Original Article

Heredity (1993) 70, 472–480; doi:10.1038/hdy.1993.69

Polyandry and allele frequency differences between the sexes in the ant Formica aquilonia

Pekka Pamilo1

1Department of Genetics, Uppsala University, Box 7003, 750 07 Uppsala, Sweden

Received 31 July 1992.



Genetic mother-offspring analyses based on six enzyme gene loci show that about 60 per cent of the females of the mound-building red wood ant Formica aquilonia mate with several males. The number of matings inferred from the offspring genotypes range from one to six, the arithmetic mean being 1.94. The mates do not contribute equally in the inseminations; in the case of two matings, one male is estimated to inseminate on average 77 per cent of the offspring. The average related-ness among the offspring of a single female is 0.6, corresponding to the effective number of matings of 1.43. Three of the six loci show remarkable allele frequency differences between the sexes. At each of these loci the males virtually lack the alleles present in females with frequencies 0.18 at Me, 0.25 at Pgk and 0.27 at Gpi. Segregation analyses indicate normal Mendelian inheritance at these loci and the difference between the sexes seem likely to result from selection.


colony-level selection, Formica aquilonia polyandry, relatedness, sex-specific allele frequencies, social insects



  1. Ayala, F J, Valentine, J W, Barr, L G, and Zumwalt, G S. 1974. Genetic variability in a temperate intertidal phoronid Phoronopsis viridis. Biochem Genet, 11, 413–427. | PubMed |
  2. Crozier, R H. 1973. Apparent differential selection at an isozyme locus between queens and workers of the ant Aphaenogaster rudis. Genetics, 73, 313–318.
  3. Crozier, R H. 1975. Animal Cytogenetics 3 Insecta 7 Hymenoptera. Gebrüder Borntraeger, Berlin & Stuttgart.
  4. Crozier, R H, and Page, R E. Jr. 1985. On being the right size: male contributions and multiple mating in social Hymenoptera. Behav Ecol Sociobiol, 18, 105–115. | Article | ISI |
  5. Gwynne, D T. 1989. Does copulation increase the risk of predation? Trends Ecol Evol, 4, 54–56.
  6. Hamilton, W D. 1987. Kinship, recognition, disease, and intelligence: constraints of social evolution. In: Itô, Y., Brown, J. L. and Kikkawa J. (eds) Animal Societies: Theories and Facts. Japan Science Society Press, Tokyo, pp. 81–102.
  7. Hung, A C F, and Vinson, S B. 1976. Biochemical evidence for queen monogamy and sterile male diploidy in the fire ant Solenopsis invicta. Isozyme Bull, 9, 55.
  8. Hurst, L D. 1991. The incidences and evolution of cytoplasmic male killers. Proc R Soc Lond B, 24, 91–99.
  9. MacKensen, O. 1951. Viability and sex determination in the honeybee. Genetics, 36, 500–509.
  10. Moritz, R F A. 1985. The effects of multiple mating on the worker-queen conflict in Apis mellifera L. Behav Ecol Sociobiol, 16, 375–377.
  11. Nonacs, P. 1986. Ant reproductive strategies and sex allocation theory. Q Rev Biol, 61, 1–21. | Article |
  12. Page, R E. Jr. 1980. The evolution of multiple mating behavior by honey bee queens (Apis mellifera L.). Genetics, 96, 263–273. | PubMed |
  13. Page, R E. Jr. 1986. Sperm utilization in social insects. Ann Rev Entomol, 31, 297–320. | Article |
  14. Pamilo, P. 1982. Multiple mating in Formica ants. Hereditas, 97, 37–45.
  15. Pamilo, P. 1984. Genotypic correlation and regression in social groups: multiple alleles, multiple loci and subdivided populations. Genetics, 107, 307–320. | PubMed | ISI | ChemPort |
  16. Pamilo, P. 1985. Effect of inbreeding on genetic relatedness. Hereditas, 103, 195–200. | PubMed |
  17. Pamilo, P. 1990. Comparison of relatedness estimators. Evolution, 44, 1378–1382.
  18. Pamilo, P. 1991a. Evolution of colony characteristics in social insects. II. Number of reproductive individuals. Am Nature, 138, 412–433.
