Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Paper
  • Published:

Fiber type dependent upregulation of human skeletal muscle UCP2 and UCP3 mRNA expression by high-fat diet

Abstract

OBJECTIVE: To test the hypothesis that consumption of a high-fat diet leads to an increase in UCP mRNA expression in human skeletal muscle. In a group of endurance athletes, with a range in fiber type distribution, we hypothesized that the effect of the high-fat diet on UCP2 and UCP3 mRNA expression is more pronounced in muscle fibers which are known to have a high capacity to shift from carbohydrate to fat oxidation (type IIA fibers).

DESIGN: Ten healthy trained athletes (five males, five females) consumed a low-fat diet (17±0.9 en% of fat) and high-fat diet (41.4±1.4 en% fat) for 4 weeks, separated by a 4 week wash-out period. Muscle biopsies were collected at the end of both dietary periods.

MEASUREMENTS: Using RT-PCR, levels of UCP2 and UCP3 mRNA expression were measured and the percentage of type I, IIA and IIB fibers were determined using the myofibrillar ATPase method in all subjects.

RESULTS: UCP3L mRNA expression tended to be higher on the high-fat diet, an effect which reached significance when only males were considered (P=0.037). Furthermore, diet-induced change in mRNA expression of UCP3T (r: 0.66, P=0.037), UCP3L (r: 0.61, P=0.06) and UCP2 (r: 0.70, P=0.025), but not UCP3S, correlated significantly with percentage dietary fat on the high-fat diet. Plasma FFA levels were not different during the two diets. Finally, the percentage of type IIA fibers was positively correlated with the diet-induced change in mRNA expression for UCP2 (r: 0.7, P=0.03), UCP3L (r: 0.73, P=0.016) and UCP3T (r: 0.68, P=0.03) but not with UCP3S (r: 0.06, NS).

CONCLUSION: UCP2 and UCP3 mRNAs are upregulated by a high-fat diet. This upregulation is more pronounced in humans with high proportions of type IIA fibers, suggesting a role for UCPs in lipid utilization.

International Journal of Obesity (2001) 25, 449–456

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Ricquier D, Casteilla L, Bouillaud F . Molecular studies of the uncoupling protein FASEB J 1991 5: 2237–2242.

    Article  CAS  Google Scholar 

  2. Fleury C, Neverova M, Collins S, Raimbault S, Champigny O, Levi-Meyrueis C, Bouillaud F, Seldin MF, Surwit RS, Ricquier D . Uncoupling protein-2: a novel gene linked to obesity and hyperinsulinemia Nature Genet 1997 15: 269–273.

    Article  CAS  Google Scholar 

  3. Gimeno RE, Dembski M, Weng X, Deng N, Shyjan AW, Gimeno CJ, Iris F, Ellis SJ, Woolf EA, Tartaglia LA . Cloning and characterization of an uncoupling protein homolog: a potential molecular mediator of human thermogenesis Diabetes 1997 46: 900–906.

    Article  CAS  Google Scholar 

  4. Boss O, Samec S, Paoloni-Giacobino A, Rossier C, Dulloo A, Seydoux J, Muzzin P, Giacobino J-P . Uncoupling protein-3: a new member of the mitochondrial carrier family with tissue-specific expression FEBS lett 1997 408: 39–42.

    Article  CAS  Google Scholar 

  5. Vidal-Puig A, Solanes G, Grujic D, Flier JS, Lowell BB . UCP3: an uncoupling protein homologue expressed preferentially and abundantly in skeletal muscle and brown adipose tissue Biochem Biophys Res Commun 1997 235: 79–82.

    Article  CAS  Google Scholar 

  6. Schrauwen P, Xia J, Bogardus C, Pratley R, Ravussin E . Skeletal muscle UCP3 expression is a determinant of energy expenditure in Pima Indians Diabetes 1999 48: 146–149.

    Article  CAS  Google Scholar 

  7. Boss O, Samec S, Dulloo A, Seydoux J, Muzzin P, Giacobino J-P . Tissue-dependent upregulation of rat uncoupling protein-2 expression in response to fasting or cold FEBS lett 1997 412: 111–114.

    Article  Google Scholar 

  8. Samec S, Seydoux J, Dulloo AG . Interorgan signaling between adipose tissue metabolism and skeletal muscle uncoupling protein homologs: is there a role for circulating free fatty acids? Diabetes 1998 47: 1693–1698.

