Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Paper
  • Published:

Relative associations of fitness and fatness to fibrinogen, white blood cell count, uric acid and metabolic syndrome

Abstract

Objective: To examine the relation between fitness and fibrinogen, white blood cell count, uric acid and metabolic syndrome across levels of adiposity in apparently healthy, nonsmoking men.

Design: Cross-sectional study of 4057 men from the Aerobics Center Longitudinal Study examining the age-adjusted resting levels and risk of having a clinically significant elevation of fibrinogen, white blood cell count, uric acid and metabolic syndrome score across nine fitness–body fatness combinations. Fitness categories (low fitness, moderately fit or high fitness) were based on a maximal treadmill test. Body mass index (BMI) <25.0 was classified as normal weight, BMI ≥25.0 but <30.0 as overweight and BMI ≥30.0 as obese.

Results: Fitness (inversely) and BMI (directly) were independently related to the age-adjusted values of all four variables (P for trend P<0.0001 for each). For all four variables, the greatest age-adjusted risk of having a clinically relevant value was found in the low fitness–obese category and the lowest age-adjusted risk was found in the high fitness–normal weight group.

Conclusion: Fibrinogen, white blood cells, uric acid and metabolic syndrome score are independently related to both fitness (inversely) and fatness (directly). Within levels of fatness, risk for significant elevations in fibrinogen, white blood cells, uric acid and metabolic syndrome score is lower for the higher fitness groups.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Kannel WB, Wolf PA, Castelli WP, D'Agostino RB . Fibrinogen and risk of cardiovascular disease: The Framingham Study JAMA 1987 258: 1183–1186.

    Article  CAS  PubMed  Google Scholar 

  2. Danesh J, Collins R, Appleby P, Peto R . Association of fibrinogen, C-reactive protein, albumin, or leukocyte count with coronary heart disease: meta-analyses of prospective studies JAMA 1998 279: 1477–1482.

    Article  CAS  PubMed  Google Scholar 

  3. Ernst E, Resch KL . Fibrinogen as a cardiovascular risk factor: a meta-analysis and review of the literature Ann Intern Med 1993 118: 956–963.

    Article  CAS  PubMed  Google Scholar 

  4. Kannel WB, Anderson K, Wilson PW . White blood cell count and cardiovascular disease. Insights from the Framingham Study JAMA 1992 267: 1253–1256.

    Article  CAS  PubMed  Google Scholar 

  5. Fang J, Alderman MH . Serum uric acid and cardiovascular mortality the NHANES I epidemiologic follow-up study, 1971–1992. National Health and Nutrition Examination Survey JAMA 2000 283: 2404–2410.

    Article  CAS  PubMed  Google Scholar 

  6. Stampfer MJ, Krauss RM, Ma J et al. A prospective study of triglyceride level, low-density lipoprotein particle diameter, and risk of myocardial infarction JAMA 1996 276: 882–888.

    Article  CAS  PubMed  Google Scholar 

  7. Stampfer MJ, Sacks FM, Salvini S, Willett WC, Hennekens CH . A prospective study of cholesterol, apolipoproteins, and the risk of myocardial infarction New Engl J Med 1991 325: 373–381.

    Article  CAS  PubMed  Google Scholar 

  8. Wei M, Gibbons LW, Mitchell TL, Kampert JB, Blair SN . Undiagnosed diabetes and impaired fasting glucose as predictors of cardiovascular disease and all-cause mortality CVD Prev 1998 1: 123–128.

    Google Scholar 

  9. National Institutes of Health. The sixth report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. NIH Publication no 98-4080. 1997. NIH: Bethesda, MD

  10. Blair SN, Kohl HW III Paffenbarger RS Jr et al. Physical fitness and all-cause mortality: a prospective study of healthy men and women JAMA 1989 262: 2395–2401.

    Article  CAS  PubMed  Google Scholar 

  11. Ekelund LG, Haskell WL, Johnson JL . et al Physical fitness as a predictor of cardiovascular mortality in asymptomatic North American men: The Lipid Research Clinics Mortality Follow-up Study New Engl J Med 1988 319: 1379–1384.

