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SUMMARY

The degree of linkage disequilibrium, D, between two loci can be estimated by
maximum likelihood from the frequency of diploid genotypes in a sample from
a random-mating population. Haploid genotypes can be identified directly in
some species from a sample of chromosomes extracted from the population and
made homozygous, or by test crossing. The maximum likelihood estimators
of D are described, with examples, for both methods, including the cases where
both loci are codominant and one or both are dominant.

The efficiencies of the methods are compared when D = 0; If both loci are
codominant the estimate of D has the same variance,

V() = p(l—p)q(l—q)/N,
from a sample of .N identified diploids as from N identified haploid types,
where p and q are the gene frequencies; therefore the diploid method is more
efficient in practice since less labour is required. With dominance at either
locus V(O) is lower for samples of the same size using the haploid method if the
dominant alleles are at high frequency.

1. INTRODUCTION

Now that it is possible to use starch gel electrophoresis to type the same
individual for several different polymorphic loci, some of which may be
linked, associations between the frequencies of alleles at two or more loci are
being studied. Allard and his group with plants (e.g. Allard, Babbel, Clegg
and Kahier, 1972), several groups with Drosophila (Prakash and Lewontin,
1968, 1971; Kojima, Gillespie and Tobari, 1970; Zouros and Krimbas,
1972; Charlesworth and Charlesworth, 1973; Franklin, 1973) and Webster
(1973) in salamander have found such linkage disequilibrium, although in
the Drosophila cases usually associated with a chromosomal inversion.
Mukai, Mettler and Chigusa (1971) however, did not find any associations
among linked genes in D. melanogaster. Sinnock and Sing (1 972a, b) found
some evidence of disequilibrium among loci in man, but these loci were not
known to be linked. A group in this laboratory (D. A. Briscoe, J. M.
Malpica and A. Robertson) are also doing similar analyses on Drosophila
populations which will be reported subsequently. In view of the number
of these studies being undertaken, whatever their possible contribution to
population genetics, it seems worth while to investigate some of the statistical
problems of estimation of linkage disequilibrium.

The degree of linkage disequilibrium can be estimated directly from the
genotypic frequencies in a sample of individuals taken from the population.
The coupling and repulsion heterozygotes can not normally be distinguished,
however, and if either locus is dominant (which for electrophoretic variants
usually implies the existence of null alleles) other classes are also confounded.
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An alternative approach which is only applicable to Drosophila is the iso-
lation of single chromosomes from natural populations against crossover-
suppressor stocks. These single chromosomes may thus be made homozygous
before establishing their allelic content (e.g. Kojima et al., 1970; Mukai et al.,
1971). An equivalent procedure is to test cross individuals against a
marker stock. The technique of chromosome isolation, in particular,
involves much more labour per observation, i.e. a diploid or a haploid
(chromosome) individual identified, and we may ask whether this labour is
justified in terms of improved accuracy of estimation of the disequilibrium.
This question was raised with me by Dr D. A. Briscoe, and an attempt is
made to provide an answer in this paper by predicting the sampling variance
of estimates of disequilibrium obtained by the alternative methods.

It is recommended that maximum likelihood (ML) estimation be used
in any such analysis of data, for even where numerical solutions are required
these can be obtained easily using relevant computer programs. (A
program specifically for handling the analysis of designs discussed in this
paper is available from the author.) Whilst the main results of this paper
are predictions of sampling variances, it has been extended to include
methods of estimation, together with examples to help the experimentalist.
For the case of two codominant loci an ML procedure has been given by
Bennett (1965), but an alternative method is presented here; and the ML
solution for two dominant loci has been given by Turner (1968) and Cavalli-
Sforza and Bodmer (1971) but is repeated for completeness.

