Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Adaptation to lactation in OLETF rats lacking CCK-1 receptors: body weight, fat tissues, leptin and oxytocin

Abstract

Objective:

To understand the adaptation to lactation of obese rats, by studying the interplay among the gut hormone cholecystokinin (CCK), the adiposity hormone leptin and the affiliation hormone oxytocin in modulating body mass and fat storage.

Design:

Strain differences were examined between Otsuka Long Evans Tokushima Fatty (OLETF) rats lacking expression of functional CCK-1 receptors and Long Evans Tokushima Otsuka (LETO) controls, tested as nulliparous dams, at the 7 and 15th lactation day, at weaning (lactation day 22) or 8 weeks postweaning.

Measurements:

We measured body mass, fat pads (brown, retroperitoneal and inguinal) and inguinal adipocytes. Plasma levels of leptin and oxytocin were determined.

Results:

Fat depots of LETO female rats were larger during lactation compared to the levels found in postweaning and nulliparous female rats. LETO female rats gained weight and accumulated fat during pregnancy and lactation, returning to their normal fat levels postweaning. In contrast, OLETF female rats presented lower body weight and fat depots during the lactation period than nulliparous dams, and regained the weight and fat postweaning. Plasma leptin and oxytocin were highly correlated and followed the same pattern. OLETF leptin levels were highly correlated with fat depot and inguinal cell surface. No significant correlation was found for LETO parameters.

Conclusions:

Pregnancy and lactation are energy-consuming events, which naturally induce female rats to increase food intake and accumulate fat. When challenged by the demands of rapidly growing preobese OLETF pups, OLETF dams’ fat stores are reduced to lean, LETO levels. During lactation, sensitivity of the oxytocinergic neurons descending from the paraventricular nuclei to the nucleus of the solitary tract to CCK is reduced. We theorized that this pathway is not available to OLETF female rats that lack functional CCK-1 receptors to mediate the signal. The current study contributes to the understanding of the female body's adaptation to lactation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. McLaughlin CL, Baile CA, Peikin SR . Hyperphagia during lactation: satiety response to CCK and growth of the pancreas. Am J Physiol 1983; 244: E61–E65.

    Article  CAS  Google Scholar 

  2. Blevins JE, Schwartz MW, Baskin DG . Peptide signals regulating food intake and energy homeostasis. Can J Physiol Pharmacol 2002; 80: 396–406.

    Article  CAS  Google Scholar 

  3. Gimpl G, Fahrenholz F . The oxytocin receptor system: structure, function, and regulation. Physiol Rev 2001; 81: 629–683.

    Article  CAS  Google Scholar 

  4. Carter SJ, Richardson CM, Wakerley JB . Excitatory effects of oxytocin and cholecystokinin on oxytocin neurones: differences between virgin, pregnant and lactating rats. Neurosci Lett 2003; 351: 13–16.

    Article  CAS  Google Scholar 

  5. Blevins JE, Eakin TJ, Murphy JA, Schwartz MW, Baskin DG . Oxytocin innervation of caudal brainstem nuclei activated by cholecystokinin. Brain Res 2003; 993: 30–41.

    Article  CAS  Google Scholar 

  6. Kokay IC, Bull PM, Davis RL, Ludwig M, Grattan DR . Expression of the long form of the prolactin receptor in magnocellular oxytocin neurons is associated with specific prolactin regulation of oxytocin neurons. Am J Physiol Regul Integr Comp Physiol 2006; 290: R1216–R1225.

    Article  CAS  Google Scholar 

  7. Altemus M, Fong J, Yang R, Damast S, Luine V, Ferguson D . Changes in cerebrospinal fluid neurochemistry during pregnancy. Biol Psychiatry 2004; 56: 386–392.

    Article  CAS  Google Scholar 

  8. Brogan RS, Mitchell SE, Trayhurn P, Smith MS . Suppression of leptin during lactation: contribution of the suckling stimulus versus milk production. Endocrinology 1999; 140: 2621–2627.

    Article  CAS  Google Scholar 

  9. Xiao XQ, Grove KL, Grayson BE, Smith MS . Inhibition of uncoupling protein expression during lactation: role of leptin. Endocrinology 2004; 145: 830–838.