    Article  CAS  PubMed  Google Scholar 

  12. Blair SN, Kampert JB, Kohl HW III et al. Influences of cardiorespiratory fitness and other precursors on cardiovascular disease and all-cause mortality in men and women JAMA 1996 276: 205–210.

    Article  CAS  PubMed  Google Scholar 

  13. Blair SN, Kohl HW III, Barlow CE et al. Changes in physical fitness and all-cause mortality: a prospective study of healthy and unhealthy men JAMA 1995 273: 1093–1098.

    Article  CAS  PubMed  Google Scholar 

  14. Wei M, Kampert JB, Barlow CE et al. Relationship between low cardiorespiratory fitness and mortality in normal-weight, overweight, and obese men JAMA 1999 282: 1547–1553.

    Article  CAS  PubMed  Google Scholar 

  15. Lee CD, Blair SN, Jackson AS . Cardiorespiratory fitness, body composition, and all-cause and cardiovascular disease mortality in men Am J Clin Nutr 1999 69: 373–380.

    Article  CAS  PubMed  Google Scholar 

  16. Marlatt GA, Gordon JR . Determinants of relapse: implications for the maintenance of behavior change In: Davidson PO (ed) Behavioral medicine: Changing health lifestyles. Pergamon Press: Elmsford, NY 1980 pp 410–452.

    Google Scholar 

  17. Jackson AS, Pollock ML . Generalized equations for predicting body density of men Br J Nutr 1978 40: 496–504.

    Article  Google Scholar 

  18. Balke B, Ware RW . An experimental study of physical fitness in Air Force personnel US Armed Forces Med J 1959 10: 675–688.

    CAS  Google Scholar 

  19. Pollock ML, Bohannon RL, Cooper KH et al. A comparative analysis of four protocols for maximal treadmill stress testing Am Heart J 1976 92: 39–46.

    Article  CAS  PubMed  Google Scholar 

  20. Blair SN, Wei M, Lee CD . Cardiorespiratory fitness determined by exercise heart rate as a predictor of mortality in the Aerobics Center Longitudinal Study J Sports Sci 1998 16: S47–S55.

    Article  PubMed  Google Scholar 

  21. Stofan JR, DiPietro L, Davis D, Kohl HW III Blair SN . Physical activity patterns associated with cardiorespiratory fitness and reduced mortality: The Aerobics Center Longitudinal Study Am J Public Health 1998 88: 1807–1813.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bouchard C, Pérusse L . Heredity, activity level, fitness, and health In: Bouchard C, Shephard RJ, Stephens T (eds) Physical activity, fitness, and health: international proceedings and consensus statement Human Kinetics: Champaign, IL 1994 pp 106–118.

    Google Scholar 

  23. National Institutes of Health, National Heart Lung, and Blood Institute. Clinical guidelines on the identification, evaluation, and treatment of overweight and obesity in adults: the evidence report. National Institutes of Health, National Heart, Lung, and Blood Institute: Rockville, MD 1998.

  24. Yano K, Kodama K, Shimizu Y et al. Plasma fibrinogen and its correlates in elderly Japanese men living in Japan and Hawaii J Clin Epidemiol 1999 52: 1201–1206.

    Article  CAS  PubMed  Google Scholar 

  25. Cushman M, Yanez D, Psaty BM et al. Association of fibrinogen and coagulation factors VII and VIII with cardiovascular risk factors in the elderly: the Cardiovascular Health Study. Cardiovascular Health Study Investigators Am J Epidemiol 1996 143: 665–676.

    Article  CAS  PubMed  Google Scholar 

  26. Elwood PC, Yarnell JW, Pickering J, Fehily AM, O'Brien JR . Exercise, fibrinogen, and other risk factors for ischaemic heart disease. Caerphilly Prospective Heart Disease Study Br Heart J 1993 69: 183–187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Connelly JB, Cooper JA, Meade TW . Strenuous exercise, plasma fibrinogen, and factor VII activity Br Heart J 1992 67: 351–354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Geffken DF, Cushman M, Burke GL et al. Association between physical activity and markers of inflammation in a healthy elderly population Am J Epidemiol 2001 153: 242–250.

