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Selective genotyping is a cost-saving strategy in mapping quantitative trait loci (QTLs). When the
proportion of individuals selected for genotyping is low, the majority of the individuals are not
genotyped, but their phenotypic values, if available, are still included in the data analysis to correct
the bias in parameter estimation. These ungenotyped individuals do not contribute much
information about linkage analysis and their inclusion can substantially increase the computational
burden. For multiple trait analysis, ungenotyped individuals may not have a full array of phenotypic
measurements. In this case, unbiased estimation of QTL e�ects using current methods seems to be
impossible. In this study, we develop a maximum likelihood method of QTL mapping under
selective genotyping using only the phenotypic values of genotyped individuals. Compared with the
full data analysis (using all phenotypic values), the proposed method performs well. We derive an
expectation±maximization1 (EM) algorithm that appears to be a simple modi®cation of the existing
EM algorithm for standard interval mapping. The new method can be readily incorporated into a
standard QTL mapping software, e.g. MAPMAKERMAPMAKER. A general recommendation is that whenever full
data analysis is possible, the full maximum likelihood analysis should be performed. If it is
impossible to analyse the full data, e.g. sample sizes are too large, phenotypic values of ungenotyped
individuals are missing or composite interval mapping is to be performed, the proposed method can
be applied.

Keywords: EM algorithm, QTL mapping, simplex algorithm, truncated selection.

Introduction

Statistical analysis of quantitative trait loci requires both
the phenotypic data and marker genotypes of individ-
uals sampled from a reference population. It is generally
believed that a large sample size is required to map
QTLs with small e�ects. However, obtaining a large
sample can be very costly or even impossible. Usually,
the cost of genotyping is higher than that of the
phenotypic measurement. Lander & Botstein (1989)
showed that one can selectively genotype individuals
from the extremes of the phenotypic distribution, yet
receive almost identical power as when the whole sample
is genotyped. If the cost of the phenotypic measurement
is low, selective genotyping can signi®cantly reduce the

cost. This selective genotyping technique has been
widely utilized in QTL mapping experiments (e.g.
Groover et al., 1994).
Under selective genotyping, phenotypic values of

ungenotyped individuals still have to be included in the
analysis, with their marker genotypes treated as missing
values, otherwise estimates of QTL e�ects will be biased
(Lander & Botstein, 1989). A full likelihood function is
given by Muranty & Go�net (1997a). Exact maximum
likelihood estimates (MLEs) can be achieved via an
iterative approach. However, Muranty & Go�net
(1997a) derive approximate MLEs under the assump-
tion that QTL e�ects are small relative to the residual
standard deviation. Recently, Johnson et al. (1999)
proposed an expectation±maximization (EM) algorithm
implemented via Monte Carlo sampling for handling
missing marker genotypes.
With phenotypic values of ungenotyped individuals

excluded from the data analysis, Darvasi & Soller (19922 )
investigated an analysis of variance (ANOVAANOVA) approach
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to estimate QTL e�ects with a bias correction. Without
providing a detailed implementation, they also proposed
a maximum likelihood approach for such a truncated
data analysis.

Muranty & Go�net (1997b) extended their selective
genotyping to multiple trait QTL mapping, showing
that selection on one trait can increase the power of
QTL detection for a correlated trait. They also
proposed a selection index method for multiple trait
selective genotyping. Instead of selecting the two tails
of a single trait, they ®rst established a selection index
combining phenotypic values of all traits, and then
selected the two extremes on the scale of the index.
Again, phenotypic values of ungenotyped individuals
must be included in the data analysis to remove the
bias in the estimated QTL e�ect. In reality, di�erent
traits may be expressed in di�erent stages. If selection
is performed on an earlier displayed trait, individuals
that fail to reach the criterion of selection in this stage
may be removed, and thus do not have the opportunity
to express their phenotype for a later trait. In this case,
unbiased estimates of QTL e�ects for the later trait
seem to be impossible based on the method of Muranty
& Go�net (1997a,b). Therefore, a new method is
needed to handle missing values for both the genotypes
and the phenotypes.

Such a method is now available as a result of work
by Henshall & Goddard (1999). They adopted an
entirely di�erent approach by altering the roles of
genotypes and phenotypes in the likelihood function.
They treated phenotypes as independent variables and
genotypes as dependent variables. Because genotypes
are binary in a population with only two genotypes,
they utilized a standard logistic regression approach.
The advantages of this method are: a standard statis-
tical package, such as SAS, is readily applied and
estimates are not a�ected by selection of the phenotype.
The second advantage is important in handling the
problem of missing phenotypes. As recognized by the
authors, the logistic regression method, however, has
not been su�ciently generalized to handle populations
with more than two segregating genotypes, e.g. the F2

family. Furthermore, it is not clear how to implement
the composite interval mapping (Jansen & Stam, 1994;
Zeng, 1994) in the logistic regression framework.

The objectives of this study are to develop a
maximum likelihood approach to QTL mapping using
samples containing only the genotyped individuals and
to compare its e�ciency relative to that using samples of
all individuals. The maximum likelihood solution will be
achieved via an EM algorithm that is simple enough to
be incorporated into any standard interval mapping
software.

Theory and methods

Single-trait analysis

Consider an F2 population of N individuals with
phenotypic values measured for trait y. Among the N
individuals, only n (n £ N ) of them are selectively
genotyped, with n/2 being selected from the upper
extreme and n/2 being selected from the lower extreme in
the scale of y. This selection regime can be viewed as
`disruptive selection' with two known arti®cial trunca-
tion points. Individuals are genotyped only if yj £ t1 or
yj ³ t2, where t1 and t2 are, respectively, the (n/2)th and
(N ) n/2)th ascendingly ordered phenotypic values of y
among the N individuals. In real data analyses, the two
tails selected for genotyping may not be symmetrical.
The two truncation points, t1 and t2, are not calculated
from the distribution; rather, they take the largest
phenotypic value in the lower tail and the smallest
phenotypic value in the upper tail.