    Article  CAS  Google Scholar 

  10. Xiao XQ, Grove KL, Lau SY, McWeeney S, Smith MS . Deoxyribonucleic acid microarray analysis of gene expression pattern in the arcuate nucleus/ventromedial nucleus of hypothalamus during lactation. Endocrinology 2005; 146: 4391–4398.

    Article  CAS  Google Scholar 

  11. Woodside B, Abizaid A, Walker C . Changes in leptin levels during lactation: implications for lactational hyperphagia and anovulation. Horm Behav 2000; 37: 353–365.

    Article  CAS  Google Scholar 

  12. Denis RG, Bing C, Naderali EK, Vernon RG, Williams G . Lactation modulates diurnal expression profiles of specific leptin receptor isoforms in the rat hypothalamus. J Endocrinol 2003; 178: 225–232.

    Article  CAS  Google Scholar 

  13. Denis RG, Williams G, Vernon RG . Regulation of serum leptin and its role in the hyperphagia of lactation in the rat. J Endocrinol 2003; 176: 193–203.

    Article  CAS  Google Scholar 

  14. Chen P, Williams SM, Grove KL, Smith MS . Melanocortin 4 receptor-mediated hyperphagia and activation of neuropeptide Y expression in the dorsomedial hypothalamus during lactation. J Neurosci 2004; 24: 5091–5100.

    Article  CAS  Google Scholar 

  15. Oken E, Taveras EM, Kleinman KP, Rich-Edwards JW, Gillman MW . Gestational weight gain and child adiposity at age 3 years. Am J Obstet Gynecol 2007; 196: 322. e1–e8.

    Article  Google Scholar 

  16. Gunderson EP, Abrams B, Selvin S . Does the pattern of postpartum weight change differ according to pregravid body size? Int J Obes Relat Metab Disord 2001; 25: 853–862.

    Article  CAS  Google Scholar 

  17. Stein TP, Scholl TO, Schluter MD, Schroeder CM . Plasma leptin influences gestational weight gain and postpartum weight retention. Am J Clin Nutr 1998; 68: 1236–1240.

    Article  CAS  Google Scholar 

  18. Takiguchi S, Takata Y, Funakoshi A, Miyasaka K, Kataoka K, Fujimura Y et al. Disrupted cholecystokinin type-A receptor (CCKAR) gene in OLETF rats. Gene 1997; 197: 169–175.

    Article  CAS  Google Scholar 

  19. Moran TH, Katz LF, Plata-Salaman CR, Schwartz GJ . Disordered food intake and obesity in rats lacking cholecystokinin A receptors. Am J Physiol 1998; 274: R618–R625.

    CAS  PubMed  Google Scholar 

  20. Schwartz GJ, Whitney A, Skoglund C, Castonguay TW, Moran TH . Decreased responsiveness to dietary fat in Otsuka Long-Evans Tokushima fatty rats lacking CCK-A receptors. Am J Physiol 1999; 277: R1144–R1151.

    CAS  PubMed  Google Scholar 

  21. Bi S, Scott KA, Kopin AS, Moran TH . Differential roles for cholecystokinin a receptors in energy balance in rats and mice. Endocrinology 2004; 145: 3873–3880.

    Article  CAS  Google Scholar 

  22. Bi S, Ladenheim EE, Schwartz GJ, Moran TH . A role for NPY overexpression in the dorsomedial hypothalamus in hyperphagia and obesity of OLETF rats. Am J Physiol Regul Integr Comp Physiol 2001; 281: R254–R260.

    Article  CAS  Google Scholar 

  23. Moran TH, Lee P, Ladenheim EE, Schwartz GJ . Responsivity to NPY and melanocortins in obese OLETF rats lacking CCK-A receptors. Physiol Behav 2002; 7: 397–402.

    Article  Google Scholar 

  24. Moran TH . Unraveling the obesity of OLETF rats. Physiol Behav 2008; 94: 71–78.

    Article  CAS  Google Scholar 

  25. Miller LJ, Holicky EL, Ulrich CD, Wieben ED . Abnormal processing of the human cholecystokinin receptor gene in association with gallstones and obesity. Gastroenterology 1995; 109: 1375–1380.

    Article  CAS  Google Scholar 

  26. Kesterson RA, Huszar D, Lynch CA, Simerly RB, Cone RD . Induction of neuropeptide Y gene expression in the dorsal medial hypothalamic nucleus in two models of the agouti obesity syndrome. Mol Endocrinol 1997; 11: 630–637.

