilkin TJ . Increasing body weight predicts the earlier onset of insulin-dependant diabetes in childhood: testing the ‘accelerator hypothesis’ (2). Diabet Med 2005; 22: 144–151.

    CAS  PubMed  Google Scholar 

  9. Knerr I, Wolf J, Reinehr T, Stachow R, Grabert M, Schober E et al. DPV Scientific Initiative of Germany and Austria. The ‘accelerator hypothesis’: relationship between weight, height, body mass index and age at diagnosis in a large cohort of 9248 German and Austrian children with type 1 diabetes mellitus. Diabetologia 2005; 48: 2501–2504.

    CAS  PubMed  Google Scholar 

  10. Kordonouri O, Hartmann R . Higher body weight is associated with earlier onset of type 1 diabetes in children: confirming the ‘Accelerator Hypothesis’. Diabet Med 2005; 22: 1783–1784.

    CAS  PubMed  Google Scholar 

  11. Clarke SL, Craig ME, Garnett SP, Chan AK, Cowell CT, Cusumano JM et al. Increased adiposity at diagnosis in younger children with type 1 diabetes does not persist. Diabetes Care 2006; 29: 1651–1653.

    PubMed  Google Scholar 

  12. Dabelea D, D’Agostino Jr RB, Mayer-Davis EJ, Pettitt DJ, Imperatore G, Dolan LM et al. SEARCH for Diabetes in Youth Study Group. Testing the accelerator hypothesis: body size, beta-cell function, and age at onset of type 1(autoimmune) diabetes. Diabetes Care 2006; 29: 290–294.

    PubMed  Google Scholar 

  13. Rosenbloom AL . Obesity, insulin resistance, beta-cell autoimmunity, and the changing clinical epidemiology of childhood diabetes. Diabetes Care 2003; 26: 2954–2956.

    PubMed  Google Scholar 

  14. Daneman D . Is the ‘accelerator hypothesis’ worthy of our attention? Diabet Med 2005; 22: 115–117.

    CAS  PubMed  Google Scholar 

  15. Gale EA . To boldly go—or to go too boldly? The accelerator hypothesis revisited. Diabetologia 2007; 50: 1571–1575.

    CAS  PubMed  Google Scholar 

  16. Devendra D, Liu E, Eisenbarth GS . Type 1 diabetes: recent developments. BMJ 2004; 27: 750–754.

    Google Scholar 

  17. Gepts W . Pathologic anatomy of the pancreas in juvenile diabetes mellitus. Diabetes 1965; 14: 619–633.

    CAS  PubMed  Google Scholar 

  18. Nerup J, Platz P, Anderssen OO . HLA antigens and diabetes mellitus. Lancet 1974; 2: 864–866.

    CAS  PubMed  Google Scholar 

  19. Bottazzo GF, Florin-Christensen A, Doniach D . Islet-cell antibodies in diabetes mellitus with autoimmune polyendocrine deficiencies. Lancet 1974; 2: 1279–1283.

    CAS  PubMed  Google Scholar 

  20. Onkamo P, Vaananen S, Karvonen M, Tuomilehto J . Worldwide increase of type 1 diabetes—analysis of the data on published incidence trends. Diabetologia 1999; 42: 1395–1403.

    CAS  PubMed  Google Scholar 

  21. Gale EAM . The rise of childhood type 1 diabetes in the 20th century. Diabetes 2002; 51: 3353–3361.

    CAS  PubMed  Google Scholar 

  22. Shuldiner AR, Yang R, Gong DW . Resistin, obesity and insulin resistance—the emerging role of the adipocyte as an endocrine organ. N Engl J Med 2001; 345: 1345–1346.

    CAS  PubMed  Google Scholar 

  23. Moller DE, Flier JS . Insulin resistance—mechanisms, syndromes, and implications. N Engl J Med 1991; 325: 938–948.

    CAS  PubMed  Google Scholar 

  24. Navab M, Gharavi N, Watson AD . Inflammation and metabolic disorders. Curr Opin Clin Nutr Metab Care 2008; 11: 459–464.

    CAS  PubMed  Google Scholar 

  25. Rastouli N, Kern PA . Adipocytokines and the metabolic complications of obesity. J Clin Endocrinol Metab 2008; 93 (11 Suppl 1): S64–S73.

