Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Low-glycaemic index diets and body weight regulation

Abstract

Low-fat diets produce spontaneous weight loss in the research setting, but as a public health strategy, they have been disappointing. Insulin resistance and impairments in insulin secretory function leading to postprandial hyperglycaemia are now common, making the current context greatly different to that of 25 years ago. There is increasing evidence that reducing the proportion of energy derived from carbohydrate or reducing the glycaemic index (GI) of the carbohydrate improves the rate of fat loss and cardiovascular risk factors. The proposed mechanisms include higher satiety, higher metabolic rate, reduced postprandial glycaemia and/or insulinaemia and higher fat oxidation. Although dietary glycaemic load can be reduced either by lowering the GI of the carbohydrate or by reducing carbohydrate energy, the metabolic and physiological consequences are not the same. Exchanging high for low-GI foods, without changing the macronutrient ratio, may be optimal because it is simple, cost-effective and often associated with higher intake of whole grains and greater food volume, and factors that maximize the chance of sustained weight loss. Healthy low-GI diets allow for moderate intakes of sugars, including sweetened dairy foods, fruits and confectionery items, and can be easily adapted for individuals of different ethnicities, vegetarians and low-income groups.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Liu S, Willett W, Manson J, Hu F, Rosner B, Colditz G . Relation between changes in intakes of dietary fiber and grain products and changes in weight and development of obesity among middle-aged women. Am J Clin Nutr 2003; 78: 920–927.

    CAS  PubMed  Google Scholar 

  2. Gross L, Li L, Ford E, Liu S . Increased consumption of refined carbohydrates and the epidemic of type 2 diabetes in the United States: a ecologic assessment. Am J Clin Nutr 2004; 79: 774–779.

    CAS  PubMed  Google Scholar 

  3. McKeown N, Meigs J, Liu S, Saltzman E, Wilson P, Jacques P . Carbohydrate nutrition, insulin resistance, and the prevalence of the metabolic syndrome in the Framingham offspring cohort. Diabetes Care 2004; 27: 538–546.

    PubMed  Google Scholar 

  4. Dunstan DW, Zimmet PZ, Welborn TA, De Courten MP, Cameron AJ, Sicree RA et al. The rising prevalence of diabetes and impaired glucose tolerance. Diabetes Care 2002; 25: 829–834.

    PubMed  Google Scholar 

  5. Alberti G, Zimmet P, Shaw J, Bloomgarden Z, Kaufman F, Silink M . Type 2 diabetes in the young: the evolving epidemic. Diabetes Care 2004; 27: 1798–1811.

    PubMed  Google Scholar 

  6. Pi-Sunyer F . Weight loss in type 2 diabetic patients. Diabetes Care 2005; 28: 1526–1527.

    PubMed  Google Scholar 

  7. Pi-Sunyer FX . Glycemic index and disease. Am J Clin Nutr 2002; 76: 290S–298S.

    CAS  PubMed  Google Scholar 

  8. Willett W, Manson J, Liu S . Glycemic index, glycemic load, and risk of type 2 diabetes. Am J Clin Nutr 2002; 76: 274S–280S.

    CAS  PubMed  Google Scholar 

  9. Pawlak DB, Kushner J, Ludwig D . Effects of dietary glycaemic index on adiposity, glucose homoeostasis, and plasma lipids in animals. Lancet 2004; 364: 778–785.

    CAS  PubMed  Google Scholar 

  10. Jenkins D, Wolever T, Taylor R, Barker H, Fielden H, Baldwin JM et al. Glycemic index of foods: a physiological basis for carbohydrate exchange. Am J Clin Nutr 1981; 34: 362–366.

    Article  CAS  PubMed  Google Scholar 

  11. Wolever T, Jenkins D, Jenkins A, Josse R . The glycemic index: methodology and clinical implications. Am J Clin Nutr 1991; 54: 846–854.

    CAS  PubMed  Google Scholar 

  12. Brand-Miller J, Holt S . Testing the glycaemic index of foods: in vivo not in vitro. Eu J Clin Nutr 2004; 58: 700–701.