2. ANALYSIS

The population is assumed to be random mating and to be in Hardy-
Weinberg equilibrium at each locus. At the first locus there are two
alleles, A and a, with frequencies p and 1 —p, and at the second locus two
alleles, B and b, with frequencies q and I — q. The frequencies of the
chromosome types AB, Ab, aB and ab aref1j,f12,f21 andf22 respectively, and
the linkage disequilibrium, D, is given by

D=f11f22—f12f21 =f11—pq.
The frequencies are summarised in table 1 (a). We shall alternate between
use of the (fe) and (p, q, D) to define the model, according to which gives the
more condensed form of results, and utilise the property that the same trans-
formation applied to the ML estimators (j'1) gives the ML estimators
(, , ), and vice versa (e.g. Elandt-Johnson, 1971, p. 298).

We consider three models in which diploid individuals are identified:
both A and B codominant (where the ML estimation procedure is outlined
more fully), A codominant and B dominant, and then both A and B dominant.
Finally we consider the case where haploids are identified, either by isolation
of chromosomes or by appropriate test crossing. In all cases the numbers of
each type identified are assumed to be multinomially distributed.

(i) Diploid identjfication: both A and B to dominant

When all three genotypes can be identified at both loci, but the coupling
and repulsion heterozygotes can not be separated, there are nine phenotypic
classes. The expected frequencies where y =fj, for example), the
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TABLE 1

Expected frequencies and observed numbers for d(fferent genetic models

(a) Definitions of frequencies; chromosome identification
Chromosome AR Ab aB ab Total

Expected f11 f12 f51 f22
frequency pq+D p(1 —q) —D (1—p)q—D (1 —p)(1 —q)+D

Observed n11 n12 n n25 n
numbers

(b) A codominant, B codaminant: expected frequencies (yb)
BB Rb bb

AA f1 2fj13
Aa 2f11f1 2f11f3+2f13f31 2f13f23
aa f 2f21f33

(c) A codominant, B codominant: observed numbers

BB B!, bb Total
AA isA1 X12 N13 .W•
Aa N21 N22 N33 js4
aa .141 ]4 N N3.
Total x1 N.2 N.3 x
Derived totals

X = 2N11+N13+Js61; X15 = 2X13+N13+3s63
241 = 2X31+N31+Js61; X22 = 2N33+N23+X33

(d) A codominant, B dominant: observed numbers (expected frequencies are obtained by summing
columns 1 and 2 in (b))

B- bb Total
AA N11 N13 N1.
Aa N21 N33 N3.
aa N31 .W33 N,.
Total N.1 N.3 N

(e) A dominant, B dominant: observed numbers (expected frequencies are obtained by summing
rows 1 and 2 and columns I and 2 in (b))

B— bb Total
A- is!11 N13 N1.
aa 241 N23 N3.
Total x.1 N.2 N

observed numbers and some functions of them (X5) are given in
table 1 (b) and (c). The logarithm of the likelihood (L) is

3
log L = log + constant

i,j = 1

= X1 logf+N22 log (f11f22+f12f21)+constant, (1)

which has been given by Bennett (1965). The parameter estimates can be
obtained by differentiating log L, and finding the zero values by trial and
error, as Bennett (1965) showed. Alternatively we can use the "gene-
counting" method of Ceppellini, Siniscalco and Smith (1955) and described
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by Elandt-Johnson (1971, p. 400), which gives identical solutions to maxi-
mum likelihood. Since it is applied in this paper to chromosomes we shall
call it the "chromosome counting" method, and it appears to have been
used by Webster (1973). Each phenotypic class is apportioned into the
expected number of each chromosome type; thus an AABb individual
comprises one AB and one Ab chromosome, while AaBb individuals have an
expected proportion off1J2/(f11J2+f12j1) AB and ab chromosomes and
fJl/(fl1f22+fl2J1) Ab and aB chromosomes. The equations are then

= [X+N223'11f22/(f11f22+J12f21)]/2N,
(2)

= [X+N22f12f21/(f11f22+f12J21)]/2N, i j.
By summing equations (2) we find that the gene frequency estimates are
given by the marginal frequencies:

P =fll+112 = (X11+X12+N22)/2N = (N1 ++N2)/N,
(3)