    Article  CAS  PubMed  Google Scholar 

  29. DeSouza CA, Jones PP, Seals DR . Physical activity status and adverse age-related differences in coagulation and fibrinolytic factors in women Arterioscler Thromb Vasc Biol 1998 18: 362–368.

    Article  CAS  PubMed  Google Scholar 

  30. MacAuley D, McCrum EE, Stott G . et al Physical activity, physical fitness, blood pressure, and fibrinogen in the Northern Ireland health and activity survey J Epidemiol Community Health 1996 50: 258–263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lakka TA, Salonen JT . Moderate to high intensity conditioning leisure time physical activity and high cardiorespiratory fitness are associated with reduced plasma fibrinogen in eastern Finnish men J Clin Epidemiol 1993 46: 1119–1127.

    Article  CAS  PubMed  Google Scholar 

  32. Vaisanen S, Rauramaa R, Rankinen T, Gagnon J, Couchard C . Physical activity, fitness, and plasma fibrinogen with reference to fibrinogen genotypes Med Sci Sports Exerc 1996 28: 1165–1170.

    Article  CAS  PubMed  Google Scholar 

  33. Carroll S, Cooke CB, Butterly RJ . Leisure time physical activity, cardiorespiratory fitness, and plasma fibrinogen concentrations in nonsmoking middle-aged men Med Sci Sports Exerc 2000 32: 620–626.

    Article  CAS  PubMed  Google Scholar 

  34. Stratton JR, Chandler WL, Schwartz RS et al. Effects of physical conditioning on fibrinolytic variables and fibrinogen in young and old healthy adults Circulation 1991 83: 1692–1697.

    Article  CAS  PubMed  Google Scholar 

  35. Zanettini R, Bettega D, Agostoni O et al. Exercise training in mild hypertension: effects on blood pressure, left ventricular mass and coagulation factor VII and fibrinogen Cardiology 1997 88: 468–473.

    Article  CAS  PubMed  Google Scholar 

  36. Nieto FJ, Szklo M, Folsom AR, Rock R, Mercuri M . Leukocyte count correlates in middle-aged adults: the Atherosclerosis Risk in Communities (ARIC) Study Am J Epidemiol 1992 136: 525–537.

    Article  CAS  PubMed  Google Scholar 

  37. Lee J, Sparrow D, Vokonas PS, Landsberg L, Weiss ST . Uric acid and coronary heart disease risk: evidence for a role of uric acid in the obesity-insulin resistance syndrome. The Normative Aging Study Am J Epidemiol 1995 142: 288–294.

    Article  CAS  PubMed  Google Scholar 

  38. Bonora E, Targher G, Zenere MB et al. Relationship of uric acid concentration to cardiovascular risk factors in young men. Role of obesity and central fat distribution. The Verona Young Men Atherosclerosis Risk Factors Study Int J Obes Relat Metab Disord 1996 20: 975–980.

    CAS  PubMed  Google Scholar 

  39. Wannamethee SG, Shaper AG, Alberti KG . Physical activity, metabolic factors, and the incidence of coronary heart disease and type 2 diabetes Arch Intern Med 2000 160: 2108–2116.

    Article  CAS  PubMed  Google Scholar 

  40. Moriarity JT, Folsom AR, Iribarren C, Nieto FJ, Rosamond WD . Serum uric acid and risk of coronary heart disease: Atherosclerosis Risk in Communities (ARIC) Study Ann Epidemiol 2000 10: 136–143.

    Article  CAS  PubMed  Google Scholar 

  41. Liese AD, Mayer-Davis EJ, Haffner SM . Development of the multiple metabolic syndrome: an epidemiologic perspective Epidemiol Rev 1998 20: 157–172.

    Article  CAS  PubMed  Google Scholar 

  42. Grundy SM . Metabolic complications of obesity Endocrine 2000 13: 155–165.

    Article  CAS  PubMed  Google Scholar 

  43. Whaley MH, Kampert JB, Kohl HW III Blair SN . Physical fitness and clustering of risk factors associated with the metabolic syndrome Med Sci Sports Exerc 1999 31: 287–293.