  19. Pamilo, P. 1991b. Life span of queens in the ant Formica exsecta. Insectes Sociaux, 38, 111–119.
  20. Pamilo, P, and Rosengren, R. 1983. Sex ratio strategies in Formica ants. Oikos, 40, 24–35.
  21. Pamilo, P, and Rosengren, R. 1984. Evolution of nesting strategies of ants: genetic evidence from different population types of Formica ants. Biol J Linn Soc, 21, 331–348.
  22. Pamilo, P, Nei, M, and Li, W H. 1987. Accumulation of mutations in sexual and asexual populations. Genet Res, 49, 135–146. | PubMed | ChemPort |
  23. Queller, D C, and Goodnight, K F. 1989. Estimating relatedness using genetic markers. Evolution, 43, 258–275. | Article | ISI |
  24. Rosengren, R, and Pamilo, P. 1983. The evolution of polygyny and polydomy in mound-building Formica ants. Acta Entomol Fenn, 42, 65–77.
  25. Ross, K G. 1986. Kin selection and the problem of sperm utilization in social insects. Nature, 323, 798–800. | Article |
  26. Ross, K G. 1992. Strong selection on a gene that influences reproductive competition in a social insect. Nature, 355, 347–349. | Article | ISI |
  27. Ross, K G, and Fletcher, D J C. 1985a. Genetic origin of male diploidy in the fire ant, Solenopsis invicta (Hymenoptera: Formicidae), and its evolutionary significance. Evolution, 39, 888–903. | Article | ISI |
  28. Ross, K G, and Fletcher, D J C. 1985b. Comparative study of genetic and social structure in two forms of the fire ant, Solenopsis invicta (Hymenoptera: Formicidae). Behav Ecol Sociobiol, 17, 349–356. | Article | ISI |
  29. Ross, K G, and Fletcher, D J C. 1986. Diploid male production -a significant mortality factor in the fire ant Solenopsis invicta (Hymenoptera: Formicidae). Behav Ecol Sociobiol, 19, 283–291. | Article |
  30. Ross, K G, Vargo, E L, and Fletcher, D J C. 1988. Colony genetic structure and queen mating frequency in fire ants of the subgenus Solenopsis (Hymenoptera: Formicidae). Biol J Linn Soc, 34, 105–117.
  31. Sherman, P W, Seeley, T D, and Reeve, H K. 1988. Parasites, pathogens, and polyandry in social Hymenoptera. Am Nature, 131, 602–610.
  32. Shykoff, J A, and Schmid-Hempel, P. 1991a. Genetic relatedness and eusociality: parasite-mediated selection on the genetic composition of groups. Behav Ecol Sociobiol, 28, 371–376.
  33. Shykoff, J A, and Schmid-Hempel, P. 1991b. Parasites and the advantage of genetic variability within social insect colonies. Proc R Soc Lond B, 243, 55–58.
  34. Snyder, L, and Herbers, J M. 1990. Seasonal polydomy and allocation ratios in the ant Myrmica punctiventris. Behav Ecol Sociobiol, 28, 409–415.
  35. Starr, C K. 1984. Sperm competition, kinship, and sociality in the aculeate Hymenoptera. In: Smith, R. L. (ed.), Sperm Competition and the Evolution of Animal Mating Systems. Academic Press, New York, pp. 427–464.
  36. Strassmann, J E, Queller, D C, Solis, C R, and Hughes, C R. 1991. Relatedness and queen number in the neotropical wasp Parachartergus colobopterus. Anim Behav, 42, 461–470.
  37. Sundström, L. 1989. Genetic relatedness and population structure in Formica truncorum Fabr. (Hymenoptera, Formicidae). Actes Coll Ins Soc, 5, 93–100.
  38. Van Der Have, T, Boomsma, J J, and Menken, S B J. 1988. Sex investment ratios and relatedness in the monogynous ant Lasius niger(L.). Evolution, 42, 160–170.
  39. Varvio-Aho, S, and Pamilo, P. 1980. A new buffer system with wide applications. Isozyme Bull, 13, 114.
  40. Ward, P S. 1983. Genetic relatedness and colony organization in a species complex of ponerine ants I. Phenotypic and genotypic composition of colonies. Behav Ecol Sociobiol, 12, 285–299.
  41. Werren, J H, Skinner, S W, and Huger, A M. 1987. Male-killing bacteria in a parasitic wasp. Science, 231, 990–992.
  42. Williams, G C. 1975. Sex and Evolution. Princeton University Press, Princeton.