    Article  CAS  Google Scholar 

  9. Gong D-W, He Y, Karas M, Reitman M . Uncoupling protein-3 is a mediator of thermogenesis regulated by thyroid hormone, β3-adrenergic agonists, and leptin J Biol Chem 1997 272: 24129–24132.

    Article  CAS  Google Scholar 

  10. Boss O, Samec S, Kühne F, Bijlenga P, Assimacopoulos-Jeannet F, Seydoux J, Giacobino J-P, Muzzin P . Uncoupling protein-3 expression in rodent skeletal muscle is modulated by food intake but not by changes in environmental temperature J Biol Chem 1998 273: 5–8.

    Article  CAS  Google Scholar 

  11. Matsuda J, Hosoda K, Itoh H, Son C, Doi K, Tanaka T, Fukunaga Y, Inoue G, Nishimura H, Yoshimasa Y . Cloning of rat uncoupling protein-3 and uncoupling protein-2 cDNAs: their gene expression in rats fed high-fat diet FEBS lett 1997 418: 200–204.

    Article  CAS  Google Scholar 

  12. Gong D-W, He Y, Reitman ML . Genomic organization and regulation by dietary fat of the uncoupling protein 3 and 2 genes Biochem Biophys Res Commun 1999 256: 27–32.

    Article  CAS  Google Scholar 

  13. Surwit RS, Wang S, Petro AE, Sanchis D, Raimbault S, Ricquier D, Collins S . Diet-induced changes in uncoupling proteins in obesity-prone and obesity-resistant strains of mice Proc Natl Acad Sci USA 1998 95: 4061–4065.

    Article  CAS  Google Scholar 

  14. Weigle DS, Selfridge LE, Schwartz MW, Seeley RJ, Cummings DE, Havel PJ, Kuijper JL, Bertrande Rio H . Elevated free fatty acids induce uncoupling protein 3 expression in muscle. A potential explanation for the effect of fasting Diabetes 1998 47: 298–302.

    Article  CAS  Google Scholar 

  15. Samec S, Seydoux J, Dulloo AG . Role of UCP homoloques in skeletal muscles and brown adipose tissue: mediators of thermogenesis or regulators of lipids as fuel substrate? FASEB J 1998 12: 715–724.

    Article  CAS  Google Scholar 

  16. Millet L, Vidal H, Andreelli F, Larrouy D, Riou J-P, Ricquier D, Laville M, Langin D . Increased uncoupling protein-2 and -3 mRNA expression during fasting in obese and lean humans J Clin Invest 1997 100: 2665–2670.

    Article  CAS  Google Scholar 

  17. Argyropoulos G, Brown AM, Willi SM, Zhu J, He Y, Reitman M, Geveo SM, Spruill I, Garvey WT . Effects of mutations in the human uncoupling protein 3 gene on the respiratory quotient and fat oxidation in severe obesity and type 2 diabetes J Clin Invest 1998 102: 1345–1351.

    Article  CAS  Google Scholar 

  18. Simoneau JA, Kelley DE, Neverova M, Warden CH . Overexpression of muscle uncoupling protein 2 content in human obesity associates with reduced skeletal muscle lipid utilization FASEB J 1998 12: 1739–1745.

    Article  CAS  Google Scholar 

  19. Jaburek M, Varecha M, Gimeno RE, Dembski M, Jezek P, Zhang M, Burn P, Tartaglia LA, Garlid KD . Transport function and regulation of mitochondrial uncoupling proteins 2 and 3 J Biol Chem 1999 274: 26003–26007.

    Article  CAS  Google Scholar 

  20. Schrauwen P, Marken Lichtenbelt WDv, Saris WHM, Westerterp KR . Changes in fat oxidation in response to a high-fat diet Am J Clin Nutr 1997 66: 276–282.

    Article  CAS  Google Scholar 

  21. Leddy J, Horvath P, Rowland J, Pendergast D . Effect of a high or a low fat diet on cardiovascular risk factors in male and female runners Med Sci Sports Exerc 1997 29: 17–25.

    Article  CAS  Google Scholar 

  22. Itaya K . A more sensitive and stable colorimetric determination of free fatty acids in blood J Lipid Res 1977 18: 663–665.