    Article  CAS  PubMed  Google Scholar 

  44. Carroll S, Cooke CB, Butterly RJ . Metabolic clustering, physical activity and fitness in nonsmoking, middle-aged men Med Sci Sports Exerc 2000 32: 2079–2086.

    Article  CAS  PubMed  Google Scholar 

  45. Fried SK, Bunkin DA, Greenberg AS . Omental and subcutaneous adipose tissues of obese subjects release interleukin-6: depot difference and regulation by glucocorticoid J Clin Endocrinol Metab 1998 83: 847–850.

    CAS  PubMed  Google Scholar 

  46. Halle M, Berg A, Northoff H, Keul J . Importance of TNF-alpha and leptin in obesity and insulin resistance: a hypothesis on the impact of physical exercise Exerc Immunol Rev 1998 4: 77–94.

    CAS  PubMed  Google Scholar 

  47. Mohamed-Ali V, Bulmer K, Clarke D et al. β-Adrenergic regulation of proinflammatory cytokines in humans Int J Obes Relat Metab Disord 2000 24 (Suppl 2): S154–S155.

    Article  CAS  PubMed  Google Scholar 

  48. McCarty MF . Interleukin-6 as a central mediator of cardiovascular risk associated with chronic inflammation, smoking, diabetes, and visceral obesity: down-regulation with essential fatty acids, ethanol and pentoxifylline Med Hypotheses 1999 52: 465–477.

    Article  CAS  PubMed  Google Scholar 

  49. Volpato S, Guralnik JM, Ferrucci L et al. Cardiovascular disease, interleukin-6, and risk of mortality in older women: the women's health and aging study Circulation 2001 103: 947–953.

    Article  CAS  PubMed  Google Scholar 

  50. Taaffe DR, Harris TB, Ferrucci L, Rowe J, Seeman TE . Cross-sectional and prospective relationships of interleukin-6 and C-reactive protein with physical performance in elderly persons: MacArthur studies of successful aging J Gerontol A Biol Sci Med Sci 2000 55: M709–M715.

    Article  CAS  PubMed  Google Scholar 

  51. Smith JK, Dykes R, Douglas JE, Krishnaswamy G, Berk S . Long-term exercise and atherogenic activity of blood mononuclear cells in persons at risk of developing ischemic heart disease JAMA 1999 281: 1722–1727.

    Article  CAS  PubMed  Google Scholar 

  52. Tsukui S, Kanda T, Nara M et al. Moderate-intensity regular exercise decreases serum tumor necrosis factor-alpha and HbA1c levels in healthy women Int J Obes Relat Metab Disord 2000 24: 1207–1211.

    Article  CAS  PubMed  Google Scholar 

  53. Mattusch F, Dufaux B, Heine O, Mertens I, Rost R . Reduction of the plasma concentration of C-reactive protein following nine months of endurance training Int J Sports Med 2000 21: 21–24.

    Article  CAS  PubMed  Google Scholar 

  54. Brodney S, McPherson RS, Carpenter RA, Welten D, Blair SN . Nutrient intake of physically fit and unfit men and women Med Sci Sports Exerc 2001 33: 459–467.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Supported in part by US Public Health Service research grant AG06945 from the National Institute on Aging, Bethesda, MD. We thank our many participants; Kenneth H Cooper, MD, for establishing the Aerobics Center Longitudinal Study; the Cooper Clinic physicians and technicians for collecting the baseline data; Carolyn E Barlow, MS, for data management, and Melba Morrow, MA, for editorial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to TS Church.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Church, T., Finley, C., Earnest, C. et al. Relative associations of fitness and fatness to fibrinogen, white blood cell count, uric acid and metabolic syndrome. Int J Obes 26, 805–813 (2002). https://doi.org/10.1038/sj.ijo.0802001

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.ijo.0802001

Keywords

This article is cited by

Search

Quick links