4=111+121 = (N1++N2)/N;

but D has no explicit solution. A suitable method is to replace 112 by
—Jj,f by —J andf22 by 1 —— +J in the equation (2) forfj1, to give

a single equation

=

x (4—J11)]}/2N. (4)

The only unknown in (4) isfj1, and it is solved by choosing a value ofj1 for
the right-hand side, evaluating the expression and using this as the next
trial value off11. The iterative process is continued until stability is reached
and D obtained asf11 A suitable starting value for iteration is

Ill = —(X11—X12—X21+X22)-i-—(1---)(1—4), (5)

which is obtained by assuming that the genotype frequency of the double
heterozygote class is exactly that computed from the other classes.

The sampling variances of the ML estimators can be obtained for large
samples in the usual way from the inverse of the matrix of expected values of
the log likelihood. Let t1 = p, t2 = q and t3 = D. From (1)

r 3 / 2og — V ?T i 'Y 2— L •ii t — jj Yj
t13t1 ,ji \ ttJtj 3t1 ôt1jj

We have E(N,3) = and note that 82yJ/5tktI = 0, since Yjj = 1

(Elandt-Johnson, 1971, p. 317). Letting

= —E(2 log L/3t1clt)
we obtain

mkl=N --/yU. (6),j1 atk t1
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The variance-covariance matrix of the estimates is given by M', where M
is a 3 x 3 matrix with elements mkj. The necessary derivatives, ayJ/at, are
given in table 2, and these can be used in (6).

TABLE 2

Derivatives of genotypic frequencies (yjj) for diploid model with both loci codominant
with respect to the frequency of A(p), B(q) and D

BB Bb bb

ytjIP
AA qf1j qf12+ (1— q)f11 (1—
Aa q(f,—f11) q(f,,—f12) + (1— q) (f21—f11) (1— q) (f,2—f12)
aa —qf,1 —qf22—(1—q)f,j —(1—q)f,,

8yjjJaq
AA pf11 P(f—f11) —Pf12
Aa pf21+ (1 —p)f11 p(f,2—f,,) + (1 —p) (f12—f,,) —pf,2— (1 —p)f12
aa (1 —p)f21 (1 —p)(f22—f,,) — (1—p)f2,

AA f1,—f11 —f12
Aa f21—f11 f11—f12---f,1+f,2 f12f22
aa —f, f,1—f,2

The above methdd for finding the variances and covariances provides a
simple way of computing V(D) in this codominant-codominant model, and
is useful in the other models for parameters which do not have explicit ML
estimators. However, for those that do, a direct approach can be used; for
example is given by (3) and is binomially distributed. We obtain

VQ5) = p(l—p)/2N, V() = q(1 —q)/2N (7)

coy (, ) = D/2N, coy (j3, D) = (1 —2p)D/2N, coy (t, b) = (1 —2q)D/2N.

The variances in (7) are, of course, the same as for a single gene situation.
When D = 0, we see that the covariances are zero, and also find that the
equation (6) simplifies, to give

V(b) = p(1—p)q(1—q)/N. (8)

More generally, for D 0 it is clear that V(b) can not be expressed as a
linear function of the terms obtained subsequently in (22) for the haploid
model.

In any experiment only estimates of p. q and D are available, and these
have to be used instead of the parameters in table 2, (6) and (7). Alterna-
tively the second derivatives of the log likelihood can be obtained numerically
and used as the elements of M.

Using the large sample assumption of normality, a test for D = 0 can be
made using (8). This is equivalent to the likelihood ratio test for, under the
null hypothesis that D = 0, the quantity given by

k = —2 log {L(p, q, D)/L(p, q)] (9)

has the chi-square distribution asymptotically with 1 d.f., where L(p, q, D),
33/2—P 2
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L(p, q) are the likelihoods (I) obtained by fitting only the specified para-
meters. It can be shown that, ignoring terms of order D3 or higher,

k = Nb2/5(1—j3)(1—)
= N2, (10)

where r2 is the squared correlation of gene frequencies. The chi-square test
proposed by Sinnock and Sing (1 972b) is equivalent except theirs is obtained
by using goodness-of-fit rather than likelihood arguments.

