Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Part I: The Endocannabinoid System, Mechanisms of Action and Functions

Endogenous cannabinoids in the brain and peripheral tissues: regulation of their levels and control of food intake

Abstract

Endocannabinoids were first defined in 1995 as ‘endogenous substances capable of binding to and functionally activating the cannabinoid receptors’. To date, two well-established endocannabinoids, N-arachidonoylethanolamine (anandamide) and 2-arachidonoylglycerol (2-AG), as well as a few other putative ligands, all derived from long-chain polyunsaturated fatty acids, have been identified in animal tissues. The biosynthetic and metabolic pathways for anandamide and 2-AG have been elucidated, and most of the enzymes therein involved have been cloned. We now know that CB1 receptors, and endocannabinoids in tissue concentrations sufficient to activate them, are more widely distributed than originally thought, and are found in brain and peripheral organs involved in the control of energy intake and processing, including the hypothalamus, nucleus accumbens, brainstem, vagus nerve, gastrointestinal tract, adipose tissue and liver. Endocannabinoid biosynthetic and inactivating pathways are under the regulation of neuropeptides and hormones involved in energy homeostasis, and endocannabinoid levels are directly affected by the diet. Endocannabinoids, in turn, regulate the expression and action of mediators involved in nutrient intake and processing. These cross-talks are at the basis of the proposed role of endocannabinoid signalling in the control of food intake, from invertebrates to lower vertebrates and mammals, and their perturbation appears to contribute to the development of eating disorders.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

References

  1. Devane WA, Dysarz FA, Johnson MR, Melvin LS, Howlett AC . Determination and characterization of a cannabinoid receptor in rat brain. Mol Pharmacol 1988; 34: 605–613.

    CAS  PubMed  Google Scholar 

  2. Gaoni Y, Mechoulam R . Isolation, structure, and partial synthesis of an active constituent of hashish. J Am Chem Soc 1964; 86: 1646–1647.

    Article  CAS  Google Scholar 

  3. Munro S, Thomas KL, Abu-Shaar M . Molecular characterization of a peripheral receptor for cannabinoids. Nature 1993; 365: 61–65.

    Article  CAS  Google Scholar 

  4. McPartland JM . Phylogenomic and chemotaxonomic analysis of the endocannabinoid system. Brain Res Rev 2004; 45: 18–29.

    Article  CAS  Google Scholar 

  5. Devane WA, Hanus L, Breuer A, Pertwee RG, Stevenson LA, Griffin G et al. Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 1992; 258: 1946–1949.

    Article  CAS  Google Scholar 

  6. Mechoulam R, Ben-Shabat S, Hanus L, Ligumsky M, Kaminski NE, Schatz AR et al. Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochem Pharmacol 1995; 50: 83–90.

    Article  CAS  Google Scholar 

  7. Sugiura T, Kondo S, Sukagawa A, Nakane S, Shinoda A, Itoh K et al. 2-Arachidonoylglycerol: a possible endogenous cannabinoid receptor ligand in brain. Biochem Biophys Res Commun 1995; 215: 89–97.

    Article  CAS  Google Scholar 

  8. Schlicker E, Kathmann M . Modulation of transmitter release via presynaptic cannabinoid receptors. Trends Pharmacol Sci 2001; 22: 565–572.

    Article  CAS  Google Scholar 

  9. Cota D, Marsicano G, Tschop M, Grubler Y, Flachskamm C, Schubert M et al. The endogenous cannabinoid system affects energy balance via central orexigenic drive and peripheral lipogenesis. J Clin Invest 2003; 112: 423–431.

    Article  CAS  Google Scholar 

  10. Wilson RI, Nicoll RA . Endocannabinoid signaling in the brain. Science 2002; 296: 678–682.

    Article  CAS  Google Scholar 

  11. Di Marzo V, Bifulco M, De Petrocellis L . The endocannabinoid system and its therapeutic exploitation. Nat Rev Drug Discov 2004; 3: 771–784.

