Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The time course of salt-induced hypertension, and why it matters

Abstract

The epidemiology of salt-induced hypertension has been explored in detail in animal studies, in some cases involving exposures to excess dietary salt for much of the animal's lifespan. The results of these studies demonstrate the presence of two distinct time courses of the blood pressure response to a high salt intake: an acute (rapid) blood pressure response occurring over days to weeks, and a slow and progressive blood pressure response that develops over extremely long periods of time, amounting to a significant fraction of the lifespan in normal individuals. The acute form of salt sensitivity is well known in humans, having often been demonstrated as a fall in blood pressure during the period of salt restriction. The slow and progressive form of salt sensitivity has been demonstrated directly in rats and chimpanzees and is also evident in analyses of human cross-population data as a salt dependency of age-associated changes of blood pressure. This slow and progressive component of salt-induced hypertension may be attributable, at least in part, to a progressive rise in the acute salt sensitivity of blood pressure during sustained exposure to high salt. However, a progressively irreversible or ‘self sustaining’ component of salt-induced hypertension has also been demonstrated in rat studies. This irreversible component has not been completely characterized, but its presence raises the possibility that blood pressure responses to salt restriction may not fully reveal the contribution of salt to blood pressure or the epidemiology of hypertension. These various components of salt sensitivity (acute vs slow, reversible vs irreversible) should be considered in any comprehensive explanation of the effects of salt on blood pressure and especially in experimental studies of the genetic and physiological mechanisms underlying salt-induced hypertension.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. Hamet P . The burden of blood pressure: where are we and where should we go? Can J Cardiol 2000; 16: 1483–1487.

    CAS  PubMed  Google Scholar 

  2. Fodor JG, Whitmore B, Leenen F, Larochelle P . Lifestyle modifications to prevent and control hypertension. 5. Recommendations on dietary salt. Canadian Hypertension Society, Canadian Coalition for High Blood Pressure Prevention and Control, Laboratory Centre for Disease Control at Health Canada, Heart and Stroke Foundation of Canada. CMAJ 1999; 160 (9 Suppl): S29–S34.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Kaplan NM . Clinical hypertension/Norman M. Kaplan; with a chapter by Ellin Lieberman 7th edn Williams & Willkins: Baltimore, 1998.

    Google Scholar 

  4. MacGregor GA, de Wardener HE . Salt, Diet & Health. Cambridge University Press: Cambridge, 1998.

    Google Scholar 

  5. Meneton P, Jeunemaitre X, de Wardener HE, MacGregor GA . Links between dietary salt intake, renal salt handling, blood pressure, and cardiovascular diseases. Physiol Rev 2005; 85: 679–715.

    Article  CAS  PubMed  Google Scholar 

  6. Frohlich ED, Chien Y, Sesoko S, Pegram BL . Relationship between dietary sodium intake, hemodynamics, and cardiac mass in SHR and WKY rats. Am J Physiol 1993; 264 (1 Part 2): R30–R34.

    CAS  PubMed  Google Scholar 

  7. Khan NJ, Hampton JA, Lacher DA, Rapp JP, Gohara AF, Goldblatt PJ . Morphometric evaluation of the renal arterial system of Dahl salt-sensitive and salt-resistant rats on a high salt diet. I. Interlobar and arcuate arteries. Lab Invest 1987; 57: 714–723.

    CAS  PubMed  Google Scholar 

  8. Kihara M, Utagawa N, Mano M, Nara Y, Horie R, Yamori Y . Biochemical aspects of salt-induced, pressure-independent left ventricular hypertrophy in rats. Heart Vessels 1985; 1: 212–215.

    Article  CAS  PubMed  Google Scholar 

  9. MacLeod AB, Vasdev S, Smeda JS . The role of blood pressure and aldosterone in the production of hemorrhagic stroke in captopril-treated hypertensive rats. Stroke 1997; 28: 1821–1828.