The phenotypic value of the jth individual is described
by the following linear model:

yj � l� zja� wjd � ej; �1�

where a and d are the additive and dominance e�ects of
a QTL, respectively, zj and wj are indicator variables for
the genotype of the QTL, which are de®ned as:

zj �
�1 for Q1Q1

0 for Q1Q2

1 for Q2Q2

8<: and wj � �1 for Q1Q2

1 for Q1Q1 or Q2Q2

�

where QkQl for k £ l� 1,2 denotes the QTL genotype,
and ej is the residual e�ect distributed as N(0, r2).

For notational simplicity, let us de®ne b� [l, a, d ]T

and xj� [1, zj, wj], and rewrite model (1) by:

yj � xjb� ej; �2�

where xj� ukl for genotype QkQl and

u11
u12
u22

24 35 � 1 1 1
1 0 1
1 1 1

24 35:
This is a typical regression model. Because the QTL
genotype is not observable but inferred from marker
information, only the conditional distribution of xj
given the marker genotype is available. De®ne the
conditional probabilities of the QTL genotype, and thus
xj, by p(xj) and the probability density of yj given xj by:
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f �yjjxj� � �1=p�2pr2�� expf �1=2r2�� yj xjb�2g:
The likelihood function is rewritten as:

L�b; r2jy� �
YN
j�1

"X
xj2S

p�xj�f � yjjxj�
#

�
Yn

j�1

"X
xj2S

p�xj�f � yjjxj�
#

�
YN

j�n�1
��1=4�f �yjju11� � �1=2�f �yjju12�

� �1=4�f �yjju22��; �3�
where S� {u11, u12, u22}. Note that the ®rst n individuals
are genotyped and the last N ) n individuals are
ungenotyped, and p(xj) takes its prior value for
j� n + 1, ¼, N.
The phenotypic values of ungenotyped individuals

contribute very little information to linkage analysis.
Their inclusion in the likelihood serves solely as a way
to correct the bias in estimation of the QTL e�ects
caused by selective genotyping. When the number of
ungenotyed individuals becomes very large, the maxi-
mum likelihood method implemented this way is com-
putationally ine�cient. An alternative way to construct
the likelihood function is to include only the phenotypic
values of the genotyped individuals while still taking
into account the selection process. The likelihood
function then becomes:

L�b; r2jy� �
Yn

j�1

"X
xj2S

p�xj�g� yjjxj�
#
; �4�

where:

g� yjjxj� � f � yjjxj�=fU�s1jxj� � �1 U�s2jxj��g: �5�
The denominator of g( yjjxj) is Pr[( yj £ t1) È ( yj ³ t2)j
xj], the conditional probability that the jth individual is
selected for genotyping given xj, where F(s1jxj)�
Pr( yj £ t1jxj) and F(s2jxj)�Pr(yj £ t2jxj) are standard-
ized normal functions, and s1jxj� (t1 ) xjb)/r and s2jxj�
(t2 ) xjb)/r are the standardized truncation points.
The likelihood function can be searched via an EM

algorithm that is described below. In the E step, the
conditional posterior distribution of xj is obtained using
initial values of b and r2,

p��xj� � � p�xj�g� yjjxj��
,"X

xj2S

p�xj�g� yjjxj�
#
: �6�

The posterior distribution is then used to calculate the
expectations of various quantities that involve xj. In

the M step, we estimate the parameters based on the
following equations:

b̂ �
Xn

j�1
Ex xTj xj

� �" # 1

�
Xn

j�1
Ex xTj yj � r

/ s1jxj
�

/ s2jxj
�

1� U s1jxj
�

U s2jxj
�" #( )" #
�7�

and

r̂2 � 1

n

Xn

j�1
Ex

"
�yj xjb�2

� r2 s1jxj
�
/ s1jxj

�
s2jxj

�
/ s2jxj

�
1� U s1jxj

�
U s2jxj

� #
; �8�

where /(s1jxj) and /(s2jxj) denote the standardized
normal densities, di�erent from F(s1jxj) and F(s2jxj).
The notation Ex stands for expectation with respect to
xj, the missing genotype. The initial values of param-
eters are then replaced by b̂ and r̂2, forming a new
cycle of iteration. After convergence, b̂ and r̂2 will be
the MLEs of b and r2. Note that the terms involving
r and r2 in the right hand sides of eqns (7) and (8)
are because of selective genotyping. Without selection,
these terms will vanish and the EM equations will
reduce to the standard ones (Zeng, 1994). In the
simple model described in this study, only one non-
QTL e�ect, l, is included in the model. If the model
includes many covariates, as seen in composite inter-
val mapping, the ECM approach should be adopted
(Jiang & Zeng, 1995). The derivations of b̂ and r̂2 are
given in the Appendix.

Multiple-trait analysis

Let us de®ne a 1 ´ m vector for m traits measured in the
jth individual by yj� [ yj1, yj2, ¼, yjm]. The multivariate
linear model is expressed by:

yj � xjB� ej; �9�

where xj� [1, zj, wj] remains the same as in the single-
trait model,

B � B1 B2 � � � Bm� � �
l1 l2 � � � lm
a1 a2 � � � am

d1 d2 � � � dm

24 35
and
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ej � ej1; ej2; . . . ; ejm� �

is a 1 ´ m vector for the residuals with a multivariate
normal distribution, i.e. ej » Nm(03 , V), where:

V � Var�ej� �
r2
1 r12 � � � r1m

r12 r2
2 � � � r2m

..

. ..
. . .

. ..
.

rm1 rm2 � � � r2
m

26664
37775:

Assume that the criterion of selection is a linear
combination of all traits, called the selection index and
denoted by Ij�

Pm
k� 1ckyk j� yj c. The selection index

is a generalized criterion of selection. If c1� 1 and
cj¹1� 0, then the index becomes the phenotypic value
of the ®rst trait. The score of the selection index can
be similarly partitioned into a genetic and residual
component:

Ij � xjbI � eIj; �10�
where bI�

Pm
k� 1ckBk�Bc and ejI�

Pm
k� 1ckejk� ej c.