    Google Scholar 

  26. Donath MY, Størling J, Maedler K, Mandrup-Poulsen T . Inflammatory mediators and islet beta-cell failure: a link between type 1 and type 2 diabetes. J Mol Med 2003; 81: 455–470.

    CAS  PubMed  Google Scholar 

  27. Kolb H, Mandrup-Poulsen T . An immune origin of type 2 diabetes? Diabetologia 2005; 48: 1038–1050.

    CAS  PubMed  Google Scholar 

  28. Pickup JC . Inflammation and activated innate immunity in the pathogenesis of type 2 diabetes. Diabetes Care 2004; 27: 813–823.

    PubMed  Google Scholar 

  29. Velho C, Froguel P . Maturity-onset diabetes of the young (MODY), MODY genes and non-insulin-dependent diabetes mellitus. Diabetes Metab 1997; 23 (Suppl 2): 34–37.

    PubMed  Google Scholar 

  30. Pearson ER, Flechtner I, Njolstad PR, Malecki MT, Flanagan SE, Larkin B et al. Switching from insulin to oral sulfonylureas in patients with diabetes due to Kir6.2 mutations. N Engl J Med 2006; 355: 467–477.

    CAS  PubMed  Google Scholar 

  31. Sun Q, Yue P, Jeffrey A, Lumeng CN, Kampfrath T, Mikolaj MB et al. Ambient air pollution exaggerates adipose inflammation and insulin resistance in a mouse model of diet-induced obesity. Circulation 2009; 119: 538–546.

    CAS  PubMed  Google Scholar 

  32. Saxena R, Gianniny L, Burtt NP, Lyssenko V, Giuducci C, Sjögren M et al. Common single nucleotide polymorphisms in TCF7L2 are reproducibly associated with type 2 diabetes and reduce the insulin response to glucose in nondiabetic individuals. Diabetes 2006; 55: 2890–2895.

    CAS  PubMed  Google Scholar 

  33. Maedler K, Donath MY . Beta-cells in type 2 diabetes: a loss of function and mass. Horm Res 2004; 62 (Suppl 3): 67–73.

    CAS  PubMed  Google Scholar 

  34. Robertson RP, Harmon J, Tran PO, Poitout V . glucose toxicity, lipotoxicity, and chronic oxidative stress in type 2 diabetes. Diabetes 2004; 53 (Suppl 1): S119–S124.

    CAS  PubMed  Google Scholar 

  35. Wilkin TJ, Metcalf B, Jeffery A, Howdle S, Kirkby J, Voss LD . The relative contributions of birth weight, catch-up weight and current weight to the development of insulin resistance in contemporary children (EarlyBird 2). Diabetes 2002; 51: 3468–3472.

    CAS  PubMed  Google Scholar 

  36. Gardner DS, Metcalf BS, Hosking J, Jeffery AN, Voss LD, Wilkin TJ . Trends, associations and predictions of insulin resistance in prepubertal children (EarlyBird 29). Pediatr Diabetes 2008; 9 (3 Part 1): 214–220.

    CAS  PubMed  Google Scholar 

  37. Juneja R, Palmer JP . Type 1 1/2 diabetes: myth or reality? Autoimmunity 1999; 29: 65–83.

    CAS  PubMed  Google Scholar 

  38. Gale EA . The rise of childhood type 1 diabetes in the 20th century. Diabetes 2002; 51: 3353–3361.

    CAS  PubMed  Google Scholar 

  39. Zimmet P . Globalization, coca-colonization and the chronic disease epidemic: can the Doomsday scenario be averted? J Intern Med 2000; 247: 301–310.

    CAS  PubMed  Google Scholar 

  40. Wilkin TJ . Early nutrition and diabetes mellitus (Editorial). BMJ 1992; 306: 283–284.

    Google Scholar 

  41. Wilkin TJ . Autoimmunity: attack or defence? Autoimmunity 1989; 3: 57–73.

    CAS  PubMed  Google Scholar 

  42. Grabar P . Autoantibodies and the physiological role of immunoglobulins. Immunol Today 1983; 4: 337–340.

    CAS  PubMed  Google Scholar 

  43. Roitt I, Brostoff J, Male D . Immunology. Churchill Livingstone: London, 1995, pp 1.5–1.6.

    Google Scholar 

  44. Bjork E, Kampe O, Karlsson FA, Pipeleers DG, Andersson A, Hellerström C et al. Glucose regulation of the autoantigen GAD65 in human pancreatic islets. J Clin Endocrinol Metab 1992; 75: 574–576.