    Article  CAS  PubMed  Google Scholar 

  10. Simon G, Jaeckel M, Illyes G . Development of structural vascular changes in salt-fed rats. Am J Hypertens 2003; 16: 488–493.

    Article  PubMed  Google Scholar 

  11. Tobian L, Hanlon S . High sodium chloride diets injure arteries and raise mortality without changing blood pressure. Hypertension 1990; 15 (6 Part 2): 900–903.

    Article  CAS  PubMed  Google Scholar 

  12. He FJ, MacGregor GA . Effect of longer-term modest salt reduction on blood pressure. Cochrane Database Syst Rev 2004; Issue 1: CD004937. DOI: 10.1002/14651858.CD004937.

  13. Penner SB, Campbell NRC, Chockalingam A, Zarnke K, Van Vliet B . Dietary sodium and cardiovascular outcomes: a rational approach. Can J Cardiol 2007; 23: 567–572.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Eaton SB, Konner M . Paleolithic nutrition: a consideration if its nature and current implications. NEJM 1985; 312: 283–289.

    Article  CAS  PubMed  Google Scholar 

  15. Briefel RR, Johnson CL . Secular trends in dietary sodium intake in the United States. Annu Rev Nutr 2004; 24: 401–431.

    Article  CAS  PubMed  Google Scholar 

  16. Reinivu H, Valsta LM, Laatikainen T, Tuomilehto J, Pietinen P . Sodium in the Finnish diet: II. Trends in dietary sodium intake and comparison between intake and 24-h excretion of sodium. Euro J Clin Nutr 2006; 60: 1160–1167.

    Article  CAS  Google Scholar 

  17. Canadian Community Health Survey, Cycle 2.2, Nutrition. Nutrient intakes from food. Provincial, regional and national summary tables, volume 1, 2004.

  18. Panel on dietary reference intakes for electrolytes and water. Dietary reference intakes for water, potassium, sodium, chloride, and sulfate. National Academies Press: Washington, DC, USA, 2004. Appendix D.

  19. Krakower CA, Heino HE . Relationship of growth and nutrition to cardiorenal changes induced in birds by a high salt intake. Arch Pathol 1947; 44: 143–162.

    CAS  Google Scholar 

  20. Lenel R, Katz LN, Robard S . Arterial hypertension in the chicken. Am J Physiol 1948; 152: 557–562.

    Article  CAS  PubMed  Google Scholar 

  21. Coleman TG, Guyton AC . Hypertension caused by salt loading in the dog. III. Onset transients of cardiac output and other circulatory variables. Circ Res 1969; 25: 153–160.

    Article  CAS  PubMed  Google Scholar 

  22. Constantopoulos G, Genest J, Kusumoto M, Rojo-Ortega JM . Water, cations, and norepinephrine content of cardiovascular tissues of unilaterally nephrectomized dogs treated with deoxycorticosterone and NaCl. Can J Physiol Pharmacol 1975; 53: 866–872.

    Article  CAS  PubMed  Google Scholar 

  23. Manning Jr RD, Coleman TG, Guyton AC, Norman Jr RA, McCaa RE . Essential role of mean circulatory filling pressure in salt-induced hypertension. Am J Physiol 1979; 236: R40–R47.

    PubMed  Google Scholar 

  24. Vogel JA . Salt induced hypertension in the dog. Am J Physiol 1966; 210: 186–190.

    Article  CAS  PubMed  Google Scholar 

  25. Srinivasan SR, Dalferes Jr ER, Wolf RH, Radhakrishnamurthy B, Foster TA, Berenson GS . Variability in blood pressure response to dietary sodium intake among African green monkeys (Cercopithecus aethiops). Am J Clin Nutr 1984; 39: 792–796.

    Article  CAS  PubMed  Google Scholar 

  26. Leonard AM, Chafe LL, Montani J-P, Van Vliet BN . Increased salt sensitivity in eNOS knockout mice. Am J Hypertens 2006; 12: 1264–1269.