    Article  CAS  Google Scholar 

  12. Cravatt BF, Giang DK, Mayfield SP, Boger DL, Lerner RA, Gilula NB . Molecular characterization of an enzyme that degrades neuromodulatory fatty-acid amides. Nature 1996; 384: 83–87.

    Article  CAS  Google Scholar 

  13. Dinh TP, Carpenter D, Leslie FM, Freund TF, Katona I, Sensi SL et al. Brain monoglyceride lipase participating in endocannabinoid inactivation. Proc Natl Acad Sci USA 2002; 99: 10819–10824.

    Article  CAS  Google Scholar 

  14. Bisogno T, Howell F, Williams G, Minassi A, Cascio MG, Ligresti A et al. Cloning of the first sn1-DAG lipases points to the spatial and temporal regulation of endocannabinoid signaling in the brain. J Cell Biol 2003; 163: 463–478.

    Article  CAS  Google Scholar 

  15. Okamoto Y, Morishita J, Tsuboi K, Tonai T, Ueda N . Molecular characterization of a phospholipase D generating anandamide and its congeners. J Biol Chem 2004; 279: 5298–5305.

    Article  CAS  Google Scholar 

  16. Chevaleyre V, Castillo PE . Heterosynaptic LTD of hippocampal GABAergic synapses: a novel role of endocannabinoids in regulating excitability. Neuron 2003; 38: 461–472.

    Article  CAS  Google Scholar 

  17. McFarland MJ, Barker EL . Anandamide transport. Pharmacol Ther 2004; 104: 117–135.

    Article  CAS  Google Scholar 

  18. Pertwee RG . Evidence for the presence of CB1 cannabinoid receptors on peripheral neurones and for the existence of neuronal non-CB1 cannabinoid receptors. Life Sci 1999; 65: 597–605.

    Article  CAS  Google Scholar 

  19. De Petrocellis L, Melck D, Bisogno T, Milone A, Di Marzo V . Finding of the endocannabinoid signalling system in Hydra, a very primitive organism: possible role in the feeding response. Neuroscience 1999; 92: 377–387.

    Article  CAS  Google Scholar 

  20. Matias I, McPartland JM, Di Marzo V . Occurrence and Possible Biological Role of the Endocannabinoid System in the Sea Squirt Ciona intestinalis. J Neurochem 2005; 93: 1141–1156.

    Article  CAS  Google Scholar 

  21. Valenti M, Cottone E, Martinez R, De Pedro N, Rubio M, Viveros MP et al. The endocannabinoid system in the brain of Carassius auratus and its possible role in the control of food intake. J Neurochem 2005; 95: 662–672.

    Article  CAS  Google Scholar 

  22. Soderstrom K, Tian Q, Valenti M, Di Marzo V . Endocannabinoids link feeding state and auditory perception-related gene expression. J Neurosci 2004; 24: 10013–10021.

    Article  CAS  Google Scholar 

  23. Di Marzo V, Goparaju SK, Wang L, Liu J, Batkai S, Jarai Z et al. Leptin-regulated endocannabinoids are involved in maintaining food intake. Nature 2001; 410: 822–825.

    Article  CAS  Google Scholar 

  24. Maccarrone M, Bari M, Di Rienzo M, Finazzi-Agro A, Rossi A . Progesterone activates fatty acid amide hydrolase (FAAH) promoter in human T lymphocytes through the transcription factor Ikaros. Evidence for a synergistic effect of leptin. J Biol Chem 2003; 278: 32726–32732.

    Article  CAS  Google Scholar 

  25. Maccarrone M, Fride E, Bisogno T, Bari M, Cascio MG, Battista N et al. Up-regulation of the endocannabinoid system in the uterus of leptin knockout (ob/ob) mice and implications for fertility. Mol Hum Reprod 2004; 11: 21–28.

    Article  Google Scholar 

  26. Ravinet Trillou C, Delgorge C, Menet C, Arnone M, Soubrie P . CB1 cannabinoid receptor knockout in mice leads to leanness, resistence to diet-induced obesity and enhanced leptin sensitivity. Int J Obes Relat Metab Disord 2004; 28: 640–648.