    Article  CAS  Google Scholar 

  27. Guan XM, Yu H, Trumbauer M, Frazier E, Van der Ploeg LH, Chen H . Induction of neuropeptide Y expression in dorsomedial hypothalamus of diet-induced obese mice. Neuroreport 1998a; 9: 3415–3419.

    Article  CAS  Google Scholar 

  28. Guan XM, Yu H, Van der Ploeg LH . Evidence of altered hypothalamic pro-opiomelanocortin/neuropeptide Y mRNA expression in tubby mice. Brain Res Mol Brain Res 1998b; 59: 273–279.

    Article  CAS  Google Scholar 

  29. Tritos NA, Elmquist JK, Mastaitis JW, Flier JS, Maratos-Flier E . Characterization of expression of hypothalamic appetite-regulating peptides in obese hyperleptinemic brown adipose tissue-deficient (uncoupling protein-promoter-driven diphtheria toxin A) mice. Endocrinology 1998; 139: 4634–4641.

    Article  CAS  Google Scholar 

  30. Kawano K, Hirashima T, Mori S, Saitoh Y, Kurosumi M, Natori T . Spontaneous long-term hyperglycemic rat with diabetic complications. Otsuka Long-Evans Tokushima Fatty (OLETF) strain. Diabetes 1992; 41: 1422–1428.

    Article  CAS  Google Scholar 

  31. Levine A, Zagoory-Sharon O, Feldman R, Weller A . Oxytocin during pregnancy and early postpartum: individual patterns and maternal-fetal attachment. Peptides 2007; 28: 1162–1169.

    Article  CAS  Google Scholar 

  32. Kramer KM, Cushing BS, Carter CS, Ottinger MA . Sex and species differences in plasma oxytocin using an enzyme immunoassay. Can J Zool 2004; 82: 1194–1200.

    Article  CAS  Google Scholar 

  33. Bailey JW, Barker RL, Beauchene RE . Age-related changes in rat adipose tissue cellularity are altered by dietary restriction and exercise. J Nutr 1993; 123: 52–58.

    Article  CAS  Google Scholar 

  34. Youngstrom TG, Bartness TJ . White adipose tissue sympathetic nervous system denervation increases fat pad mass and fat cell number. Am J Physiol 1998; 275: R1488–R1493.

    CAS  PubMed  Google Scholar 

  35. Casabiell X, Pineiro V, Peino R, Lage M, Camina J, Gallego R et al. Gender differences in both spontaneous and stimulated leptin secretion by human omental adipose tissue in vitro: dexamethasone and estradiol stimulate leptin release in women, but not in men. J Clin Endocrinol Metab 1998; 83: 2149–2155.

    CAS  PubMed  Google Scholar 

  36. Li J, Yu X, Pan W, Unger RH . Expression profile of rat adipose tissue at the onset of high-fat-diet obesity. Am J Physiol Endocrinol Metab 2002; 282: E1334–E1341.

    Article  CAS  Google Scholar 

  37. Martin-Hidalgo A, Huerta L, Alvarez N, Alegria G, Del Val Toledo M, Herrera E . Expression, activity, and localization of hormone-sensitive lipase in rat mammary gland during pregnancy and lactation. J Lipid Res 2005; 46: 658–668.

    Article  CAS  Google Scholar 

  38. Garcia MD, Casanueva FF, Dieguez C, Senaris RM . Gestational profile of leptin messenger ribonucleic acid (mRNA) content in the placenta and adipose tissue in the rat, and regulation of the mRNA levels of the leptin receptor subtypes in the hypothalamus during pregnancy and lactation. Biol Reprod 2000; 62: 698–703.

    Article  CAS  Google Scholar 

  39. Herrera E, Lasuncion MA, Huerta L, Martin-Hidalgo A . Plasma leptin levels in rat mother and offspring during pregnancy and lactation. Biol Neonate 2000; 78: 315–320.

    Article  CAS  Google Scholar 

  40. Butte NF, Hopkinson JM, Nicolson MA . Leptin in human reproduction: serum leptin levels in pregnant and lactating women. J Clin Endocrinol Metab 1997; 82: 585–589.

    Article  CAS  Google Scholar 

  41. Schroeder M, Zagoory-Sharon O, Lavi-Avnon Y, Moran TH, Weller A . Weight gain and maternal behavior in CCK1 deficient rats. Physiol Behav 2006; 89: 402–409.