    Article  CAS  Google Scholar 

  27. Corbett WT, Kuller LH, Blaine EH, Damico FJ . Utilization of swine to study the risk factor of an elevated salt diet on blood pressure. Am J Clin Nutr 1979; 32: 2068–2075.

    Article  CAS  PubMed  Google Scholar 

  28. Fukuda TR . L'hypertension par le sel chez les lapins et ses relations avec la glande surrenale. L'Union Med Canada 1951; 80: 1278–1281.

    CAS  Google Scholar 

  29. Weinstock M, Borosh M . Low baroreflex sensitivity predisposes to salt-sensitive hypertension in the rabbit. Am J Physiol 1993; 264 (2 Part 2): H505–H511.

    CAS  PubMed  Google Scholar 

  30. Huang BS, Van Vliet BN, Leenen FHH . Increases in CSF [Na+] precede the increases in blood pressure in Dahl S rats and SHR on high salt diet. Am J Physiol (Heart Circ Physiol) 2004; 287: H1160–H1166.

    Article  CAS  Google Scholar 

  31. Osborn JW, Hornfeldt BJ . Arterial baroreceptor denervation impairs long-term regulation of arterial pressure during dietary salt loading. Am J Physiol 1998; 275: H1558–H1566.

    CAS  PubMed  Google Scholar 

  32. Qi N, Rapp JP, Brand PH, Metting PJ, Britton SL . Body fluid expansion is not essential for salt-induced hypertension in SS/Jr rats. Am J Physiol 1999; 277 (5 Part 2): R1392–R1400.

    CAS  PubMed  Google Scholar 

  33. Sapirstein LA, Brandt WL, Drury DR . Production of hypertension in the rat by substituting hypertonic sodium chloride solutions for drinking water. Proc Soc Exp Biol Med 1950; 73: 82–85.

    Article  CAS  PubMed  Google Scholar 

  34. Van Vliet BN, Chafe LL, Halfyard S, Leonard AM . Distinct rapid and slow phases of salt-induced hypertension in Dahl salt-sensitive rats. J Hypertens 2006; 24: 1599–1606.

    Article  CAS  PubMed  Google Scholar 

  35. Srinivasan SR, Berenson GS, Radhakrishnamurthy B, Dalferes Jr ER, Underwood D, Foster TA . Effects of dietary sodium and sucrose on the induction of hypertension in spider monkeys. Am J Clin Nutr 1980; 33: 561–569.

    Article  CAS  PubMed  Google Scholar 

  36. McDonough J, Wilhelmj CM . The effect of excess salt intake on human blood pressure. Am J Dig Dis Nutr 1954; 21: 180–181.

    Article  CAS  Google Scholar 

  37. McQuarrie I, Thompson WH, Anderson JA . Effects of excessive ingestion of sodium and potassium salts on carbohydrate metabolism and blood pressure in diabetic children. J Nutr 1936; 11: 77–101.

    Article  CAS  Google Scholar 

  38. Fujita T, Henry WL, Bartter FC, Lake CR, Delea CS . Factors influencing blood pressure in salt-sensitive patients with hypertension. Am J Med 1980; 69: 334–344.

    Article  CAS  PubMed  Google Scholar 

  39. Kawasaki T, Delea CS, Bartter FC, Smith H . The effect of high-sodium and low-sodium intakes on blood pressure and other related variables in human subjects with idiopathic hypertension. Am J Med 1978; 64: 193–198.

    Article  CAS  PubMed  Google Scholar 

  40. Franco V, Oparil S . Salt sensitivity, a determinant of blood pressure, cardiovascular disease and survival. J Am Coll Nutr 2006; 25 (3 Suppl): 247S–255S.