The expectation and variance of Ij are E(Ijjxj)� xjBc
and Var(Ijjxj)� r2I� cTVar(ej)c� cTVc, respectively.
The two truncation points of selection in the scale of
the index are de®ned, again, by t1 and t2, respectively.
The probability density of yj without selection is:

f �yjjxj� �f1=��2p�m=2jVj1=2�g
� exp� �1=2��yj xjB�V 1�yj xjB�T�: �11�

After truncation selection on index Ij, the joint density
becomes g(yjjxj) � [ f(yjjxj)]/[1 + F(s2jxj) ) F(s2jxj),
where the denominator is the probability that the jth
individual is selected for genotyping, i.e. 1 + F(s1jxj) )
F(s2jxj) � 1 ) òòt1<yjc<t2 f(yjjxj)dyj� 1 ) òt2t1 f(Ijjxj)dIj,
where s1jxj � (t1 ) xjBc)/rI and s2jxj � (t1 ) xjBc)/rI are
the standardized truncation points in the scale of the
index.

The likelihood function appears the same as eqn (4).
Again, the MLEs can be obtained by using an EM
algorithm, which requires ®rst calculating the posterior
distribution of xj and then maximizing the expectation
of the log likelihood. The EM equations are given as
follows:

B̂ �
Xn

j�1
Ex xTj xj

� �" # 1

Xn

j�1
Ex xTj yj � brI

/ s1jxj
�

/ s2jxj
�

1� U s1jxj
�

U s2jxj
� !" #( )
�12�

and

V̂ � 1

n

Xn

j�1
Ex

"
�yj xjB��yj xjB�T

� bTbr2
I

s1jxj
�
/ s1jxj

�
s2jxj

�
/ s2jxj

�
1� U s1jxj

�
U s2jxj

� #
; �13�

where b� (1/r2
I ) [r1I, r2I, ¼, rmI], is a 1 ´ m vector for

the simple regression coe�cients of the traits on the
index. Note that the multivariate EM equations are
simple extensions of the univariate EM by multiplying b
and bTb by the appropriate terms in eqns (7) and (8).
Again, eqns (12) and (13) will reduce to the standard
ones (Jiang & Zeng, 1995) under random selection.

Statistical power under selective genotyping

It is di�cult to evaluate the power of QTL mapping
when a genome-wide chromosomal scanning is per-
formed because the distribution of the test statistic
under either hypothesis (null or alternative) is unknown.
The usual practice is to evaluate the power under the
assumption that the position of the QTL is known
so that only point-wise test statistics are considered
(Muranty, 1996). The distribution of a point-wise test
statistic is usually known, at least asymptotically.
Although the power calculated this way cannot be
applied to a whole genome-wide analysis, it may be used
to compare relative e�ciencies of di�erent methods. It
is certainly appropriate to use this power to evaluate
mapping procedures under the candidate gene ap-
proach. Theoretical work has been conducted for
systems with two contrasting genotypes in the segregat-
ing population, e.g. backcrosses or half-sibs (Darvasi &
Soller, 1992). In this study, we evaluate the statistical
power of QTL detection for a single-trait model in
systems with three possible genotypes, e.g. F2 families,
under the assumption that the trait is controlled by a
single QTL whose genotype is observable. Throughout
the discussion, we will emphasize the di�erence in power
between QTL detection with and without selective
genotyping.

Power calculation without selective genotyping has
been extensively investigated by researchers (e.g. Soller
& Brody, 1976 and Muranty, 1996). Denote the general
linear model in matrix notation by:

y � Xb� e: �14�

The null hypothesis is H0 : a� d� 0, which is expressed
in matrix notation by H0 : Kb� 0, where:
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K � 0 1 0
0 0 1

� �
:

The generalized likelihood ratio test statistic (Graybill,
1976) for testing this hypothesis is:

k � n p
q

� �
r̂2

X0
r̂2

X1

r̂2
X1

 !
; �15�

where q� 2 is the rank of K, p� 3 is the number of
parameters in the full model, r̂2

X1
and r̂2

X0
are the

residual variances estimated from the full model and
the reduced model (Kb� 0), respectively. Graybill (1976)
showed that k follows a noncentral F distribution
denoted by F(k : q, n ) p, d), where d is the noncentral-
ity parameter given by:

d � f�Kb�T�K�XTX� 1KT� 1�Kb�g=2r2: �16�

Muranty (1996) called k the F-test statistic because
of the nature of F distribution. In genetic studies, a
di�erent sample will involve a di�erent X because
a completely di�erent segregation process will occur
for a di�erent experiment. When the sample size is not
too small, however, XTX will be fairly constant from
sample to sample. Therefore, we can substitute XTX by
its expectation. De®ning

E
zj

wj

� �
� Mz

Mw

� �
� 0

0

� �
and

Var
zj

wj

� �
� Vz Vzw

Vzw Vw

� �
� 1=2 0

0 1

� �
;

we have

E�XTX� � n

1 Mz Mw

Mz Vz �M2
z Vzw �MzMw

Mw Vzw �MzMw Vw �M2
w

264
375

� n

1 0 0

0 1=2 0

0 0 1

264
375:

Substituting XTX by E(XTX) and after some algebraic
manipulation, we get:

d � n�a2=2� d2�
2r2

� nr2
G

2r2
; �17�

where r2G� a2/2 + d2 is the total genetic variance. The
statistical power is then calculated as:

W �
Z 1

F 1�1 a:q;n p;0�
F �k : q; n p; d�dk; �18�

where 1 ) W is the Type II error and F )1(1 ) a : q,
n ) p, 0) is the critical value for testing H0 at a Type I
error rate of a.
Under selective genotyping, the exact form of the

distribution of the likelihood-ratio test statistic is
unknown. To derive the power under selective geno-
typing, we must assume that the test statistic still
follows a noncentral F distribution but with a di�erent
noncentrality parameter. This approximation is valid
when the selection intensity is weak or the QTL in
question has a small e�ect. In fact, Darvasi & Soller
(19924 ) have already made this approximation when
calculating the number of genotyped individuals
required to achieve a given power under an additive
e�ect model in a backcross design. Selective genotyp-
ing will change the conditional distribution of yj given
its genotype and the frequencies of the three geno-
types in the mapping population. These changes will
eventually modify a, d, r2 and E(XTX), leading to an
increase in the noncentrality parameter and thus an
increase in the power.
Let us denote the phenotypic value in the selected

population by y*. Using the theory of truncated
selection (Cohen, 1991), we found that the conditional
expectation and variance of y* given genotype QkQl are:

E�y�jQkQl� � uklb� r�/�s2jukl� /�s1jukl��=
�1� U�s1jukl� U�s2jukl��

and

Var�y�jQkQl�

� r2 1
�s1jukl�/�s1jukl� �s2jukl�/�s2jukl�

1� U�s1jukl� U�s2jukl�
� �
r2 /�s1jukl� /�s2jukl�

1� U�s1jukl� U�s2jukl�
� �2

;

respectively, where s1jukl� (t1 ) uklb)/r for k £ l� 1,2.
Let us now de®ne the probability that an individual
with genotype QkQl is selected for genotyping by
qkl� 1 + F(s1jukl) ) F(s2jukl). According to Bayes'
theorem, the frequency of genotype QkQl in the selected
population can be de®ned by pkl� [(1 + jk ) lj)qkl]/
(q11 + 2q12 + q22) for k £ l� 1, 2.
The modi®ed additive and dominance e�ects after

selective genotyping become:
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a� � E�y�jQ1Q1� �p11E�y�jQ1Q1�
� p22E�y�jQ2Q2��=�p11 � p22� �19�

and

d� � 1

2
E�y�jQ1Q2� p11E�y�jQ1Q1� � p22E�y�jQ2Q2�

p11 � p22

� �
;

�20�

respectively. The altered residual variance takes the
weighted average of the within-genotype residual vari-
ances, i.e.

r2
� �

X2
k�l

pklVar� y�jQkQl�: �21�

The modi®ed E(XTX) resulting from selective genotyp-
ing is:

E��XTX� � n

1 M�z M�w
M�z V�z � �M�z�2 V�zw �M�zM

�
w

M�w V�zw �M�zM
�
w V�w � �M�w�2

24 35:
where

M�z
M�w

� �
� p11 p22

p12 � p11 � p22�
� �

and

V �z V �zw
V �zw V �w

� �
� �p11 � p22� � p11 p22�2 p12� p22 p11�

p12� p22 p11� 4p12�1 p12�
� �

:

Denote b*� [l* a* d*]T as the vector of parameters after
selection, then the noncentrality parameter under selec-
tive genotyping is

d� � �Kb
��TfK�E��XTX�� 1KTg 1�Kb��

2r2�
: �22�

Subsequently, the statistical power under selective
genotyping is calculated using eqn (18) but with the
noncentrality parameter replaced by d*.

Illustration

In this section we demonstrate the application of the
method using simulated data and show the general
behaviour of the method that one expects to observe in
QTL mapping experiments.

Single-trait QTL mapping

In the ®rst simulation study, we assumed that a single
QTL is located at position 25 cM of a 100-cM chromo-
some segment covered by 11 evenly spaced codominant
markers. The size of the QTL (measured by the
percentage of phenotypic variance explained by the
QTL) is 0.05. The actual genetic e�ects that generate
such a QTL are a� 0.229 and d� 0.162. In an F2

population, these genetic e�ects will make up a genetic
variance of r2G� a2/2 + d2� 0.0525. The residual vari-
ance was set at r2� 1.0, leading to h2� 0.0525/
(0.0525 + 1.0)� 0.05. The number of individuals geno-
typed was ®xed at 100. We then varied the total number
of individuals measured for the phenotype to control
di�erent levels of selection pressure. We set up four
levels of proportion genotyped: 100%, 50%, 10% and
5%. The total numbers of phenotypically measured
individuals corresponding to the four proportions were
100, 200, 1000 and 2000, respectively. Under selective
genotyping, three methods of QTL mapping were
compared: (i) full data analysis (FULL) where all
phenotypic values, including ungenotyped individuals,
were included in the data analysis with the marker
genotypes of ungenotyped individuals treated as missing
values; (ii) biased analysis (BIAS) where only pheno-
typic values of genotyped individuals were included in
the analysis with the likelihood function constructed as
if there were no selection; and (iii) the true method of
selective genotyping (SELECT) proposed in this study
where only genotyped individuals were included and the
likelihood was constructed with correction for the bias.
The QTL location was estimated as the mean chromo-
somal position that shows the highest value of the test
statistic. Each simulation was repeated 100 times.

The mean and standard deviations of the estimates are
given in Table 1. Under random selection with the low
variance explained by the QTL and the small sample size
(n� 100), estimation of the QTL position is not only
severely biased towards the centre of the chromosome
but is also subject to a large estimation error. Estimates
of the QTL e�ects and the residual variance are quite
close to the expected values, although with relatively
large errors. With selective genotyping (SELECT),
although the same numbers of individuals are included
in the analysis, the bias in QTL position estimate has
been progressively corrected as the selection intensity
increases; for instance, when the proportion selected is
5%, the estimation is almost unbiased with the estima-
tion error reduced to one-third of what is observed under
random selection. Compared with the FULL method,
the SELECT method has a slightly increased estimation
error in the QTL position estimate. This indicates that
inclusion of the large number of ungenotyped individuals

530 S. XU & C. VOGL

Ó The Genetical Society of Great Britain, Heredity, 84, 525±537.



does provide a little information about linkage for a
reason to be explained later. The BIASmethod, using the
same amount of phenotypic information as the SELECT
method, has almost identical estimation error of the
QTL position as the SELECT method. Both the FULL
and the SELECT methods provide estimates of the QTL
e�ects close to the expectations with similar estimation
errors. The BIAS method, however, gives severely biased
estimates of the QTL e�ects, because of the use of an
incorrect likelihood function. The residual variance is
estimated very closely to the expectation by both the
FULL and SELECT methods. However, estimate of the
FULL method has decreased the already small estima-
tion error. This explains the slightly decreased estimation
error of the QTL position by the FULL method. The

BIAS method, again, gives a very biased estimate of the
residual variance. Finally, selective genotyping has
increased the score of the test statistic up to threefold
(see the last column of Table 2).