    CAS  Google Scholar 

  13. Wolever T . Carbohydrates and health – the FAO/WHO consultation. Aus J Nutr Dietetics 2001; 58: S3–S8.

    Google Scholar 

  14. Nutrition Subcommittee of the Diabetes Care Advisory Committe of Diabetes UK. The implementation of nutritional advice for people with diabetes. Diabetes Med 2003; 20: 786–807.

  15. Canadian Diabetes Association. Guidelines for the nutritional management of diabetes mellitus in the new millennium. A position statement by the Canadian Diabetes Association. Can J Diabetes Care 2000; 23: 56–69.

  16. Diabetes Australia NSW. www.diabetesnsw.com.au/living_well_with_diabetes_pages/gi_symbol_program.asp.

  17. Sheard N, Clark N, Brand-Miller J, Franz MJ, Pi-Sunyer FX, Mayer-Davis E et al. Dietary carbohydrate (amount and type) in the prevention and management of diabetes. Diabetes Care 2004; 27: 2266–2271.

    CAS  PubMed  Google Scholar 

  18. Ebbeling C, Leidig M, Sinclair K, Hangen J, Ludwig D . A reduced-glycemic load diet in the treatment of adolescent obesity. Arch Pediatr Adoles Med 2003; 157: 773–779.

    Google Scholar 

  19. Burke L, Collier G, Hargreaves M . Muscle glycogen storage after prolonged exercise: effect of the glycemic index of carbohydrate feedings. J Appl Physiol 1993; 75: 1019–1023.

    CAS  PubMed  Google Scholar 

  20. Brynes A, Edwards M, Ghatei M, Dornhorst A, Morgan LM, Bloom SR et al. A randomised four-intervention crossover study investigating the effect of carbohydrates on daytime profiles of insulin, glucose, non-esterified fatty acids and triacylglycerols in middle-aged men. Br J Nut 2003; 89: 207–218.

    CAS  Google Scholar 

  21. Frances chi S . Intake of macronutrients and risk of breast cancer. Lancet 1996; 347: 1351–1356.

    CAS  Google Scholar 

  22. Frances chi S, Fever A, La Vichy C . Food groups and risk of colorectal cancer. Into J Cancer 1997; 72: 56–61.

    CAS  Google Scholar 

  23. Brand-Miller J, Thomas M, Swan V, Ahmad Z, Petcock P, Claggier S . Physiological validation of the concept of glycemic load in lean young adults. J Nutr 2003; 133: 2728–2732.

    CAS  PubMed  Google Scholar 

  24. McMillan-Price J, Petocz P, Atkinson F, O'Neill K, Samman S, Steinbeck K et al. Comparison of 4 diets of varying glycemic load on weightloss and cardiovascular risk reduction in overweight and obese young adults. Arch Intern Med 2006; 166: 1466–1475.

    PubMed  Google Scholar 

  25. Ebbeling C, Ludwig D . Treating obesity in youth: should dietary glycemic load be a consideration? [in process citation]. Adv Pediatr 2001; 48: 179–212.

    CAS  PubMed  Google Scholar 

  26. Raben A . Should obese patients be counselled to follow a low-glycaemic index diet? No Obes Rev 2002; 3: 245–256.

    CAS  PubMed  Google Scholar 

  27. Campfield L, Smith F . Blood glucose dynamics and control of meal initiation: a pattern detection and recognition theory. Physiol Rev 2003; 83: 25–58.

    CAS  PubMed  Google Scholar 

  28. Holt S, Brand J, Soveny C, Hansky J . Relationship of satiety to postprandial glycaemic, insulin and cholecystokinin responses. Appetite 1992; 18: 129–141.

    CAS  PubMed  Google Scholar 

  29. Jenkins DJ, Jenkins AL, Wolever TM, Collier GR, Rao AV, Thompson LU . Starchy foods and fiber: reduced rate of digestion and improved carbohydrate metabolism. Scan J Gastroenterol 1987; 129 (Suppl.): 132–141.

    CAS  Google Scholar 

  30. de Graaf C, Blom W, Smeets P, Stafleu A, Hendriks H . Biomarkers of satiation and satiety. Am J Clin Nutr 2004; 79: 946–961.

    CAS  PubMed  Google Scholar 

  31. Brand-Miller J, Pang E, Broomhead L . The glycaemic index of foods containing sugars: comparison of foods with naturally-occurring v. added sugars. Br J Nutr 1995; 73: 613–623.