    Article  CAS  PubMed  Google Scholar 

  41. Weinberger MH . Salt sensitivity of blood pressure in humans. Hypertension 1996; 27: 481–490.

    Article  CAS  PubMed  Google Scholar 

  42. Weinberger MH . Pathogenesis of salt sensitivity of blood pressure. Curr Hypertens Rep 2006; 8: 166–170.

    Article  CAS  PubMed  Google Scholar 

  43. Guyton AC, Coleman TG, Granger HJ . Circulation: overall regulation. Ann Rev Physiol 1972; 34: 13–46.

    Article  CAS  Google Scholar 

  44. Guyton AC . Circulatory Physiology III. Arterial pressure and hypertension. WB Saunders and Co: Toronto, 1980.

    Google Scholar 

  45. Guyton AC . Renal function curve—a key to understanding the pathogenesis of hypertension. Hypertension 1987; 10: 1–6.

    Article  CAS  PubMed  Google Scholar 

  46. Guyton AC . Renal function curves and control of body fluids and arterial pressure. Acta Physiol Scand Suppl 1990; 591: 107–113.

    CAS  PubMed  Google Scholar 

  47. Guyton AC . Kidneys and fluids in pressure regulation. Small volume but large pressure changes. Hypertension 1992; 19 (1 Suppl): I2–I8.

    CAS  PubMed  Google Scholar 

  48. Montani JP, VanVliet BN . Integrative renal regulation of sodium excretion. In: Burnier M (ed). Sodium in Health and Disease. Informa Health Care: New York, 2008, pp 175–199.

    Google Scholar 

  49. Van Vliet BN, Montani JP . Circulation and fluid volume control. In: Walz, W (ed) Integrative Physiology in the Proteomics and Post-Genomics Age. Humana Press, New Jersey, 2005, pp 43–66.

    Chapter  Google Scholar 

  50. Cowley Jr AW . Long-term control of arterial blood pressure. Physiol Rev 1992; 72: 231–300.

    Article  PubMed  Google Scholar 

  51. Granger JP, Alexander BT, Llinas M . Mechanisms of pressure natriuresis. Curr Hypertens Rep 2002; 4: 152–159.

    Article  PubMed  Google Scholar 

  52. McDonough AA, Leong PK, Yang LE . Mechanisms of pressure natriuresis: how blood pressure regulates renal sodium transport. Ann NY Acad Sci 2003; 986: 669–677.

    Article  CAS  PubMed  Google Scholar 

  53. Selkurt EE . Effect of pulse pressure and mean arterial pressure on modification on renal haemodynamics and electrolyte water excretion. Circulation 1951; 4: 541–551.

    Article  CAS  PubMed  Google Scholar 

  54. Starling EH, Verney EB . The excretion of urine as studied in the isolated kidney. Proc R Soc Lond 1925; 97: 321–363.

    CAS  Google Scholar 

  55. Evans RG, Szenasi G, Anderson WP . Effects of N-nitro-L-arginine on pressure natriuresis in anesthetized rabbits. Clin Exp Pharmacol Physiol 1995; 22: 94–101.

    Article  CAS  PubMed  Google Scholar 

  56. Nafz B, Ehmke H, Wagner CD, Kirchheim HR, Persson PB . Blood pressure variability and urine flow in the conscious dog. Am J Physiol 1998; 274 (4 Part 2): F680–F686.

    CAS  PubMed  Google Scholar 

  57. Hall JE, Guyton AC, Mizelle HL . Role of the renin–angiotensin system in control of sodium excretion and arterial pressure. Acta Physiol Scand Suppl 1990; 591: 48–62.

    CAS  PubMed  Google Scholar 

  58. Hall JE . The renin–angiotensin system: renal actions and blood pressure regulation. Compr Ther 1991; 17: 8–17.

    CAS  PubMed  Google Scholar 

  59. Melo LG, Veress AT, Chong CK, Pang SC, Flynn TG, Sonnenberg H . Salt-sensitive hypertension in ANP knockout mice: potential role of abnormal plasma renin activity. Am J Physiol 1998; 274 (1 Part 2): R255–R261.

    CAS  PubMed  Google Scholar 

  60. Ehmke H, Persson PB, Seyfarth M, Kirchheim HR . Neurogenic control of pressure natriuresis in conscious dogs. Am J Physiol 1990; 259: F466–F473.