Multiple trait QTL mapping

In the second simulation study, we investigated QTL
mapping for two correlated traits under selective geno-
typing. The marker map remains the same as previously
described. The ®rst trait is controlled by one QTL at the
same location (25 cM) with the same e�ect as described
in the previous experiment, i.e. a1� 0.229 and d1�
0.162. The second trait is controlled by a QTL located
at 85 cM with identical e�ects, i.e. a2� 0.229 and

Table 1 Comparisons of quantitative trait loci (QTL) mapping procedures under di�erent selection intensities, where cMA is
the estimated QTL position (true value is 25) and k is the generalized likelihood ratio test statistic for the presence of QTL
(including both the additive and dominance e�ects). The numbers listed in the table are the averages of 100 replicated
simulations with the standard deviations in parentheses

Selection Method  cMA l̂ â d̂ r̂2 k

True value 25 0.00 0.229 0.162 1.00

100% 33.79 (23.41) )0.01 (0.10) 0.243 (0.190) 0.164 (0.156) 0.998 (0.134) 4.45 (2.40)

50% FULL 31.06 (18.29) )0.02 (0.09) 0.271 (0.155) 0.193 (0.116) 0.992 (0.075) 7.70 (3.53)
BIAS 30.35 (18.70) 0.00 (0.15) 0.426 (0.257) 0.349 (0.203) 1.686 (0.151) 6.91 (3.44)
SELECT 30.34 (18.65) )0.01 (0.09) 0.252 (0.166) 0.196 (0.118) 0.973 (0.103) 6.80 (3.40)

10% FULL 27.07 (12.25) )0.03 (0.04) 0.284 (0.110) 0.160 (0.075) 1.009 (0.041) 12.28 (5.55)
BIAS 27.18 (13.03) 0.05 (0.20) 0.923 (0.369) 0.618 (0.338) 3.588 (0.539) 11.69 (4.30)
SELECT 26.99 (13.10) )0.01 (0.06) 0.255 (0.106) 0.155 (0.080) 0.993 (0.112) 10.57 (4.29)

5% FULL 25.54 (6.10) )0.04 (0.03) 0.280 (0.075) 0.170 (0.058) 0.996 (0.035) 15.31 (5.51)
BIAS 25.36 (8.12) 0.04 (0.20) 1.116 (0.314) 0.811 (0.301) 4.272 (0.538) 13.73 (4.97)
SELECT 25.25 (8.58) )0.02 (0.06) 0.273 (0.095) 0.175 (0.076) 1.004 (0.121) 13.10 (4.29)

 See text for de®nitions of the three methods.

Table 2 Comparison of multiple-trait mapping under selective genotyping and
random selection from 50 replicated simulations. The estimated values are means
of 50 replicates with standard deviations given in parentheses

Estimate

QTL parameter
True
value

Selective
genotyping

Random
selection

Trait one Location 25 cM 25 cM 24 cM
Additive e�ect 0.229 0.248 (0.065) 0.248 (0.096)
Dominance e�ect 0.162 0.173 (0.042) 0.154 (0.081)
Residual variance 1.00 1.00 (0.070) 0.966 (0.082)

Trait two Location 85 cM 84 cM 85 cM
Additive e�ect 0.229 0.225 (0.087) 0.206 (0.088)
Dominance e�ect 0.162 0.156 (0.069) 0.152 (0.065)
Residual variance 1.00 0.996 (0.040) 0.988 (0.070)

Joint Residual covariance 0.50 0.500 (0.078) 0.501 (0.086)
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d2� 0.162. The residual variances were set at r21� r2
2� 1

and the residual covariance set at r12� 0.5. The selec-
tion criterion was Ij� c1yj1 + c2yj2 where c1� 1 and
c2� 0, i.e. only the ®rst trait was selected. A total of
2500 individuals were measured for phenotype, but 250
(10%) were selectively genotyped. The simulation was

replicated 50 times. Figure 1(a) gives the average like-
lihood ratio test statistic pro®les under selective geno-
typing (10%). The solid (T1), dotted (T2) and dashed
(T12) lines represent the likelihood-ratio test statistic
pro®les for the ®rst trait, the second trait and both traits
(joint test), respectively. Note that the likelihood-ratio
test statistic pro®les (functions of the F-test statistics)
are used here. They are de®ned as:

T1 � 2
n 6

2

� �
r̂2

X1
r̂2

X12

r̂2
X12

 !
;

T2 � 2
n 6

2

� �
r̂2

X2
r̂2

X12

r̂2
X12

 !

and

T12 � 4
n 6

4

� �
r̂2

X0
r̂2

X12

r̂2
X12

 !
;

where r̂2
X is the estimated residual variance under model

W which de®nes the linear model by the set of param-
eters included in the model:

X12 2 fl1 a1 d1 l2 a2 d2g
X1 2 fl1 0 0 l2 a2 d2g
X2 2 fl1 a1 d1 l2 0 0g
X0 2 fl1 0 0 l2 0 0g:

We used T instead of k to depict the test statistic pro®les
because T approximates a v2q distribution and thus bears
the additive property, i.e. T12�T1 + T2. Although the
two traits have an identical genetic variance, the ®rst
trait has a substantially higher test statistic pro®le than
the second one because the ®rst trait is directly selected
for genotyping. As a comparison, we repeated the
simulation under random selection, i.e. we generated
250 individuals and genotyped all of them (100%) for
mapping. The corresponding test statistic pro®les are
given in Fig. 1(b). Compared with random selection
(Fig. 1b), the increase in the test statistic pro®le for the
®rst trait (Fig. 1a) is obvious. A slight increase in the test
statistic pro®le for the second trait is also observed
because of its correlation to the ®rst trait.