    Google Scholar 

  32. Ludwig D . Dietary glycemic index and obesity. J Nutr 2000; 130: 280S–283S.

    CAS  PubMed  Google Scholar 

  33. Jimenez-Cruz A, Gutierrez-Gonzalez AN . Low glycemic index lunch on satiety in overweight and obese people with type 2 diabetes. Nutr Hospital 2005; 20: 348–350.

    CAS  Google Scholar 

  34. Agus M, Swain J, Larson C, Eckert E, Ludwig DS . Dietary composition and physiologic adaptations to energy restriction. Am J Clin Nutr 2000; 71: 901–907.

    CAS  PubMed  Google Scholar 

  35. Warren JM, Henry JK, Simonite V . Low-glycemic index breakfasts and reduced food intake in preadolescent children. Pediatrics 2003; 112: 414–419.

    Google Scholar 

  36. Holt SH, Brand-Miller J . Particle size, satiety and the glycemic response. Eur J Clin Nutr 1994; 48: 496–502.

    CAS  PubMed  Google Scholar 

  37. Holt SH, Brand J, Soveny C, Hansky J . Relationship of satiety to postprandial glycemic, insulin and cholecystokinin responses. Appetite 1992; 18: 129–141.

    CAS  PubMed  Google Scholar 

  38. Dumesnil J, Turgeon J, Tremblay A, Poirier P, Gilbert M, Gagnon L et al. Effect of a low-glycemic index-low-fat-high protein diet on the atherogenic metabolic risk profile of abdominally obese men. Br J Nutr 2001; 86: 557–568.

    CAS  PubMed  Google Scholar 

  39. Anderson G, Catherine N, Woodend D, Wolever TMS . Inverse association between the effect of carbohydrates on blood glucose and subsequent short-term food intake in young men. Am J Clin Nutr 2002; 76: 1023–1030.

    CAS  PubMed  Google Scholar 

  40. Alfenas R, Mattes R . Influence of glycemic index/load on glycemic response, appetite, and food intake in healthy humans. Diabetes Care 2005; 28: 2123–2129.

    PubMed  Google Scholar 

  41. Wolever T, Brand-Miller J . Influence of glycemic index/load on glycemic response, appetite, and food intake in healthy humans (letter). Diabetes Care 2006; 29: 474–475.

    PubMed  Google Scholar 

  42. Ludwig D, Roberts S . Influence of glycemic index/load on glycemic response, appetite and food intake in healthy humans (letter). Diabetes Care 2006; 29: 474.

    PubMed  Google Scholar 

  43. Ludwig D, Majzoub J, Al-Zahrani A, Dallal G, Blanco I, Roberts S . High glycemic index foods, overeating, and obesity. Pediatrics 1999; 103: e26.

    CAS  PubMed  Google Scholar 

  44. Febbraio M, Keenan J, Angus D, Campbell S, Garnham A . Preexercise carbohydrate ingestion, glucose kinetics, and muscle glycogen use: effect of the glycemic index. J Appl Physiol 2000; 89: 1845–1851.

    CAS  PubMed  Google Scholar 

  45. Febbraio M, Stewart K . CHO feeding before prolonged exercise: effect of glycemic index on muscle glycogenolysis and exercise performance. J Appl Physiol 1996; 81: 1115–1120.

    CAS  PubMed  Google Scholar 

  46. Stevenson E, Williams C, Nute M . The influence of the glycaemic index of breakfast and lunch on substrate utilisation during the postprandial periods and subsequent exercise. Br J Nutr 2005; 93: 885–893.

    CAS  PubMed  Google Scholar 

  47. Wu C-L, Nicholas C, Williams C, Took A, Hardy L . The influence of high-carbohydrate meals with different glycaemic indices on substrate utilisation during subsequent exercise. Br J Nutr 2003; 90: 1049–1056.

    CAS  PubMed  Google Scholar 

  48. Wee S, Williams C, Tsintzas K, Boobis L . Ingestion of a high-glycemic index meal increases muscle glycogen storage at rest but augments its utilization during subsequent exercise. J Appl Physiol 2005; 99: 707–714.