    CAS  PubMed  Google Scholar 

  61. Golin R, Genovesi S, Castoldi G, Wijnmaalen P, Protasoni G, Zanchetti A et al. Role of the renal nerves and angiotensin II in the renal function curve. Arch Ital Biol 1999; 137: 289–297.

    CAS  PubMed  Google Scholar 

  62. Huang BS, Amin S, Leenen FHH . The central role of the brain in salt-sensitive hypertension. Curr Opin Cardiol 2006; 21: 295–304.

    Article  PubMed  Google Scholar 

  63. Leenen FH, Ruzicka M, Huang BS . The brain and salt-sensitive hypertension. Curr Hypertens Rep 2002; 4: 129–135.

    Article  PubMed  Google Scholar 

  64. Manning RD, Hu L, Tan DY, Meng S . Role of abnormal nitric oxide systems in salt sensitive hypertension. Am J Hypertens 2001; 14: 68S–73S.

    Article  CAS  PubMed  Google Scholar 

  65. Ball COT, Meneely GR . Observations on dietary sodium chloride. J Am Diet Assoc 1957; 33: 366–370.

    Article  CAS  PubMed  Google Scholar 

  66. Meneely GR, Tucker RG, Darby WJ, Auerbach SH . Chronic sodium chloride toxicity in the albino rat. II. Occurrence of hypertension and of a syndrome of edema and renal failure. J Exp Med 1953; 98: 71–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Tucker RG, Ball COT, Darby WJ, Early WR, Kory RC, Youmans JB et al. Chronic sodium chloride toxicity in the albino rat. III. Maturity characteristics, survivorship, and organ weights. J Gerontol 1957; 12: 182–189.

    Article  CAS  PubMed  Google Scholar 

  68. Dahl LK . Effects of chronic excess salt feeding. Elevation of plasma cholesterol in rats and dogs. J Exp Med 1960; 112: 635–651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Dahl LK . Effects of chronic excess salt feeding. Induction of self-sustaining hypertension in rats. J Exp Med 1961; 114: 231–236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Dahl LK, Heine M . Effects of chronic excess salt feeding. Enhanced hypertensinogenic effect of sea salt over sodium chloride. J Exp Med 1961; 113: 1067–1076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Dahl LK, Schackow E . Effects of chronic excess salt ingestion: experimental hypertension in the rat. Can Med Assoc J 1964; 90: 155–160.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Dahl LK, Knudsen KD, Heine MA, Leitl GJ . Effects of chronic excess salt ingestion. Modification of experimental hypertension in the rat by variations in the diet. Circ Res 1968; 22: 11–18.

    Article  CAS  PubMed  Google Scholar 

  73. Knudsen KD, Dahl LK, Thompson K, Iwai J, Heine M, Leitl G . Effects of chronic excess salt ingestion. Inheritance of hypertension in the rat. J Exp Med 1970; 132: 976–1000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Mattson DL, Kunert MP, Kaldunski ML, Greene AS, Roman RJ, Jacob HJ et al. Influence of diet and genetics on hypertension and renal disease in Dahl salt-sensitive rats. Physiol Genomics 2004; 16: 194–203.

    Article  CAS  PubMed  Google Scholar 

  75. Ben-Ishay D, Kobrin I, Saliternick-Vardi R, Feurstein G, Zamir N . The Sabra hypertension prone (H) and hypertension resistant (N) rat strain. Paroi Arterielle 1980; 6: 157–159.

    CAS  PubMed  Google Scholar 

  76. Yagil C, Katni G, Rubattu S, Stolpe C, Kreutz R, Lindpaintner K et al. Development, genotype and phenotype of a new colony of the Sabra hypertension prone (SBH/y) and resistant (SBN/y) rat model of salt sensitivity and resistance. J Hypertens 1996; 14: 1175–1182.