Power under selective genotyping

As reported in this section, we ®rst calculated the
predicted powers under various proportions of geno-
typed individuals using the theoretical formula given in
eqn (18). We then conducted simulation experiments to

Fig. 1 (a) Test statistic pro®les under selective genotyping for
multivariate quantitative trait loci (QTL) mapping. (b) Test

statistic pro®les under random selection for multivariate QTL
mapping. Two QTLs, each controlling one trait. The true QTL
position of the ®rst trait is 25 cM and that of the second trait is

85 cM. Selection is on the ®rst trait. T1, T2 and T12 are test
statistics for the presence of QTLs for the ®rst trait, second
trait and both traits, respectively (see text for de®nitions of

the Ts).
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verify our theoretical prediction. The e�ects of the QTL
were again set at a� 0.229 and d� 0.162. The number of
individuals genotyped remained at n� 100. We varied
the total number of individuals measured (N) to control
the proportions selected for genotyping (see column 2
of Table 3). Because the population mean was set at
l � 0, the truncation points are symmetrical, and thus
t2�)t1, where the values of t1 were found by trial and
error so that the theoretical proportions selected equal
the predetermined proportions (see column 3 of
Table 3). The values of the noncentrality parameter
are listed in column 4 of Table 3. The critical value for
testing the hypothesis at a Type I error rate of a� 0.05 is
F )1(0.95 : 2, 97, 0)� 3.09, which was used to calculate
the theoretical powers (listed in column 5 of Table 3).
We then simulated 1000 samples under each level of
proportion and conducted QTL analysis for each
sampled data set. The empirical power under each
setting was calculated as the proportion of the samples
that have the F-like test statistic greater than 3.09. These
empirical powers, given in the last column of the table,
are fairly close to the corresponding theoretical predic-
tions.

Discussion

When the phenotypic values of ungenotyped individuals
are included in the data analysis, standard methods with
proper handling of missing markers are used (Lander &
Botstein, 1989; Muranty & Go�net, 1997a,b; Henshall
& Goddard, 1999; Johnson et al., 1999). A problem
occurs if the number of ungenotyped individuals is large
because of the increased computational burden; for
example, if 10% of the test population is genotyped, to
genotype 250 individuals, one needs to measure an
additional 2250 individuals for their phenotypes. The
total sample size will be 2500. Because the 2250
ungenotyped individuals contribute very little to linkage

analysis but serve as bias correctors, their phenotypic
values do not have to be included in the analysis. These
individuals, however, do contribute to the estimation of
the residual variance. The estimate of the residual
variance usually has very small estimation error. When
the number of individuals genotyped is small, however,
the residual variance estimate from only the genotyped
individuals may not be su�ciently accurate. In this case,
it is important to include the ungenotyped individuals.
The methods described above (e.g. Muranty & Go�net,
1997a,b; Johnson et al., 1999) are not the only ways
to include the ungenotyped individuals. An alternative
way is to ignore completely the genetic e�ects for the
ungenotyped individuals, partition the residual variance
of an ungenotyped individual into a genetic and a pure
environmental component, and use a mixed-model
approach. This can be accomplished via the following
maximum likelihood analysis. De®ne the model for
an ungenotyped individual by yj� l + rj for j� n + 1,
¼, N, where rj is the residual e�ect with an
N(0, r2

G + r2) distribution and r2G� a2/2 + d 2, as
de®ned previously. The probability density of yj for
the ungenotyped individual will be:

f �yj� � f1=p�2p�r2
G � r2��g

� expf �1=2�r2
G � r2���yk l�2g:

The likelihood function including all individuals will be:

L�b; r2jy� �
Yn

j�1

�X
xj2S

p�xj�f �yjjxj�
�
�
YN

j�n�1
f �yj�:

Note that ungenotyped individuals do not contribute to
the estimation of b except l, but they are used to
estimate r2

G + r2. The MLE may be directly searched
or obtained via an EM algorithm. In either way, the
speed of convergence may be faster than the methods

Table 3 Statistical powers under various degrees of selective genotyping using the phenotypic values and marker data of
n = 100 genotyped individuals. The case with 100% proportion genotyped represents random selection without selective
genotyping. The trait is controlled by a single quantitative trait locus (QTL) explaining 5% of the phenotypic variance
(a = 0.229 and d = 0.162)

Proportion Number of individuals Lower  truncation Noncentrality
Power (w)

genotyped measured (N ) (t1) (d*) Theoretical Simulated

100% 100 )0.00 2.623 0.511 0.526
75% 133 )0.33 3.555 0.648 0.635
50% 200 )0.70 5.190 0.818 0.793
25% 400 )1.17 8.424 0.960 0.935
10% 1000 )1.70 14.125 0.998 0.990
5% 2000 )2.00 18.599 1.000 0.999

 The upper truncation point is t2 = )t1.

QTL MAPPING UNDER SELECTIVE GENOTYPING 533

Ó The Genetical Society of Great Britain, Heredity, 84, 525±537.



that treat xj as missing values because there is no need to
update p(xj) for an ungenotyped individual. Further
investigation is required to explore the properties of this
alternative approach.

It is not hard to imagine that ungenotyped individuals
may not have a full measurement of phenotypic values.
This may occur, for example, in QTL mapping for the
trait of ¯owering time. An investigator may choose to
visit the ®eld for the ®rst few days when the population
of plants begins to ¯ower and the last few days when the
population approaches the end of the ¯owering season.
In this case, plants that ¯ower in the middle of the
season may not have a record of phenotype. Another
example comes from multiple trait analysis in forest
trees. One may decide to select early growth rate for
QTL mapping, but later the investigator may want to
map QTLs for later growth rate as well. If selection is on
the early trait, because of limited space, the investigator
may not keep the culled individuals in the ®eld. Then the
®nal population would be a selected population with
regard to the later growth rate. The maximum likeli-
hood analysis proposed in this study is the proper tool
for handling such centrally truncated data.

It is undesirable to use only one tail of the trait
distribution to carry out QTL mapping because the total
variance of the trait is arti®cially de¯ated. However, if
the data happen to be single-tail truncated for some
technical reasons, the proposed method can readily be
applied for correcting the bias. A typical example of
single-tail truncation can be seen in arti®cial selection of
plant and animal breeding. Another example may come
from longitudinal data analysis where the phenotypic
value of an individual depends on it longevity. Only
surviving individuals have a complete measurement of
phenotype, whereas individuals not surviving only have
partial information; for example, the yearly egg pro-
duction of a chicken strongly depends on the viability of
the chicken. If a chicken dies in the middle of the year,
we do not know the phenotypic record of her yearly
production, but we do know that her yearly egg
production is greater than the current production in
her record at the time when she dies. An unbiased
analysis must be performed by taking into account these
partial records.

