Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Genetic mapping of a 17q chromosomal region linked to obesity phenotypes in the IRAS family study

Abstract

Objective:

Obesity is widely accepted to be influenced by both environmental and genetic factors. Several recent studies have used the positional cloning approach in an attempt to discover genes contributing to obesity. In the IRAS Family Study a genomewide scan was performed on 1425 individuals of Hispanic descent (90 extended pedigree families) to identify regions of the genome linked to obesity phenotypes.

Methods:

Nonparametric QTL linkage analysis was performed using a variance components approach. The genome scan was performed in two phases: an initial genome scan in 45 families and a replication scan in 45 families. Fine mapping and candidate gene analyses were also performed. General estimating equations (GEE1) and quantitative pedigree disequilibrium tests (QPDT) were used for association analysis of single SNP and haplotype data.

Results:

Evidence for linkage to obesity traits was observed in each scan on the long arm of chromosome 17. When data from both scans was combined, a region on chromosome 17q was identified with evidence of linkage to visceral adipose tissue (VAT; LOD 3.11), waist circumference (WAIST) (LOD 2.5) and body mass index (BMI) (LOD 2.81). Nine additional microsatellite markers were identified and genotyped on all Hispanic individuals, with a mean marker density of approximately 1 marker/3 cM. Evidence of linkage remained significant with LOD 3.05 for VAT, LOD 2.44 for BMI and LOD 1.92 for WAIST. Fine mapping analyses suggest the possibility of two different obesity loci. In addition, the LOD – 1 interval of the major VAT peak decreased from 83–108 to 95–111 cM. Three positional candidate genes under the peak: somatostatin receptor 2 (SSTR2), galanin receptor 2 (GALR2), and growth hormone bound protein receptor 2 (GRB2) were chosen for detailed evaluation. Multiple polymorphisms within each candidate were genotyped and tested for association with the obesity phenotypes. Little evidence of association was detected between polymorphisms and obesity traits.

Conclusion:

In conclusion, replication of linkage and fine mapping suggest that a region on chromosome 17q contains a gene (or genes) that contributes to the genetic etiology of obesity with the strongest evidence for linkage to VAT. Candidate genes in the region do not appear to account for the evidence of linkage. Additional studies are necessary to identify the obesity-related polymorphisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Baskin ML, Ard J, Franklin F, Allison DB . Prevalence of obesity in the United States. Obes Rev 2005; 6: 5–7.

    Article  CAS  PubMed  Google Scholar 

  2. Finkelstein EA, Fiebelkorn IC, Wang G . State-level estimates of annual medical expenditures attributable to obesity. Obes Res 2004; 12: 18–24.

    Article  PubMed  Google Scholar 

  3. Pi-Sunyer FX . The obesity epidemic: pathophysiology and consequences of obesity. Obes Res 2002; 10 (Suppl 2): 97S–104S.

    Article  PubMed  Google Scholar 

  4. Stern MP, Patterson JK, Mitchell BD, Haffner SM, Hazuda HP . Overweight and mortality in Mexican Americans. Int J Obes Relat Metab Disord 1990; 14: 623–629.

    CAS  Google Scholar 

  5. Haffner SM, Diehl AK, Stern MP, Hazuda HP . Central adiposity and gallbladder disease in Mexican Americans. Am J Epidemiol 1989; 129: 587–595.

    Article  CAS  PubMed  Google Scholar 

  6. Diehl AK, Stern MP . Special health problems of Mexican-Americans: obesity, gallbladder disease, diabetes mellitus, and cardiovascular disease. Adv Intern Med 1989; 34: 73–96.

    CAS  PubMed  Google Scholar 

  7. Vogler GP, Sorensen TI, Stunkard AJ, Srinivasan MR, Rao DC . Influences of genes and shared family environment on adult body mass index assessed in an adoption study by a comprehensive path model. Int J Obes Relat Metab Disord 1995; 19: 40–45.

    CAS  PubMed  Google Scholar 

  8. Adeyemo A, Luke A, Cooper R, Wu X, Tayo B, Zhu X et al. A genome-wide scan for body mass index among Nigerian families. Obes Res 2003; 11: 266–273.

    Article  PubMed  Google Scholar 

  9. Perusse L, Despres JP, Lemieux S, Rice T, Rao DC, Bouchard C . Familial aggregation of abdominal visceral fat level: results from the Quebec family study. Metabolism 1996; 45: 378–382.