(ii) Diploid identification: A codominant, B dominant

There are now six phenotypes, with the observed numbers shown in
table 1 (d) and expected frequencies obtained by summing the appropriate
frequencies for B codominant in table 1 (b) (i.e. columns 1 and 2). The
likelihood equation can be written down using these frequencies but, for
solving the equation, we again adopt the chromosome counting method.
The equations are (ignoring "hats" on estimates)

111 = 112N11(f?1+f11f12) + N21(f11f21+f11f22)
1 (ha)

2N L f11+2f11f12 f11f21+f11f22+f12f211

— 1 [2N11f11f12 2N N21f12f21 N libJ12. TtTI :2 ' : 12 : 4• 22
LJII ''J11J12 J11JZ1 mJ11J221J12J21

= i[ N21(f11f21+f12f21) + 2N31(f1+f21f22)1 (tic)21
2N[f11f21+f11f22-1-f12f21 f1+2f21f22 ]

= 1 [ N21f11f22 +N + 2N31f21f22 +2N 1 (lid)22
2N[f11f21+f11f22+f12f21 22 f1+2f21f22 32j

Summing equations (11 a) and (11 b), we find that for the codominant gene,
A, the estimated frequency, , is given by the marginal frequencies,

= (N1 +N2)/N. (12)

But we notice that the sum of (11 a) and (11 c) does not simplify in this way,
so we obtain the rather surprising result that the ML estimator of gene
frequency of a dominant gene suspected of being in disequilibrium with a
codominant gene is not given by the marginal frequencies. Similarly, D is
not obtained explicitly, so we need to retain two of the equations (11), for
example (11 a) and (11 c) and express 112 and 122 in terms of , and121.
These equations are iterated to obtain a solution for j and 121 and conse-
quently and D. Since is unlikely to depart far from the estimate given
by the marginal frequencies, a suitable starting value for the iterations is
obtained using 1 — = (X. 2/Jv) and 122 = (Jv32/X) .

The sampling variances of all of the estimators can be found as before,
using (6), but with the subscriptj taking only two values. The appropriate
frequencies y and derivatives Jjj/tk are given by summing the first two
columns in tables 1 (b) and 2, respectively. Explicit formulae for the variances
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or covariances involving the codominant gene A can be given, however.
These are the same as when B is codominant also, i.e.

V(p) = p(1—p)/2N (13)

coy (ft, e) = D/2N, coy (j3, b) = (1—2p)D/2N.
When D = 0, all covariances are zero and

V() = q(2—q)/4N, V(ñ) = p(1—p)q(2-—q)/2N; (14)
and we note that V(4) is that for a single dominant gene.

The likelihood ratio criterion (9) for testing D = 0 is, approximately,

k = 2Nb2/[j3(1—)(2—)]. (15)

(iii) Diploid identification: both A and B dominant

There are only four phenotypic classes (table 1 (e)), so the ML estimators
are the obvious ones, namely

= 1—(N2/N), = 1—(N2/N) and f22 = (N22/N) (16)
giving

13 = (N22/N)—(N2N2)4/N (17)

(Turner, 1968; Cavalli-Sforza and Bodmer, 1971).
The sampling variances of the estimators can be found using (6), but

after summing the first two rows and columns in tables 1 (b) and 2. The
only explicit formulae not involving a large number of terms are

V() = p(2—p)/4N, V(4) = q(2—q)/4N (18)
and the estimators are correlated. When D = 0,, 4 and are uncorrelated
and

V(b) = p(2—p)q(2—q)/4N. (19)
The likelihood ratio criterion (9) is, approximately,

k = 4Nb2/[J3(2—fi)(2---)], (20)
which differs from that given by Cavalli-Sforza and Bodmer (1971, p. 285)
in that a term in D has been ignored.