For multiple-trait analysis, selective genotyping has
been a problem because if all traits are deemed to be
important to the researcher, which traits should be
selected? The selection index approach of Muranty &
Go�net (1997b) is a compromise between the traits.
Because the selection criterion now becomes a single
`trait', it is easy to apply in practice. Lin & Ritland
(1997) suggested that an individual should be genotyped
if at least one of m traits exhibits the extreme value.
Under this selection regime, di�erent individuals seem to

have di�erent criteria of selection; for example, if
individual j is selected because its kth phenotypic value
is ®rst observed as being extreme, then the criterion for j
is (yjk £ t1k) È (yjk ³ t2k). On the other hand, if individ-
ual i is selected because its lth phenotypic value is ®rst
observed as being extreme, then the criterion for i is
(yil £ t1l) È (yil ³ t2l). In both the index selection and the
method of Lin & Ritland (1997), the selection criterion
of each individual is a single trait (one-dimensional
selection), and thus the proposed method will apply.
Another selection regime may be the so-called indepen-
dent culling level selection where an individual will not
be genotyped if any one of the m phenotypic values fails
to reach the extreme. This selection regime is perhaps
more rigorous than the previous two methods, but it is
hard to programme5 because it is a multiple dimensional
selection (requiring multiple integration). Further study
may be necessary to compare di�erent selection regimes.
Nonetheless, when phenotypic values of ungenotyped
individuals are included, methods of selection will be
irrelevant to the statistical issue. Once selection is
carried out on the phenotypic value of one trait (primary
trait), QTL mapping for a highly correlated trait
(secondary trait) will also bene®t. However, if the two
traits are not correlated, the e�ective sample size in
terms of the secondary trait will be comparable to a
random sample of n, where n is the number of genotyped
individuals. Therefore, one should be cautious about the
power of QTL mapping for traits less correlated to a
highly selected primary trait.

An advantage of the logistic regression of Henshall &
Goddard (1999) is that selection does not bias estimates
of QTL e�ects, irrespective of whether phenotypic
values of ungenotyped individuals are included in the
data analysis. This is because the roles of marker
genotypes and the phenotypes in the likelihood function
have been altered, just like the discordant sib-pair
mapping of Risch & Zhang (1995). Further investigation
on the logistic regression, however, shows that selective
genotyping can alter the estimation of the QTL e�ect.
The equivalence between logistic regression and the
maximum likelihood holds only approximately when the
e�ect of a QTL is small. This can be shown by looking
at the posterior probability of a QTL genotype given the
phenotypic value of individual j:

p��xj� � � p�xj�g�yjjxj��
��X

xj2S

p�xj�g�yjjxj�
�
;

where p(xj) is the prior probability of the QTL
genotype, independent of marker information, and
g(yjjxj)� [ f(yjjxj)]/{F(s1jxj)+ [1 ) F(s2jxj)]}. However,
the logistic regression model uses r(xj)� [ p(xj)f( yjjxj)]/
[
P

xjÎSp(xj)f(yjjxj)], i.e. the term F(s1jxj)+ [1 ) F(s2jxj)]
in the denominator of g( yjjxj) has vanished. The exact
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maximum likelihood function should be built using
p*(xj) instead of r(xj). However, using r(xj) may still be
justi®able because: (i) when the size of the QTL is small,
F(s1jxj) + [1 ) F(s2jxj)] can be considered as a con-
stant across di�erent genotypes so that the correspond-
ing terms in the numerator and denominator cancel
each other out, leading to p*(xj) » r(xj); and (ii) r(xj) is
much easier to handle than p*(xj) in the maximum
likelihood analysis. In addition to the approximate
nature of the logistic regression, there are two unsolved
problems: (a)6 modi®cation is required to map a QTL in
an F2 population; and (b) an exact interval mapping has
not been available. An approximate interval mapping
was accomplished via interpolation (Henshall & God-
dard, 1999). Solving for the ®rst problem requires a
multicategorical response model, e.g. models for nom-
inal or ordinal responses (Fahrmeir & Tutz, 1994). The
second problem involves missing QTL genotypes and
may be solved using the EM or MCMC algorithm of
C. Vogl & S. Xu (unpublished results) for mapping
viability loci.
Quantitative trait loci mapping is usually performed

after a marker map is fully developed. If the trait
under selection has a strong genetic component,
selective genotyping can also cause distortion of the
inferred marker map from the true one. The distortion
is re¯ected by the change in both the marker order
and the distances between markers. Because the
severity of marker map distortion depends on the
sizes and locations of QTLs, marker mapping and
QTL mapping should be carried out concurrently
under selective genotyping. One can apply the general
idea of EM to concurrent mapping. To do this, one
®rst maps QTLs under the assumption that the
marker map is known without error, and then corrects
the marker map by taking into account the distortion
caused by selective genotyping under the assumption
that the sizes and locations of QTLs are known. This
completes one cycle of iteration, and the iteration
should continue until a criterion of convergence is
reached. The problem can be very complicated,
especially when the marker order is allowed to change.
Many theoretical and practical problems may exist in
concurrent mapping, and further investigation is
deemed necessary.
Maximization of the likelihood function is not an easy

task. Special algorithms and computer programs are
required. We developed an EM algorithm that appears
to be a simple modi®cation of the existing EM algorithm
for standard interval mapping. As a result, it can be
readily incorporated into a standard QTL mapping
software, e.g. MAPMAKERMAPMAKER (Lander & Botstein, 1989).
One caveat about the EM algorithm is that when the
selection intensity is too high, the EM algorithm may