    Google Scholar 

  45. Judkowski V, Krakowski M, Rodriguez E, Mocnick L, Santamaria P, Sarvetnick N . Increased islet antigen presentation leads to type-1 diabetes in mice with autoimmune susceptibility. Eur J Immunol 2004; 34: 1031–1040.

    CAS  PubMed  Google Scholar 

  46. Xu P, Krischer JP, Cuthbertson D, Greenbaum C, Palmer JP . Role of insulin resistance in predicting progression to type 1 diabetes. Diabetes Care 2007; 30: 2314–2320.

    PubMed  Google Scholar 

  47. Fourlanos S, Harrison LC, Colman PG . The accelerator hypothesis and increasing incidence of type 1 diabetes. Curr Opin Endocrinol Diabetes Obes 2008; 15: 321–325.

    CAS  PubMed  Google Scholar 

  48. Fourlanos S, Narendran P, Byrnes GB, Colman PG, Harrison LC . Insulin resistance is a risk factor for progression to type 1 diabetes. Diabetologia 2004; 47: 1661–1667.

    CAS  PubMed  Google Scholar 

  49. Hawa MI, Bonfanti R, Valeri C, Delli Castelli M, Beyan H, Leslie RD . No evidence for genetically determined alteration in insulin secretion or sensitivity predisposing to type 1 diabetes: a study of identical twins. Diabetes Care 2005; 28: 1415–1418.

    CAS  PubMed  Google Scholar 

  50. Libman IM, Becker DJ . Coexistence of type 1 and type 2 diabetes mellitus: ‘double’ diabetes? Pediatr Diabetes 2003; 4: 110–113.

    PubMed  Google Scholar 

  51. Tuomi T, Groop LC, Zimmet PZ, Rowley MJ, Knowles W, Mackay IR . Antibodies to glutamic acid decarboxylase reveal latent autoimmune diabetes mellitus in adults with a non-insulin-dependent onset of disease. Diabetes 1993; 42: 359–362.

    CAS  PubMed  Google Scholar 

  52. Reinehr T, Schober E, Wiegand S, Thon A, Holl R . B-cell autoantibodies in children with type 2 diabetes mellitus: subgroup or misclassification? Arch Dis Child 2006; 91: 473–477.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Onkamo P, Vaananen S, Karvonen M, Tuomilehto J . Worldwide increase of type 1 diabetes—analysis of the data on published incidence trends. Diabetologia 1999; 42: 1395–1403.

    CAS  PubMed  Google Scholar 

  54. Baum JD, Ounsted M, Smith MA . Weight gain in infancy and subsequent development of diabetes mellitus in childhood. Lancet 1975; ii: 866.

    Google Scholar 

  55. Johansson C, Samuelsson U, Ludvigsson J . A high weight gain in early life is associated with an increased risk of type 1 (insulin-dependent) diabetes. Diabetologia 1994; 37: 91–94.

    CAS  PubMed  Google Scholar 

  56. Hypponen E, Kenward MG, Virtanen SM, Piitulainen A, Virta-Autio P, Tuomilehto J et al. Infant feeding, early weight gain and risk of type 1 diabetes. Diabetes Care 1999; 22: 1961–1965.

    CAS  PubMed  Google Scholar 

  57. Bruining GJ . Association between infant growth before onset of juvenile type-1 diabetes and autoantibodies to IA-2. Netherlands Kolibrie study group of childhood diabetes. Lancet 2000; 356: 655–656.

    CAS  PubMed  Google Scholar 

  58. Hypponen E, Virtanen SM, Kenward MG, Knip M, Akerblom HK, Childhood Diabetes in Finland Study Group. Obesity, increased linear growth, and risk of type 1 diabetes in children. Diabetes Care 2000; 23: 1755–1760.

    CAS  PubMed  Google Scholar 

  59. Pundziute-Lyckå A, Dahlquist G, Nyström L, Arnquist H, Björke E, Blohmé G et al. Swedish Childhood Diabetes Study Group. The incidence of Type I diabetes has not increased but shifted to a younger age at diagnosis in the 0–34 years group in Sweden 1983–1998. Diabetologia 2002; 45: 783–791.