    Article  CAS  PubMed  Google Scholar 

  10. Risch N . Linkage strategies for genetically complex traits. I. Multilocus models. Am J Hum Genet 1990; 46: 222–228.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Allison DB, Faith MS, Nathan JS . Risch's lambda values for human obesity. Int J Obes Relat Metab Disord 1996; 20: 990–999.

    CAS  PubMed  Google Scholar 

  12. Bouchard C . The genetics of human obesity: recent progress. Bull Mem Acad R Med Belg 2001; 156: 455–462; discussion 463–454.

    CAS  PubMed  Google Scholar 

  13. Snyder EE, Walts B, Perusse L, Chagnon YC, Weisnagel SJ, Rankinen T et al. The human obesity gene map: the 2003 update. Obes Res 2004; 12: 369–439.

    Article  CAS  PubMed  Google Scholar 

  14. Lafontan M, Berlan M . Do regional differences in adipocyte biology provide new pathophysiological insights? Trends Pharmacol Sci 2003; 24: 276–283.

    Article  CAS  PubMed  Google Scholar 

  15. Montague CT, O’Rahilly S . The perils of portliness: causes and consequences of visceral adiposity. Diabetes 2000; 49: 883–888.

    Article  CAS  PubMed  Google Scholar 

  16. Norris JM, Langefeld CD, Scherzinger AL, Rich SS, Bookman E, Beck SR et al. Quantitative trait loci for abdominal fat and BMI in Hispanic-Americans and African-Americans: the IRAS Family study. Int J Obes Relat Metab Disord 2005; 29: 67–77.

    Article  CAS  Google Scholar 

  17. Henkin L, Bergman RN, Bowden DW, Ellsworth DL, Haffner SM, Langefeld CD et al. Genetic epidemiology of insulin resistance and visceral adiposity. The IRAS Family Study design and methods. Ann Epidemiol 2003; 13: 211–217.

    Article  PubMed  Google Scholar 

  18. Buetow KH, Edmonson M, MacDonald R, Clifford R, Yip P, Kelley J et al. High-throughput development and characterization of a genomewide collection of gene-based single nucleotide polymorphism markers by chip-based matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Proc Natl Acad Sci USA 2001; 98: 581–584.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Heath SC, Snow GL, Thompson EA, Tseng C, Wijsman EM . MCMC segregation and linkage analysis. Genet Epidemiol 1997; 14: 1011–1016.

    Article  CAS  PubMed  Google Scholar 

  20. Heath SC . Markov chain Monte Carlo segregation and linkage analysis for oligogenic models. Am J Hum Genet 1997; 61: 748–760.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. O’Connell JR, Weeks DE . PedCheck: a program for identification of genotype incompatibilities in linkage analysis. Am J Hum Genet 1998; 63: 259–266.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Almasy L, Blangero J . Multipoint quantitative-trait linkage analysis in general pedigrees. Am J Hum Genet 1998; 62: 1198–1211.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Rich SS, Bowden DW, Haffner SM, Norris JM, Saad MF, Mitchell BD et al. Identification of quantitative trait loci for glucose homeostasis: the Insulin Resistance Atherosclerosis Study (IRAS) Family Study. Diabetes 2004; 53: 1866–1875.

    Article  CAS  PubMed  Google Scholar 

  24. Zeger SL, Liang KY . Longitudinal data analysis for discrete and continuous outcomes. Biometrics 1986; 42: 121–130.

    Article  CAS  PubMed  Google Scholar 

  25. Hardin JWHJ . Generalized Estimating Equations. New York, Chapman & Hall/CRC: New York, 2003.

    Google Scholar 

  26. Lange KC, Horvath S, Perola M, Sabatti C, Sinsheimer J, Sobel E . Mendel version 4.0: a complete package for the exact genetic analysis of discrete traits in pedigree and population data sets. Am J Hum Genet 2001; 69: A1886.

    Google Scholar 

  27. Dudbridge F . Pedigree disequilibrium tests for multilocus haplotypes. Genet Epidemiol 2003; 25: 115–121.

    Article  PubMed  Google Scholar 

  28. Rice T, Chagnon YC, Perusse L, Borecki IB, Ukkola O, Rankinen T et al. A genomewide linkage scan for abdominal subcutaneous and visceral fat in black and white families: The HERITAGE Family Study. Diabetes 2002; 51: 848–855.