    CAS  PubMed  Google Scholar 

  23. Bergstrom J, Hermansen L, Hultman E, Saltin B . Diet, muscle glycogen and physical performance Acta Physiol Scand 1967 71: 140–150.

    Article  CAS  Google Scholar 

  24. Billeter R, Weber H, Lutz H, Howald H, Eppenberger HM, Jenni E . Myosin types in human skeletal muscle fibers Histochemistry 1980 65: 249–259.

    Article  CAS  Google Scholar 

  25. Chomozynski P, Sacchi N . Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction Anal Biochem 1987 162: 156–159.

    Google Scholar 

  26. Boss O, Muzzin P, Giacobino J-P . The uncoupling proteins, a review Eur J Endocrinology 1998 139: 1–9.

    Article  CAS  Google Scholar 

  27. Schrauwen P, Walder K, Ravussin E . Human uncoupling proteins and obesity Obes Res 1999 7: 97–105.

    Article  CAS  Google Scholar 

  28. Boss O, Bobbioni-Harsch E, Assimacopoulos-Jeannet F, Muzzin P, Munger R, Giacobino J-P, Golay A . Uncoupling protein-3 expression in skeletal muscle and free fatty acids in obesity Lancet 1998 351: 1933.

    Article  CAS  Google Scholar 

  29. Schrauwen P, Marken Lichtenbelt WDv, Saris WHM, Westerterp KR . Fat balance in obese subjects: role of glycogen stores Am J Physiol 1998 274: E1027–1033.

    CAS  PubMed  Google Scholar 

  30. Schrauwen P, Wagenmakers AJM, Marken Lichtenbelt WDv, Saris WHM, Westerterp KR . Increase in fat oxidation on a high-fat diet is accompanied by an increase in triglyceride-derived fatty acid oxidation Diabetes 2000 49: 640–646.

    Article  CAS  Google Scholar 

  31. Barnard RJ, Edgerton VR, Furukawa T, Peter JB . Histochemical, biochemical, and contractile properties of red, white, and intermediate fibers Am J Physiol 1971 220: 410–414.

    Article  CAS  Google Scholar 

  32. Garlid KD, Orosz DE, Modriansky M, Vassanelli S, Jezek P . On the mechanism of fatty acid-induced proton transport by mitochondrial uncoupling protein J Biol Chem 1996 271: 2615–2620.

    Article  CAS  Google Scholar 

  33. Walder K, Norman RA, Hanson RL, Schrauwen P, Neverova M, Jenkinson CP, Easlick J, Warden CH, Pecqueur C, Raimbault S . Association between uncoupling protein polymorphisms (UCP2-UCP3) and energy metabolism/obesity in Pima Indians Hum Mol Genet 1998 7: 1431–1435.

    Article  CAS  Google Scholar 

  34. Vaughan L, Zurlo F, Ravussin E . Aging and energy expenditure Am J Clin Nutr 1991 53: 821–825.

    Article  CAS  Google Scholar 

  35. Rising R, Tataranni PA, Snitker S, Ravussin E . Decreased ratio of fat to carbohydrate oxidation with increasing age in Pima Indians J Am Coll Nutr 1996 15: 309–312.

    Article  CAS  Google Scholar 

  36. Yamashita H, Sato Y, Mori N . Difference in induction of uncoupling protein genes in adipose tissues between young and old rats during cold exposure FEBS Lett 1999 458: 157–161.

    Article  CAS  Google Scholar 

  37. Schrauwen P, Troost FJ, Xia J, Ravussin E, Saris WHM . Skeletal muscle UCP3 expression in trained and untrained male subjects Int J Obes Relat Metab Disord 1999 23: 966–972.

    Article  CAS  Google Scholar 

  38. Hoppeler H, Billeter R, Horvath PJ, Leddy JJ, Pendergast DR . Muscle structure with low- and high-fat diets in well-trained male runners Int J Sports Med 1999 20: 522–526.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Dr Schrauwen is supported by a grant from the Netherlands Organisation for Scientific Research (NWO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P Schrauwen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schrauwen, P., Hoppeler, H., Billeter, R. et al. Fiber type dependent upregulation of human skeletal muscle UCP2 and UCP3 mRNA expression by high-fat diet. Int J Obes 25, 449–456 (2001). https://doi.org/10.1038/sj.ijo.0801566

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.ijo.0801566

Keywords

This article is cited by

Search

Quick links