    PubMed  Google Scholar 

  60. Weets I, De Leeuw IH, Du Caju MV, Rooman R, Keymeulen B, Mathieu C et al. Belgian Diabetes Registry. The incidence of type 1 diabetes in the age group 0–39 years has not increased in Antwerp (Belgium) between 1989 and 2000: evidence for earlier disease manifestation. Diabetes Care 2002; 25: 840–846.

    PubMed  Google Scholar 

  61. Hermann R, Knip M, Veijola R . Temporal changes in the frequencies of HLA genotypes in patients with type I diabetes—indication of an increased environmental pressure? Diabetologia 2003; 46: 420–425.

    CAS  PubMed  Google Scholar 

  62. Gillespie KM, Bain SC, Barnett AH, Bingley PJ, Christie MR, Gill GV et al. The rising incidence of type 1 diabetes is associated with a reduced contribution from high-risk HLA haplotypes. Lancet 2004; 364: 1699–1700.

    PubMed  Google Scholar 

  63. Leslie RD, Taylor R, Pozzilli P . The role of insulin resistance in the natural history of type 1 diabetes. Diabet Med 1997; 14: 327–331.

    CAS  PubMed  Google Scholar 

  64. Greenbaum CJ . Insulin resistance and type 1 diabetes. Diabetes Metab Res Rev 2002; 18: 192–200.

    CAS  PubMed  Google Scholar 

  65. Gale EA . Spring harvest? Reflections on the rise of type 1 diabetes. Diabetologia 2005; 48: 2445–2450.

    CAS  PubMed  Google Scholar 

  66. Greenbaum CJ, Eisenbarth G, Atkinson M, Yu L, Babu S, Schatz D et al. DPT-1 study group. High frequency of abnormal glucose tolerance in DQA1*0102/DQB1*0602 relatives identified as part of the Diabetes Prevention Trial. Diabetologia 2005; 48: 68–74.

    CAS  PubMed  Google Scholar 

  67. Irvine WJ, McCallum CJ, Gray RS, Duncan LJ . Clinical and pathogenic significance of pancreatic-islet-cell antibodies in diabetics treated with oral hypoglycaemic agents. Lancet 1977; 1: 1025–1027.

    CAS  PubMed  Google Scholar 

  68. Hathout EH, Thomas W, El-Shahawy M, Nahab F, Mace JW . Diabetic autoimmune markers in children and adolescents with type 2 diabetes. Pediatrics 2001; 107: E102.

    CAS  PubMed  Google Scholar 

  69. Umpaichitra V, Banerji MA, Castells S . Autoantibodies in children with type 2 diabetes mellitus. J Pediatr Endocrinol Metab 2002; 15 (Suppl 1): 525–530.

    CAS  PubMed  Google Scholar 

  70. Gilliam LK, Brooks-Worrell BM, Palmer JP, Greenbaum CJ, Pihoker C . Autoimmunity and clinical course in children with type 1, type 2, and type 1.5 diabetes. J Autoimmun 2005; 25: 244–250.

    CAS  PubMed  Google Scholar 

  71. Brooks-Worrell BM, Greenbaum CJ, Palmer JP, Pihoker C . Autoimmunity to islet proteins in children diagnosed with new-onset diabetes. J Clin Endocrinol Metab 2004; 89: 2222–2227.

    CAS  PubMed  Google Scholar 

  72. Ziegler AG, Hummel M, Schenker M, Bonifacio E . Autoantibody appearance and risk for development of childhood diabetes in offspring of parents with type 1 diabetes: the 2-year analysis of the German BABYDIAB Study. Diabetes 1999; 48: 460–468.

    CAS  PubMed  Google Scholar 

  73. Porter JR, Barrett TJ . Braking the accelerator hypothesis? Diabetologia 2004; 47: 352–353.

    CAS  PubMed  Google Scholar 

  74. Tait BD, Harrison LC, Drummond BP, Stewart V, Varney MD, Honeyman MC . HLA antigens and age at diagnosis of insulin-dependent diabetes mellitus. Hum Immunol 1995; 42: 116–122.

    CAS  PubMed  Google Scholar 

  75. Bingley PJ, Mahon JL, Gale EA, The European Nicotinamide Diabetes Intervention Trial (ENDIT) Group. Insulin resistance and progression to type 1 diabetes in the European Nicotinamide Diabetes Intervention Trial (ENDIT). Diabetes Care 2008; 31: 146–150.