    Article  CAS  PubMed  Google Scholar 

  77. Cowley Jr AW, Stoll M, Greene AS, Kaldunski ML, Roman RJ, Tonellato PJ et al. Genetically defined risk of salt sensitivity in an intercross of Brown Norway and Dahl S rats. Physiol Genomics 2000; 2: 107–115.

    Article  CAS  PubMed  Google Scholar 

  78. Cherchovich GM, Capek K, Jefremova Z, Pohlova I, Jelinek J . High salt intake and blood pressure in lower primates (Papio hamadryas). J Appl Physiol 1976; 40: 601–604.

    Article  CAS  PubMed  Google Scholar 

  79. Denton D, Weisinger R, Mundy NI, Wickings EJ, Dixson A, Moisson P et al. The effect of increased salt intake on blood pressure of chimpanzees. Nat Med 1995; 1: 1009–1016.

    Article  CAS  PubMed  Google Scholar 

  80. Eichberg JW, Shade RE . Normal' blood pressure in chimpanzees. J Med Primatol 1987; 16: 317–321.

    Article  CAS  PubMed  Google Scholar 

  81. Elliott P, Walker LL, Little MP, Blair-West JR, Shade RE, Lee DR et al. Change in salt intake affects blood pressure of chimpanzees: implications for human populations. Circulation 2007; 116: 1563–1568.

    Article  CAS  PubMed  Google Scholar 

  82. Ladd M, Raisz LG . Response of the normal dog to dietary sodium chloride. Am J Physiol 1949; 159: 149–152.

    Article  CAS  PubMed  Google Scholar 

  83. Ryan S, Halfyard S, Van Vliet BN . iNOS knockout mice do not have increased salt sensitivity. Proceedings of the Satellite meeting of the International Society of Hypertension on Salt and Hypertension, Nagoya, Japan, Oct 2006.

  84. Law MR, Frost CD, Wald NJ . By how much does dietary salt reduction lower blood pressure? I. Analysis of observational data among populations. BMJ 1991; 302: 811–815.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Elliott P, Stamler J, Nichols R, Dyer AR, Stamler R, Kesteloot H et al. Intersalt revisited: further analyses of 24 h sodium excretion and blood pressure within and across populations. BMJ 1996; 312: 1249–1253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Staessen J, Amery A, Fagard R . Isolated systolic hypertension in the elderly. J Hypertens 1990; 8: 393–405.

    Article  CAS  PubMed  Google Scholar 

  87. Miller JZ, Weinberger MH, Daugherty SA, Fineberg NS, Christian JC, Grim CE . Heterogeneity of blood pressure response to dietary sodium restriction in normotensive adults. J Chronic Dis 1987; 40: 245–250.

    Article  CAS  PubMed  Google Scholar 

  88. Myers J, Morgan T . The effect of sodium intake on the blood pressure related to age and sex. Clin Exp Hypertens A 1983; 5: 99–118.

    CAS  PubMed  Google Scholar 

  89. Weinberger MH, Fineberg NS . Sodium and volume sensitivity of blood pressure. Age and pressure change over time. Hypertension 1991; 18: 67–71.

    Article  CAS  PubMed  Google Scholar 

  90. Law MR, Frost CD, Wald NJ . By how much does dietary salt reduction lower blood pressure? III—Analysis of data from trials of salt reduction. BMJ 1991; 302: 819–824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Majid DSA, Kopkan L . Nitric oxide and superoxide interactions in the kidney and their implication in the development of salt-sensitive hypertension. Clin Exp Pharmacol Physiol 2007; 34: 946–952.

    Article  CAS  PubMed  Google Scholar 

  92. Rodriguez-Iturbe B, Romero F, Johnson RJ . Pathophysiological mechanisms of salt dependent hypertension. Am J Kidney Dis 2007; 50: 655–672.

