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Properties of different selection signature statistics and a
new strategy for combining them

Y Ma1,2,4, X Ding1,4, S Qanbari2, S Weigend3, Q Zhang1 and H Simianer2

Identifying signatures of recent or ongoing selection is of high relevance in livestock population genomics. From a statistical
perspective, determining a proper testing procedure and combining various test statistics is challenging. On the basis of
extensive simulations in this study, we discuss the statistical properties of eight different established selection signature
statistics. In the considered scenario, we show that a reasonable power to detect selection signatures is achieved with high
marker density (41 SNP/kb) as obtained from sequencing, while rather small sample sizes (~15 diploid individuals) appear to
be sufficient. Most selection signature statistics such as composite likelihood ratio and cross population extended haplotype
homozogysity have the highest power when fixation of the selected allele is reached, while integrated haplotype score has the
highest power when selection is ongoing. We suggest a novel strategy, called de-correlated composite of multiple signals (DCMS)
to combine different statistics for detecting selection signatures while accounting for the correlation between the different
selection signature statistics. When examined with simulated data, DCMS consistently has a higher power than most of the
single statistics and shows a reliable positional resolution. We illustrate the new statistic to the established selective sweep
around the lactase gene in human HapMap data providing further evidence of the reliability of this new statistic. Then, we apply
it to scan selection signatures in two chicken samples with diverse skin color. Our analysis suggests that a set of well-known
genes such as BCO2, MC1R, ASIP and TYR were involved in the divergent selection for this trait.
Heredity (2015) 115, 426–436; doi:10.1038/hdy.2015.42; published online 20 May 2015

INTRODUCTION

In the classical view of natural selection, beneficial mutations that can
improve the chance of individuals to survive and reproduce tend to
become more frequent in populations over time (Darwin and Beer
1859). However, the process of adaptive evolution has been largely
beyond our understanding, especially so in domestic animals. The
process of evolution contains a series of unknown demographic
events, including population bottleneck, admixture of populations,
migration, inbreeding and genetic drift, which further increase the
difficulty of detecting selection signatures. If successful, the detection
of selection signatures can provide a straightforward insight into the
mechanisms creating diversity across populations and contribute to
mapping the causal mechanisms related to selected traits in the
genome (Andersson and Georges 2004; Oleksyk et al., 2010).
Recently with the advent of high throughput and cost-effective

genotyping techniques, the ability of detecting selection signatures at
the genome level has made a major breakthrough; correspondingly, a
series of statistical tests have been developed to detect directional
selection signatures based on different demographic models or
selection models (Vitti et al., 2013). Theoretically, a novel beneficial
variant that has been under pressure of selection will generate distinct
signatures in the respective region of the genome such as: (i) the allele

frequency spectrum is shifted towards extreme (high or low)
frequencies; (ii) there is an excess of homozygous genotypes, (iii)
long haplotypes exist with high frequency, and (iv) local population
differentiation is extreme. All selection signature statistics that have
been suggested pick up one or a combination of these signatures, for
example, iHS (Voight et al., 2006) is based on the frequency of
extended haplotypes within a population, whereas FST (Wright, 1949)
uses the divergence of allele frequencies among populations. Viewed
from this perspective, statistics and P-values obtained with those
methods should exhibit a certain degree of correlation if they reflect
fully or partly the same underlying pattern caused by selection or if
they are derived from the same basic statistics, such as allele frequency
spectrum. On the other hand, different methods have their own
characteristics, for example, iHS is known to be sensitive in the
ongoing or incomplete selection signatures, whereas XPEHH is best at
revealing the selection signatures close to fixation (Sabeti et al., 2007).
Accordingly, some studies used multiple methods to detect selection
signatures to benefit from advantageous complementarities across
methods in hope of improving the statistical power (Staubach et al.,
2012; Qanbari et al., 2014).
Grossman et al. (2010) have suggested combining various signals

into a composite of signals (termed CMS) mainly to improve the
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resolution of the detected selection signatures. A keystone of this
approach is the ability to simulate data according to calibrated
demographic models using the coalescent approach. For most live-
stock species, the actual demography is largely unknown and, if it was
known, would probably be hardly suited for simulation using a
coalescent approach. Beyond that, the general applicability of coales-
cent theory in livestock genomics was questioned by Woolliams and
Corbin (2012). Driven by the basic concept of the CMS approach,
Utsunomiya et al. (2013) suggested a new combined statistic, termed
meta-SS, merging different genome-wide scan statistics by combining
P-values using a method suggested by Whitlock (2005). It does not
require any forward or backward simulation of demography and thus
no assumptions on the demographic history. Randhawa et al. (2014)
suggested another method termed Composite Selection Signals (CSS)
which unifies the multiple pieces of selection evidence from the rank
distribution of its diverse constituent tests and was successfully applied
to detect selection signatures in cattle and sheep. Both meta-SS and
CSS do not account for the covariance structure of the different single
statistics, though.
In view of the above description, we propose an alternative strategy

to combine the outcomes of several complementary tests that takes the
covariance structure of the different single statistics into account. As a
by-product, we will discuss the properties of the different methods
based on a comprehensive simulation varying the key factors under-
lying the performance of the different tests. We show that in the
simulation, our new method outperforms all single statistics in most of
scenarios and also has higher power than the two alternative
combining strategies in most cases. We then illustrate the novel
combining strategy with an analysis of known selection signatures in
the human and the chicken genome.