    CAS  PubMed  Google Scholar 

  76. Wilkin TJ . Testing the accelerator hypothesis: body size, beta-cell function, and age at onset of type 1 (autoimmune) diabetes: response to Dabelea et al. Diabetes Care 2006; 29: 1462–1463.

    PubMed  Google Scholar 

  77. Wilkin TJ . Insulin resistance and progression to type 1 diabetes in the European Nicotinamide Diabetes Intervention Trial (ENDIT): response to Bingley et al. Diabetologia 2008; 31: e290.

    Google Scholar 

  78. Florez JC, Jablonski KA, Bayley N, Pollin TI, de Bakker PI, Shuldiner AR et al. TCF7L2 polymorphisms and progression to diabetes in the Diabetes Prevention Program. N Engl J Med 2006; 355: 241–250.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Field SF, Howson JMM, Smyth DJ, Walker NM, Dunger DB, Todd JA . Analysis of the type 2 diabetes gene TCF7L2 in 13 795 type 1 diabetes cases and control subjects. Diabetologia 2007; 50: 212–213.

    CAS  PubMed  Google Scholar 

  80. Wilkint TJ . The accelerator hypothesis cannot be tested using the type 2 diabetes gene, TCF7L2. Diabetologia 2007; 50: 1780.

    Google Scholar 

  81. Field SF, Howson JM, Walker NM, Dunger DB, Todd JA . Analysis of the obesity gene FTO in 14 803 type 1 diabetes cases and controls. Diabetologia 2007; 50: 2218–2220.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. O’connell MA, Donath S, Cameron FJ . Major increase in type 1 diabetes—no support for the accelerator hypothesis. Diabet Med 2007; 24: 920–923.

    PubMed  Google Scholar 

  83. Wilkin T . Major increase in type 1 diabetes: no support for the accelerator hypothesis (response to O’Connell et al). Diabet Med 2008; 25: 376–377.

    CAS  PubMed  Google Scholar 

  84. Dahlquist G . The aetiology of type 1 diabetes: an epidemiological perspective. Acta Paediatr 1998; 425 (Suppl): 5–10.

    CAS  Google Scholar 

  85. Day C . Thiazolidinediones. Diabetic Med 1999; 16: 179.92.

    PubMed  Google Scholar 

  86. Knowler WC, Barrett-Connor E, Fowler SE, Hamman RF, Lachin JM, Walker EA et al. Diabetes Prevention Program Research Group. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med 2002; 346: 393–403.

    CAS  PubMed  Google Scholar 

  87. Tuomilehto J, Lindström J, Eriksson JG, Valle TT, Hämäläinen H, Ilanne-Parikka P et al. Finnish Diabetes Prevention Study Group. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med 2001; 344: 1343–1350.

    CAS  PubMed  Google Scholar 

  88. Harlan DM, von Herrath M . Immune intervention with anti-CD3 in diabetes. Nat Med 2005; 11: 716–718.

    CAS  PubMed  Google Scholar 

  89. Herold KC, Gitelman SE, Masharani U, Hagopian W, Bisikirska B, Donaldson D et al. Single course of anti-CD3 monoclonal antibody hOKT3gamma1(Ala–Ala) results in improvement in C-peptide responses and clinical parameters for at least 2 years after onset of type 1 diabetes. Diabetes 2005; 54: 1763–1769.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Dupre J, Stiller CR, Gent M, Donner A, von Graffenried B, Heinrichs D et al. Clinical trials of cyclosporin in IDDM. Diabetes Care 1988; 11 (Suppl 1): 37–44.

    PubMed  Google Scholar 

  91. Wilkin T, Ludvigsson J, Greenbaum C, Palmer J, Becker D, Bruining J . Future intervention trials in type 1 diabetes. Diabetes Care 2004; 27: 996–997.

    PubMed  Google Scholar 

Download references

Acknowledgements

We thank the many colleagues, editors, reviewers and audiences who, by their questions and critiques, have shaped the accelerator hypothesis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T J Wilkin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilkin, T. The accelerator hypothesis: a review of the evidence for insulin resistance as the basis for type I as well as type II diabetes. Int J Obes 33, 716–726 (2009). https://doi.org/10.1038/ijo.2009.97

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2009.97

Keywords

This article is cited by

Search

Quick links