    Article  CAS  PubMed  Google Scholar 

  29. Perusse L, Rice T, Chagnon YC, Despres JP, Lemieux S, Roy S et al. A genome-wide scan for abdominal fat assessed by computed tomography in the Quebec Family Study. Diabetes 2001; 50: 614–621.

    Article  CAS  PubMed  Google Scholar 

  30. Bell CG, Benzinou M, Siddiq A, Lecoeur C, Dina C, Lemainque A et al. Genome-wide linkage analysis for severe obesity in French Caucasians finds significant susceptibility locus on chromosome 19q. Diabetes 2004; 53: 1857–1865.

    Article  CAS  PubMed  Google Scholar 

  31. Sutton BS, Weinert S, Langefeld CD, Williams AH, Campbell JK, Saad MF et al. Genetic analysis of adiponectin and obesity in Hispanic families: the IRAS Family Study. Hum Genet 2005; 117: 107–118.

    Article  CAS  PubMed  Google Scholar 

  32. Kolakowski Jr LF, O’Neill GP, Howard AD, Broussard SR, Sullivan KA, Feighner SD et al. Molecular characterization and expression of cloned human galanin receptors GALR2 and GALR3. J Neurochem 1998; 71: 2239–2251.

    Article  CAS  PubMed  Google Scholar 

  33. Gualillo O, Eiras S, White DW, Dieguez C, Casanueva FF . Leptin promotes the tyrosine phosphorylation of SHC proteins and SHC association with GRB2. Mol Cell Endocrinol 2002; 190: 83–89.

    Article  CAS  PubMed  Google Scholar 

  34. Bonini JA, Colca JR, Dailey C, White M, Hofmann C . Compensatory alterations for insulin signal transduction and glucose transport in insulin-resistant diabetes. Am J Physiol 1995; 269: E759–E765.

    CAS  PubMed  Google Scholar 

  35. Fung LC, Greenberg GR . Characterization of somatostatin receptor subtypes mediating inhibition of nutrient-stimulated gastric acid and gastrin in dogs. Regul Pept 1997; 68: 197–203.

    Article  CAS  PubMed  Google Scholar 

  36. Bruno JF, Xu Y, Song J, Berelowitz M . Pituitary and hypothalamic somatostatin receptor subtype messenger ribonucleic acid expression in the food-deprived and diabetic rat. Endocrinology 1994; 135: 1787–1792.

    Article  CAS  PubMed  Google Scholar 

  37. Johannsson G, Marin P, Lonn L, Ottosson M, Stenlof K, Bjorntorp P et al. Growth hormone treatment of abdominally obese men reduces abdominal fat mass, improves glucose and lipoprotein metabolism, and reduces diastolic blood pressure. J Clin Endocrinol Metab 1997; 82: 727–734.

    CAS  PubMed  Google Scholar 

  38. Kramer H, Wu X, Kan D, Luke A, Zhu X, Adeyemo A et al. Angiotensin-converting enzyme gene polymorphisms and obesity: an examination of three black populations. Obes Res 2005; 13: 823–828.

    Article  CAS  PubMed  Google Scholar 

  39. Wang JG, He X, Wang GL, Li Y, Zhou HF, Zhang WZ et al. Family-based associations between the angiotensin-converting enzyme insertion/deletion polymorphism and multiple cardiovascular risk factors in Chinese. J Hypertens 2004; 22: 487–491.

    Article  CAS  PubMed  Google Scholar 

  40. Griffin KJ, Kirschner LS, Matyakhina L, Stergiopoulos SG, Robinson-White A, Lenherr SM et al. A transgenic mouse bearing an antisense construct of regulatory subunit type 1A of protein kinase A develops endocrine and other tumours: comparison with Carney complex and other PRKAR1A induced lesions. J Med Genet 2004; 41: 923–931.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported in part by NIH grants HL060894, HL060931, HL060944, HL061019, and HL061210.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D W Bowden.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sutton, B., Langefeld, C., Campbell, J. et al. Genetic mapping of a 17q chromosomal region linked to obesity phenotypes in the IRAS family study. Int J Obes 30, 1433–1441 (2006). https://doi.org/10.1038/sj.ijo.0803298

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.ijo.0803298

Keywords

This article is cited by

Search

Quick links