    CAS  PubMed  Google Scholar 

  49. Wolfe R . Metabolic interactions between glucose and fatty acids in humans. Am J Clin Nutr 1998; 67: 519S–526S.

    CAS  PubMed  Google Scholar 

  50. Simoneau J-A, Veerkamp JH, Turcotte LP, Kelley DE . Markers of capacity to utilize fatty acids in human skeletal muscle: relation to insulin resistance and obesity and effects of weight loss. FASEB J 1999; 13: 2051–2060.

    CAS  PubMed  Google Scholar 

  51. Commerford SR, Pagliassotti MJ, Melby CL, Wei Y, Gayles EC, Hill JO . Fat oxidation, lipolysis, and free fatty acid cycling in obesity-prone and obesity-resistant rats. Am J Physiol Endocrinol Metab 2000; 279: E875–885.

    CAS  PubMed  Google Scholar 

  52. Zurlo F, Lillioja S, Esposito-Del Puente A, Nyomba BL, Raz I, Saad MF et al. Low ratio of fat to carbohydrate oxidation as predictor of weight gain: study of 24-h RQ. Am J Physiol Endocrinol Metab 1990; 259: E650–E657.

    CAS  Google Scholar 

  53. Weyer C, Pratley RE, Salbe AD, Bogardus C, Ravussin E, Tataranni PA . Energy expenditure, fat oxidation, and body weight regulation: a study of metabolic adaptation to long-term weight change. J Clin Endocrinol Metab 2000; 85: 1087–1094.

    CAS  PubMed  Google Scholar 

  54. Pereira MA, Swain J, Goldfine AB, Rifai N, Ludwig DS . Effects of a low-glycemic load diet on resting energy expenditure and heart disease risk factors during weight loss. JAMA 2004; 292: 2482–2490.

    CAS  PubMed  Google Scholar 

  55. Pawlak D, Kushner J, Ludwig D . Effects of dietary glycaemic index on adiposity, glucose homeostasis, and plasma lipids in animals. Lancet 2004; 364: 778–785.

    CAS  PubMed  Google Scholar 

  56. Kabir M, Rizkalla S, Quignard-Boulange A, Guerre-Millo M, Boillot J, Ardouin B et al. A high glycemic index starch diet affects storage-related enzymes in normal and to a lesser extent in diabetic rats. J Nutr 1998; 128: 1878–1883.

    CAS  PubMed  Google Scholar 

  57. Kabir M, Rizkalla S, Champ M, Luo J, Boillot J, Bruzzo F et al. Dietary amylose-amylopectin starch content affects glucose and lipid metabolism in adipocytes of normal and diabetic rats. J Nutr 1998; 128: 35–43.

    CAS  PubMed  Google Scholar 

  58. Ma Y, Olendzki B, Chiriboga D, Hebert JR, Li Y, Li W et al. Association between dietary carbohydrates and body weight. Am J Epidemiol 2005; 161: 359–367.

    PubMed  Google Scholar 

  59. Toeller M, Buyken A, Heitkamp G, Cathelineau G, Ferriss B, Michel G et al. Nutrient intakes as predictors of body weight in European people with type 1 diabetes. Int J Obes Relat Metab Discord 2001; 25: 1815–1822.

    CAS  Google Scholar 

  60. Spieth L, Harnish J, Lenders C, Raezer LB, Pereira MA, Hangen J et al. A low-glycemic index diet in the treatment of pediatric obesity. Arch Pediatr Adolesc Med 2000; 154: 947–951.

    CAS  PubMed  Google Scholar 

  61. Ebbeling CB, Leidig MM, Sinclair KB, Hangen JP, Ludwig DS . A reduced-glycemic load diet in the treatment of adolescent obesity. Arch Pediatr Adolesc Med 2003; 157: 773–779.

    PubMed  Google Scholar 

  62. Bahadori B, Yazdani-Biuki B, Krippl P, Brath H, Uitz E, EWascher T . Low-fat, high-carbohydrate (low-glycaemic index) diet induces weight loss and preserves lean body mass in obese healthy subjects: results of a 24-week study. Diabetes, Obesity and Metabolism 2004; 7: 290–293.