(iv) Haploid identification
A sample of n chromosomes is taken from the population and identified

by an appropriate method (e.g. by test crossing or making an isogenic line)
with the observed numbers shown in table 1 (a). The observed chromosome
frequencies are their ML estimators, i.e. Jj.j = ne/n, SO

p= n1/n, = n1/n, 13 =(n11n22—n12n21)/n2. (21)
The sampling variances of the estimators can be found directly from the
multinomial distribution, with that for V(D) being obtained from formulae
given by Hill and Robertson (1968):

V(fi) = p(l—p)/n, V(c) = q(1—q)/n

V(D) = {p(l —p)q(1—q)+ (1— 2p)(l — 2q)D—D2]fn (22)

coy (, 4) = D/n, coy (, 13) = (1—2p)D/n, coy (4, 13) = (1 —2q)D/n
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We note that, when D = 0, the estimates are uncorrelated and

V(b) = p(1—p)q(1—q)/n. (23)

The likelihood ratio criterion (9) is, approximately,

k = n12

and k is the usual chi-square statistic in a 2 x 2 contingency table (Hill and
Robertson, 1968).

3. EXAMPLE

Suitable data for diploid models have been given by Cleghorn (1960)
on the M/W, S/s blood systems in man, and these were also used by Bennett
(1965). The data are given in table 3 (a), and we note that both loci are
codominant.

TABLE 3(a)

Cleghorn's data on numbers observed for the M/N and S/s loci and the
designatjon of the alleles in this paper

Genotype SS Ss ss
Designation BB Bb bb Total

MM AA 57 140 101 298
MN Aa 39 224 226 489
NN aa 3 54 156 213

Total 99 418 483 1000

= 293 K,, = 568 X2, = 99 X2, = 592

Data in 3(a) reallocated:

3(b) B dominant 3(c) A and B dominant

B— bb Total B— bb Total
AA 197 101 298 A— 460 327 787
Aa 263 226 489 aa 57 156 213
aa 57 156 213 Total 517 483 1000

Total 517 483 1000

(i) A and B codominant

From (3), = 05425 and 03080, and with these values inserted
into (4) we obtain the chromosome counting formula for iteration

=
The starting value (5) isjj = 02379l. After 11 iterations successive values
off1j differed by less than 10-8, giving a solution off11 = 02370976; and
from that b = 00700076, agreeing with Bennett's value of D = 00700l.
The estimates, together with their standard errors and correlations (computed
by replacing the parameter values by their estimates in (6), or in (7) where
possible), are summarised in table 4. More figures than are significant are
shown for comparison with estimates from the other models. We see in
table 4 that D differs significantly (P < 000l) from zero, using the likelihood
ratio (9) or the approximation to it (10). As Bennett (1965) showed with
this data, there is a good fit to Hardy-Weinberg equilibrium: the residual
chi-square (from likelihood ratio test) after fitting p, q and D is 3•3 with
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5 d.f.). Bennett (1965) gave the standard error of tas 000596; this value
differs slightly from that in table 4, largely because Bennett ignored co-
variances between the estimators: he assumed V(D) = m, which he
computed by differentiating the likelihood directly.

Trn.a 4
Results of analysis of data of table 3

Loci codominant A, B A —
dominant — B A, B

Estimates p 054250 O54250 053848
q 030800 030474 030502
D 00700l 007O48 O•07422

Standard errors p 00lll4 001114 0014O3
q 001032 00ll35 001137
D O0O6l7 O0O7l2 000763

Correlations p, q 03044 02788 02596
p, D —00433 —00378 —0ll70
q,D 02111 0l656 0l725

—2 log [L(p, q, D)/L(p, q)] l0l9 79.7 693
k (equation 20) 926 775 542

(ii) A codominant, B dominant

We assume BB and Bb can not be distinguished in the data in table 3 (a),
so by summing the first and second columns we obtain table 3 (b). For gene
A, = O5425 as before (12). Using (ila) and (lic) and writing
.112 = Jii122 = I ——h we have

— 0106872 0•O6O161f — 0026077 0.071338f21—

1.O850—f
+

K ' J21 —
09150—f2j

+
K

where K = 04575 +05425 121 J1jJ21. Suitable starting values for the
iterations are q = 1 —/(483/l000) = 03050 from the marginal totals and

.122 = /(l56/1000) = 03950, equivalent to = 00770, 02425,
= 00625. After 22 iterations bothfj1 andf21 changed by less than 10—8

in successive iterations, giving, as final values 4 = 030474 and D = 007048
(table 4). Notice that the ML estimate of q departs slightly from that com-
puted from marginal frequencies. The data still show a highly significant
departure from linkage equilibrium.