    Article  CAS  Google Scholar 

  27. Tucci SA, Rogers EK, Korbonits M, Kirkham TC . The cannabinoid CB1 receptor antagonist SR141716 blocks the orexigenic effects of intrahypothalamic ghrelin. Br J Pharmacol 2004; 143: 520–533.

    Article  CAS  Google Scholar 

  28. Cani PD, Montoya ML, Neyrinck AM, Delzenne NM, Lambert DM . Potential modulation of plasma ghrelin and glucagon-like peptide-1 by anorexigenic cannabinoid compounds, SR141716A (rimonabant) and oleoylethanolamide. Br J Nutr 2004; 92: 757–761.

    Article  CAS  Google Scholar 

  29. Kirkham TC, Williams CM, Fezza F, Di Marzo V . Endocannabinoid levels in rat limbic forebrain and hypothalamus in relation to fasting, feeding and satiation: stimulation of eating by 2-arachidonoyl glycerol. Br J Pharmacol 2002; 136: 550–557.

    Article  CAS  Google Scholar 

  30. De Vry J, Schreiber R, Eckel G, Jentzsch KR . Behavioral mechanisms underlying inhibition of food-maintained responding by the cannabinoid receptor antagonist/inverse agonist SR141716A. Eur J Pharmacol 2004; 483: 55–63.

    Article  CAS  Google Scholar 

  31. Berger A, Crozier G, Bisogno T, Cavaliere P, Innis S, Di Marzo V . Anandamide and diet: inclusion of dietary arachidonate and docosahexaenoate leads to increased brain levels of the corresponding N-acylethanolamines in piglets. Proc Natl Acad Sci USA 2001; 98: 6402–6406.

    Article  CAS  Google Scholar 

  32. Watanabe S, Doshi M, Hamazaki T . n-3 Polyunsaturated fatty acid (PUFA) deficiency elevates and n-3 PUFA enrichment reduces brain 2-arachidonoylglycerol level in mice. Prostaglandins Leukot Essent Fatty Acids 2003; 69: 51–59.

    Article  CAS  Google Scholar 

  33. Hanus L, Avraham Y, Ben-Shushan D, Zolotarev O, Berry EM, Mechoulam R . Short-term fasting and prolonged semistarvation have opposite effects on 2-AG levels in mouse brain. Brain Res 2003; 983: 144–151.

    Article  CAS  Google Scholar 

  34. Matias I, Leonhardt M, Lesage J, De Petrocellis L, Dupouy JP, Vieau D et al. Effect of maternal under-nutrition on pup body weight and hypothalamic endocannabinoid levels. Cell Mol Life Sci 2003; 60: 382–389.

    Article  CAS  Google Scholar 

  35. Monteleone P, Matias I, Martiadis V, De Petrocellis L, Maj M, Di Marzo V . Blood levels of the endocannabinoid anandamide are increased in anorexia nervosa and in binge eating disorder, but not in bulimia nervosa. Neuropsychopharmacology 2005; 30: 1216–1221.

    Article  CAS  Google Scholar 

  36. Di Marzo V, Matias I . Endocannabinoid control of food intake and energy balance. Nat Neurosci 2005; 8: 585–589.

    Article  CAS  Google Scholar 

  37. Pagotto U, Marsicano G, Cota D, Lutz B, Pasquali R . The emerging role of the endocannabinoid system in endocrine regulation and energy balance, 2005; Nov 23; [E-pub ahead of print].

Download references

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to V Di Marzo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matias, I., Bisogno, T., Di Marzo, V. et al. Endogenous cannabinoids in the brain and peripheral tissues: regulation of their levels and control of food intake. Int J Obes 30 (Suppl 1), S7–S12 (2006). https://doi.org/10.1038/sj.ijo.0803271

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.ijo.0803271

Keywords

This article is cited by

Search

Quick links