    Google Scholar 

  63. Skov A, Toubro S, Ronn B, Holm L, Astrup A . Randomised trial on protein vs carbohydrate in ad libitum fat reduced diet for the treatment of obesity. Int J Obes Relat Metab Discord 1999; 23: 528–536.

    CAS  Google Scholar 

  64. Pittas A, Das S, Hajduk C, Golden J, Saltzman E, Stark PC et al. A low-glycemic load diet facilitates greater weight loss in overweigth adults with high insulin secretion but not in overweight adults with low insulin secretion in the CALERIE Trial. Diabetes Care 2005; 28: 2939–2941.

    PubMed  Google Scholar 

  65. Bouche C, Rizkalla SW, Luo J, Vidal H, Veronese A, Pacher N et al. Five-week, low-glycemic index diet decreases total fat mass and improves plasma lipid profile in moderately overweight nondiabetic men. Diabetes Care 2002; 25: 822–828.

    CAS  PubMed  Google Scholar 

  66. Brynes A, Edwards C, Ghatei M, Dornhorst A, Morgan LM, Bloom SR et al. A randomised four-intervention crossover study investigating the effect of carbohydrates on daytime profiles of insulin, glucose, non-esterified fatty acids and triacylglycerols in middle-aged men. Br J Nutr 2003; 89: 207–218.

    CAS  PubMed  Google Scholar 

  67. Ebbeling CB, Leidig MM, Sinclair KB, Seger-Shippee LG, Feldman HA, Ludwig DS . Effects of an ad libitum low-glycemic load diet on cardiovascular disease risk factors in obese young adults. Am J Clin Nutr 2005; 81: 976–982.

    CAS  PubMed  Google Scholar 

  68. Sloth B, Krog-Mikkelsen I, Flint A, Tetens I, Björck I, Vinoy S et al. No difference in body weight decrease between a low-glycemic-index and a high-glycemic-index diet but reduced LDL cholesterol after 10-wk ad libitum intake of the low-glycemic-index diet. Am J Clin Nutr 2004; 80: 337–347.

    CAS  PubMed  Google Scholar 

  69. Raatz SK, Torkelson CJ, Redmon JB, Reck KP, Kwong CA, Swanson JE et al. Reduced glycemic index and glycemic load diets do not increase the effects of energy restriction on weight loss and insulin sensitivity in obese men and women. J Nutr 2005; 135: 2387–2391.

    CAS  PubMed  Google Scholar 

  70. Nuttall FQ, Gannon MC . Plasma glucose and insulin response to macronutrients in nondiabetic and NIDDM subjects. Diabetes Care 1991; 14: 824–838.

    CAS  PubMed  Google Scholar 

  71. Yancy W, Olsen M, Guyton J, Bakst R, Westman E . A low-carbohydrate, ketogenic diet versus a low-fat diet to treat obesity and hyperlipidemia. Ann Intern Med 2004; 140: 769–777.

    PubMed  Google Scholar 

  72. Liu S, Willett WC, Stampfer MJ, Hu FB, Franz M, Sampson L et al. A prospective study of dietary glycemic load, carbohydrate intake, and risk of coronary heart disease in US women. Am J Clin Nutr 2000; 71: 1455–1461.

    CAS  PubMed  Google Scholar 

  73. Ford E, Liu S . Glycemic index and serum high-density lipoprotein cholesterol concentration among US adults. Arch Intern Med 2001; 161: 572–576.

    CAS  PubMed  Google Scholar 

  74. Liu S, Manson J, Stampfer M, Holmes MD, Hu FB, Hankinson SE et al. Dietary glycemic load assessed by food-frequency questionnaire in relation to plasma high-density-lipoprotein cholesterol and fasting plasma triaclyglycerols in postmenopausal women. Am J Clin Nutr 2001; 73: 560–566.

    CAS  PubMed  Google Scholar 

  75. Buyken A, Toeller M, Heitkamp G, Karamanos B, Rottiers R, Mugges M et al. Glycemic index in the diet of European outpatients with type 1 diabetes: relations to glycated hemoglobin and serum lipids. Am J Clin Nutr 2001; 73: 574–581.

    CAS  PubMed  Google Scholar 

  76. Frost G, Leeds A, Dore C, Madeiros S, Brading S, Dornhorst A . Glycaemic index as a determinant of serum HDL-cholesterol concentration. Lancet 1999; 353: 1045–1048.