    Article  CAS  Google Scholar 

  42. Schroeder M, Lavi-Avnon Y, Zagoory-Sharon O, Moran TH, Weller A . Pre-obesity in the infant OLETF rat: the role of suckling. Dev Psychobiol 2007a; 49: 685–691.

    Article  Google Scholar 

  43. Schroeder M, Lavi-Avnon Y, Dagan M, Zagoory-Sharon O, Moran TH, Weller A . Diurnal and nocturnal nursing behavior in the OLETF rat. Dev Psychobiol 2007b; 49: 323–333.

    Article  Google Scholar 

  44. Bi S, Scott KA, Hyun J, Ladenheim EE, Moran TH . Running wheel activity prevents hyperphagia and obesity in Otsuka Long-Evans Tokushima fatty rats: role of hypothalamic signaling. Endocrinology 2005; 146: 1676–1685.

    Article  CAS  Google Scholar 

  45. Watanobe H, Yoneda M, Kohsaka A, Kakizaki Y, Suda T, Schioth HB . Normalization of circulating leptin levels by fasting improves the reproductive function in obese OLETF female rats. Neuropeptides 2001; 35: 45–49.

    Article  CAS  Google Scholar 

  46. Li C, Chen P, Smith MS . Neuropeptide Y (NPY) neurons in the arcuate nucleus (ARH) and dorsomedial nucleus (DMH), areas activated during lactation, project to the paraventricular nucleus of the hypothalamus (PVH). Regul Pept 1998; 75–76: 93–100.

    Article  Google Scholar 

  47. Schwartz MW, Woods SC, Porte Jr D, Seeley RJ, Baskin DG . Central nervous system control of food intake. Nature 2000; 404: 661–671.

    Article  CAS  Google Scholar 

  48. Blevins JE, Schwartz MW, Baskin DG . Evidence that paraventricular nucleus oxytocin neurons link hypothalamic leptin action to caudal brain stem nuclei controlling meal size. Am J Physiol Regul Integr Comp Physiol 2004; 287: R87–R96.

    Article  CAS  Google Scholar 

  49. Bayol SA, Farrington SJ, Stickland NC . A maternal ‘junk food’ diet in pregnancy and lactation promotes an exacerbated taste for ‘junk food’ and a greater propensity for obesity in rat offspring. Br J Nutr 2007; 98: 843–851.

    Article  CAS  Google Scholar 

  50. Caluwaerts S, Lambin S, van Bree R, Peeters H, Vergote I, Verhaeghe J . Diet-induced obesity in gravid rats engenders early hyperadiposity in the offspring. Metabolism 2007; 56: 1431–1438.

    Article  CAS  Google Scholar 

  51. Levin BE, Govek E . Gestational obesity accentuates obesity in obesity-prone progeny. Am J Physiol Regul Integr Comp Physiol 1998; 275: R1374–R1379.

    Article  CAS  Google Scholar 

  52. Gorski JN, Dunn-Meynell AA, Hartman TG, Levin BE . Postnatal environment overrides genetic and prenatal factors influencing offspring obesity and insulin resistance. Am J Physiol Regul Integr Comp Physiol 2006; 291: R768–R778.

    Article  CAS  Google Scholar 

  53. Férézou-Viala J, Roy AF, Sérougne C, Gripois D, Parquet M, Bailleux V et al. Long-term consequences of maternal high-fat feeding on hypothalamic leptin sensitivity and diet-induced obesity in the offspring. Am J Physiol Regul Integr Comp Physiol 2007; 293: R1056–R1062.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dr Kawano of the Otsuka Tokushima Research Institute for the generous gift of the OLETF and LETO rats. This work was supported by the US-Israel Binational Research Foundation (AW and THM).

A portion of this research was presented at the 13th Annual Meeting of the Society for the Study of Ingestive Behavior, Pittsburgh, PA, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O Zagoory-Sharon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zagoory-Sharon, O., Schroeder, M., Levine, A. et al. Adaptation to lactation in OLETF rats lacking CCK-1 receptors: body weight, fat tissues, leptin and oxytocin. Int J Obes 32, 1211–1221 (2008). https://doi.org/10.1038/ijo.2008.58

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2008.58

Keywords

This article is cited by

Search

Quick links