(iii) Both A and B dominant
Further reduction of table 3 (a) gives the necessary data for the example

in table 3 (c). The ML estimates from (16) and (17) and their sampling
variances are listed in table 4. The departure from linkage equilibrium is
shown to be significant.

Since the computations are so simple, no example for the chromosomal
analysis will be given.

4. Discussior AND CONCLUSIONS

The main object of this analysis was to compare the relative efficiencies
of the alternative methods of estimating D. Formally, we measure efficiency
as E = [V(.b) from n haploids]/[V(D) from J'i diploids], so that E> I if
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the diploid method gives a lower variance for the same number of observa-
tions, and E < 1 if the haploid method gives a lower variance. We recall
that a single observation is either the identification of one diploid individual,
or the identification of the allelic content of one chromosome, which may be
one observation on an isogenic line or one test cross progeny.

The case of most interest is where the population is near linkage equilib-
rium, or we wish to test the null hypothesis that D = 0, and fortunately this
has given us the simplest solutions. The results can be summarised as
follows:

Haploid identification:

V(b) = p(1—p)q(1—q)/n = nV(fi)V().
Diploid identification:

V(b) = 4NV()V(c)
and the efficiencies for the different models are related to the accuracy of
gene frequency estimation:

A, B codominant E 1
A codominant, B dominant E (1 —q)/(l —q)
A, B dominant E = [(1 —p)/(l —p)][l —q)/(l —q)]
If both loci are codominant, typical for biochemical variants, we see that

L has the same variance when estimated from diploids directly as from a
sample of the same size of extracted chromosomes or test crosses, which
requires much more labour. Some examples have also been computed for
D 0 for the double codominant case, with p.q = 01, 025, 05 and q<p.
It turns out that E 2, only approaching E = 2 with p = q = 05 and
D-÷ 025, but E> 1 over most combinations ofp, q and D. The only cases
with E < 1 are listed below, together with the lowest values attained:

(p, q) = (0.1, 0.1), —00l0<D<O, minimumE = 0.74
(p, q)

= (0.25, 01), —00l8<D<0, minimumE = 09l
(p, q) = (0.25, 0.25), —003l <D<0, minimum E = 097.

Therefore, even when D 0, the diploid method is likely to give better
estimates, D, for a given input of labour.

Returning to the case of D = 0 and considering dominant genes, we see
that the diploid and haploid models have similar efficiencies if the dominant
genes are at low frequency; but if they are at high frequency, the chromo-
some or test cross method may be worth while, just as it would be if we were
interested in estimating gene frequencies.

This analysis has been restricted to two loci, but some preliminary studies
have been carried out with more. It appears that, if all loci are codominant,
the efficiency of the diploid relative to haploid method of estimating the dis-
equilibrium between c loci, under the null hypothesis of equilibrium, is equal
to 2 2c This equals 1 for 2 loci, 4 for 3 loci, for 4 loci, and so on. Thus for
three loci the haploid method would be justified only if it required less than
twice the labour, per individual scored, than the diploid method. It is
interesting to note that the diploid method is twice as efficient for estimating
gene frequencies, since two genes are scored per individual, and this efficiency
of 2 is obtained by setting c = 1 in the above formula. In effect we lose half
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the information on D in the two locus diploid cases because we cannot
distinguish between the coupling and repulsion heterozygotes, and a greater
proportion with more loci when there are several multiple heterozygote
classes.
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