    CAS  PubMed  Google Scholar 

  77. Pereira M, Swain J, Goldfine A, Rifai N, Ludwig D . Effects of a low-glycemic load diet on resting energy expenditure and heart disease risk factors during weight loss. JAMA 2004; 292: 2482–2490.

    CAS  PubMed  Google Scholar 

  78. van Dam R, Visscher A, Feskens E, Verhoef P, Kromhout D . Dietary glycemic index in relation to metabolic risk factors and incidence of coronary heart disease: the Zupthen Elderly Study. Eur J Clin Nutr 2000; 54: 726–731.

    CAS  PubMed  Google Scholar 

  79. Tavani A, Bosetti C, Negri E, Augustin L, Jenkins D, La Vecchia C . Carbohydrates, dietary glycaemic load and glycaemic index, and risk of acute myocardial infarction. Heart 2003; 89: 722–726.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Levitan EB, Song Y, Ford ES, Liu S . Is nondiabetic hyperglycemia a risk factor for cardiovascular disease? A meta-analysis of prospective studies. Arch Intern Med 2004; 164: 2147–2155.

    PubMed  Google Scholar 

  81. Brownlee M . Biochemistry and molecular biology of diabetes complications. Nature 2001; 414: 813–820.

    CAS  PubMed  Google Scholar 

  82. Frost G, Keogh B, Smith D, Akinsanya K, Leeds A . The effect of low-glycemic carbohydrate on insulin and glucose response in vivo and in vitro in patients with coronary heart disease. Metabolism 1996; 45: 669–672.

    CAS  PubMed  Google Scholar 

  83. Frost G, Leeds A, Trew G, Margara R, Dornhorst A . Insulin sensitivity in women at risk of coronary heart disease and the effect of a low-glycemic diet. Metabolism 1998; 47: 1245–1251.

    CAS  PubMed  Google Scholar 

  84. Wolever TMS, Jenkins D, Vuksan V, Jenkins AL, Buckley GC, Wong GS et al. Beneficial effect of a low-glycaemic index diet in type 2 diabetes. Diabetic Med 1992; 9: 451–458.

    CAS  PubMed  Google Scholar 

  85. Slabber M, Barnard H, Kuyl J, Dannhauser A, Schall R . Effects of a low-insulin-response, energy-restricted diet on weight loss and plasma insulin concentrations in hyperinsulinemic obese females. Am J Clin Nutr 1994; 60: 48–53.

    CAS  PubMed  Google Scholar 

  86. Kiens B, Richter E . Types of carbohydrate in an ordinary diet affect insulin action and muscle substrates in humans. Am J Clin Nutr 1996; 63: 47–53.

    CAS  PubMed  Google Scholar 

  87. Liu S, Manson JE, Buring J, Stampfer MJ, Willett WC, Ridker PM . Relation between a diet with a high glycemic load and plasma concentrations of high-sensitivity C-reactive protein in middle-aged women. Am J Clin Nutr 2002; 75: 492–498.

    CAS  PubMed  Google Scholar 

  88. Ludwig D, Pereira M, Kroenke C, Hilner JE, van Horn L, Slattery ML et al. Dietary fiber, weight gain, and cardiovascular disease risk factors in young adults. JAMA 1999; 282: 1539–1546.

    CAS  PubMed  Google Scholar 

  89. Lau C, Faerch K, Glumer C, Tetens I, Pedersen O, Carstensen B et al. Dietary glycemic index, glycemic load, fiber, simple sugars, and insulin resistance. Diabetes Care 2005; 28: 1397–1403.

    CAS  PubMed  Google Scholar 

  90. Jenkins D, Axelsen M, Kendall C, Augustin LS, Vuksan V, Smith U . Dietary fibre, lente carbohydrates and the insulin-resistant diseases. Br J Nutr 2000; 83: S157–S163.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Brand-Miller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McMillan-Price, J., Brand-Miller, J. Low-glycaemic index diets and body weight regulation. Int J Obes 30 (Suppl 3), S40–S46 (2006). https://doi.org/10.1038/sj.ijo.0803491

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.ijo.0803491

Keywords

Search

Quick links