take a very large number of iterations to converge
and sometime may not converge at all. This is
not a problem of the EM algorithm itself, rather, it is
caused by numerical over¯ow when the bias adjustment
of the residual variance is conducted. Recall that we
added an additional term in eqn (8), r2[(s1jxj)/(s1jxj) )
(s2jxj)/(s2jxj)]/[1 + F(s1jxj) ) F(s2jxj)], to the standard
EM estimation of the residual variance. When the
selection intensity is high, this term can be numerically
unstable. Proper handling of this numerical over¯ow is
required which is, unfortunately, beyond our technical
ability. We found that when the proportion selected is
40% or more, the problem rarely happens. In our
simulation studies, when numerical over¯ow occurred,
the EM algorithm was replaced by the simplex algo-
rithm (Nelder & Mead, 1965) for direct search of MLEs.
The simplex method is usually slower than the EM
algorithm, but it can handle highly selected data.
Another caveat is the sensitivity of the proposed method
to departure from normality. Because the likelihood
function involves F(s), in addition to /(s), we anticipate
that the method is more sensitive to deviation from
normality than the methods using also the ungenotyped
individuals.
In conclusion, we developed an exact maximum

likelihood approach to map QTLs under selective
genotyping using phenotypic values of genotyped indi-
viduals only. Compared with the full data analysis
(using all phenotypic values), the proposed method
performs well: the average test statistic is slightly lower;
estimates of QTL parameters are almost identical; and
the estimate of residual variance is subject to a relatively
large error. The slightly lower test statistic value may be
caused by the relatively large increase in the estimation
error of the residual variance. A general recommenda-
tion is that whenever full data analysis is possible, the
full maximum likelihood analysis should be performed.
If it is impossible or di�cult to analyse the full data, e.g.
the sample size is too large, the phenotypic values of
ungenotyped individuals are missing or composite
interval mapping is to be performed, then the proposed
method should be applied with the understanding that
there is little to lose.
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Appendix

Derivation of the EM algorithm for single-trait
analysis

First, let us de®ne the log likelihood function by:

l�b; r2jy� �
Xn

j�1
log
hX

xj2S

p�xj�g�yjjxj�
i
:

The MLEs of b and r2 are obtained by solving @l/@b� 0
and @l/@r2� 0 simultaneously.

Derivation of @l/@b

@l
@b
�
Xn

j�1

P
xj2S p xj

�
@
@b g yjjxj

�P
xj2S p xj

�
g yjjxj

�
where

X
xj2S

p xj
� @
@b

g yjjxj
�

�
X
xj2S

p xj
�
g yjjxj

�
� 1

r2
xTj yj xjb

� @
@b 1� U�s1jxj� U�s2jxj�
� �
1� U�s1jxj� U�s2jxj�

" #
:

In the above equation, the truncation points have been
standardized, i.e. s1� (t1 ) xjb)/r and s2� (t2 ) xjb)/r,
where t1 and t2 are the truncation points in the original
scale. Note that:

@

@b
1� U�s1jxj� U�s2jxj�
� �
� /�s1jxj� @s1

@b
/�s2jxj� @s1

@b

� 1

r
/�s1jxj� /�s2jxj�
� �� xTj �:

Hence,

X
xj2S

p xj
� @
@b

g yjjxj
�

�
X
xj2S

p xj
�
g yjjxj

� 1

r2
xTj

� yj xjb
�� r

/�s1jxj� /�s2jxj�
1� U�s1jxj� U�s2jxj�

� �
:

De®ne p*(xj)� [ p(xj)g(yjjxj)]/[
P

xjÎS p(xj)g(yjjxj)] as the
posterior distribution of xj. We now have:
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@l
@b
�
Xn

j�1

P
xj2S

p xj
�
@
@b g yjjxj

�
P
xj2S

p xj
�
g yjjxj

�
�
Xn

j�1

X
xj2S

p��xj� 1r2
xTj

� yj � r
/�s1jxj� /�s2jxj�

1� U�s1jxj� U�s2jxj�
� �

xjb

� �
:

Solving for @l/@b� 0, we have:

b̂ �
Xn

j�1
Ex�xTj xj�

" # 1

�
Xn

j�1
Ex xTj yj � r

/�s1jxj� /�s2jxj�
1� U�s1jxj� U�s2jxj�

� �� �" #
:

Derivation of @l/@r2

@l
@r2
�
Xn

j�1

P
xj2S p xj

�
@
@r2 g yjjxj

�P
xj2S p xj

�
g yjjxj

� ;

whereX
xj2S

p xj
� @

@r2
g yjjxj

�
�
X
xj2S

p xj
� 1�������

2pr2
p exp 1

2r2 �yj xjb�2
h i

1� U�s1jxj� U�s2jxj�

8<:
� 1

2r4
�yj xjb�2

�
1

2r2

@
@r2 1� U�s1jxj� U�s2jxj�
� �
1� U�s1jxj� U�s2jxj�

#)
:

Note that

@

@r2
1� U�s1jxj� U�s2jxj�
� �
� /�s1jxj� @s1

@r2
/�s2jxj� @s1

@r2

� 1

2r2

� �
s1/�s1jxj� s2/�s2jxj�
� �

:

Therefore,

X
xj2S

p xj
� @

@r2
g yjjxj

�
�
X
xj2S

p xj
�
g yjjxj

�
� yj xjb

�2
r2 1

s1/�s1jxj� s2/�s2jxj�
1� U�s1jxj� U�s2jxj�

� �� �
:

Finally, we have

@L
@r2
�
Xn

j�1

P
xj2S p xj

�
@
@r2 g yjjxj

�P
xj2S p xj

�
g yjjxj

�
�
Xn

j�1

(X
xj2S

p� xj
�"�yj xjb�2

r2 1
s1/�s1jxj� s2/�s2jxj�
1� U�s1jxj� U�s2jxj�

� �#)
:

Solving for @l/@r2� 0, we obtain

r̂2 � 1

n

Xn

j�1
Ex yj xjb

�2�r2 s1/�s1jxj� s2/�s2jxj�
1� U�s1jxj� U�s2jxj�

� �
:

QTL MAPPING UNDER SELECTIVE GENOTYPING 537

Ó The Genetical Society of Great Britain, Heredity, 84, 525±537.


	Maximum likelihood analysis of quantitative trait loci under selective genotyping
	Introduction
	Theory and methods
	Single-trait analysis
	Multiple-trait analysis
	Statistical power under selective genotyping

	Illustration
	Single-trait QTL mapping
	Multiple trait QTL mapping
	Power under selective genotyping

	Discussion
	Acknowledgements
	References
	Appendix Derivation of the EM algorithm for single-trait analysis