    Article  PubMed  Google Scholar 

  93. Chen PY, St John PL, Kirk KA, Abrahamson DR, Sanders PW . Hypertensive nephrosclerosis in the Dahl/Rapp rat. Initial sites of injury and effect of dietary L-arginine supplementation. Lab Invest 1993; 68: 174–184.

    CAS  PubMed  Google Scholar 

  94. Jaffé D, Sutherland LE, Barker DM, Dahl LK . Effects of chronic excess salt ingestion. Morphologic findings in kidneys of rats with differing genetic susceptibilities to hypertension. Arch Pathol 1970; 90: 1–16.

    PubMed  Google Scholar 

  95. Rapp JP, Dene H . Development and characteristics of inbred strains of Dahl salt-sensitive and salt-resistant rats. Hypertension 1985; 7 (3 Part 1): 340–349.

    Article  CAS  PubMed  Google Scholar 

  96. Kimura G, Brenner BM . Implications of the linear pressure–natriuresis relationship and importance of sodium sensitivity in hypertension. J Hypertens 1997; 15: 1055–1061.

    Article  CAS  PubMed  Google Scholar 

  97. Rodríguez-Iturbe B, Pons H, Quiroz Y, Gordon K, Rincón J, Chávez M et al. Mycophenolate mofetil prevents salt-sensitive hypertension resulting from angiotensin II exposure. Kidney Int 2001; 59: 2222–2232.

    Article  PubMed  Google Scholar 

  98. Quiroz Y, Pons H, Gordon KL, Rincón J, Chávez M, Parra G et al. Mycophenolate mofetil prevents salt-sensitive hypertension resulting from nitric oxide synthesis inhibition. Am J Physiol Renal Physiol 2001; 281: F38–F47.

    Article  CAS  PubMed  Google Scholar 

  99. Et-Taouil K, Schiavi P, Lévy BI, Plante GE . Sodium intake, large artery stiffness, and proteoglycans in the spontaneously hypertensive rat. Hypertension 2001; 38: 1172–1176.

    Article  CAS  PubMed  Google Scholar 

  100. Avolio AP, Deng FQ, Li WQ, Luo YF, Huang ZD, Xing LF et al. Effects of aging on arterial distensibility in populations with high and low prevalence of hypertension: comparison between urban and rural communities in China. Circulation 1985; 71: 202–210.

    Article  CAS  PubMed  Google Scholar 

  101. Polónia J, Maldonado J, Ramos R, Bertoquini S, Duro M, Almeida C et al. Estimation of salt intake by urinary sodium excretion in a Portuguese adult population and its relationship to arterial stiffness. Rev Port Cardiol 2006; 25: 801–817.

    PubMed  Google Scholar 

  102. Greenwald SE . Ageing of the conduit arteries. J Pathol 2007; 211: 157–172.

    Article  CAS  PubMed  Google Scholar 

  103. McEniery CM, Wilkinson IB, Avolio AP . Age, hypertension and arterial function. Clin Exp Pharmacol Physiol 2007; 34: 665–671.

    Article  CAS  PubMed  Google Scholar 

  104. O'Rourke MF . Arterial aging: pathophysiological principles. Vasc Med 2007; 12: 329–341.

    Article  PubMed  Google Scholar 

  105. Gates PE, Tanaka H, Hiatt WR, Seals DR . Dietary sodium restriction rapidly improves large elastic artery compliance in older adults with systolic hypertension. Hypertension 2004; 44: 35–41.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Diane Gilmore, Jennica Gilmore and Linda Chafe for their assistance in the preparation of the paper. This study was supported by a grant from the Canadian Institutes of Health Research (no. 64440).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B N Van Vliet.

Additional information

Conflict of interest

Bruce N Van Vliet has received a grant from the Canadian Institute of Health Research. Jean-Pierre Montani has declared no financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Vliet, B., Montani, JP. The time course of salt-induced hypertension, and why it matters. Int J Obes 32 (Suppl 6), S35–S47 (2008). https://doi.org/10.1038/ijo.2008.205

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2008.205

Keywords

This article is cited by

Search

Quick links