MATERIALS AND METHODS

Elementary selection signature statistics used
Eight different elementary selection signature statistics from three categories
were computed for each single nucleotide polymorphism (SNP) position or
window.

Allele frequency spectrum-based methods. As a classical neutrality test, Tajima’s
D compares the difference between the mean pairwise difference and the
number of segregating sites in nucleotide polymorphism data to detect selection
signatures (Tajima, 1989). As extensions of Tajima’s D, Fu and Li’s F* statistic
detects selection signatures through the comparison of the number of singleton
mutations and the mean pairwise difference between sequences (Fu and Li
1993). Similarly, Fu and Li’s D* statistic compares the number of singleton
mutations to the total number of nucleotide variants in a genomic region to
reveal selection signatures (Fu and Li 1993). The three statistics were calculated
for nonoverlapping sliding windows of 50 kb across the simulation data and
later the whole genome in real data.

Different from these three methods, the composite likelihood ratio (CLR) statistic
does not only evaluate the skewness of the frequency spectrum across multiple loci,
but also incorporates information on the recombination rate to distinguish selection
from other demographic events (Nielsen et al., 2005). In this study, the sofware
‘SweepFinder’ (Nielsen et al., 2005) was used to calculate the CLRs.

Haplotype-based methods. As a representative for haplotype-based methods,
the integrated haplotype score (iHS) was calculated for each single SNP (Voight
et al., 2006) using the R package ‘rehh’ (Gautier and Vitalis, 2012). Absolute
values of iHS were averaged into nonoverlapping sliding windows of 50 kb
across the simulation and real data.

The Cross Population Extended Haplotype Homozogysity (XPEHH) statistic
(Sabeti et al., 2007) compares the amount of extended haplotype homozygosity
at each locus contrasting an observed with a reference population. We used the
script XPEHH (Pickrell et al., 2009) available at http://hgdp.uchicago.edu. In
general, a negative XPEHH score suggests that selection happened in the

reference population, whereas selection happened in the observed population.
This statistic has a high power to detect selection signatures with almost or fully
fixed haplotypes and also approximately follows a standard normal distribution
(Sabeti et al., 2007).

Population differentiation-based methods. We calculated Wright’s fixation
index (FST) (Wright, 1949) as a widely used method to test the population
differentiation with values ranging from 0 (homogeneous population) to 1
(complete differentiation). We used the two-step approach to calculate FST—
values proposed by Gianola et al. (2010).

As a further method assessing population differentiation, the cross-
population composite likelihood ratio (XPCLR) statistic was applied
(Chen et al., 2010). In this study, the script XPCLR available through
http://genepath.med.harvard.edu/reich was used. The corresponding para-
meters included: grid size 2 kb, window size 0.5 cm, maximum of SNPs
within a window 200 and correlation level from which the SNPs contribu-
tion to XPCLR result was down weighted 0.25. And then, the XPCLR scores
were averaged into nonoverlapping sliding windows of 50 kb across the
simulation and real data.

It should be noted that the XPEHH method described above is also a
method that is based on population differentiation.

A new combining strategy
When presenting the CMS approach, Grossman et al. (2010) suggested that ‘If
each signature provides distinct information about selective sweeps, combining
the signals should have greater power for localizing the source of selection than
any single test.’, which is an inspiring idea for us to reveal selection signature as
comprehensively as possible. To be specific, the original CMS was developed to
detect selection in each candidate region and an important assumption is that
exactly one selected SNP in each localized region was assumed. Later, Grossman
et al. (2013) modified this original method to scan for potential selection
regions across the genome. The modified CMS did not assume any prior
hypothesis and computed the Bayes factor for each test directly. The composite
of multiple signals is expressed as

CMSGW ¼
Y

tAtests

P vtAbint;kjselected
� �

P vtAbint;kjunselected
� �

Following the concept of the CMS approach (Grossman et al., 2010, 2013),
we tried to promote this method to identify selection signature in domestic
animals. However, coalescent simulations to derive posterior probabilities for
certain values of the test statistics under selection and neutral scenarios are
questionable in farm animal studies (Woolliams and Corbin, 2012) and thus
calculating the posterior probabilities for calculating the Bayes factor in
domestic animals is a challenge. We also note that some of the used
methods reflect similar phenomena caused by selection and some degree of
correlation between the statistics is expected even under the null hypothesis
of no selection. Hence, we suggest a novel statistic called ‘de-correlated
composite of multiple signals’ (DCMS) to combine several statistics while
accounting for the respective correlation. In the novel statistic, we used the
ratio of (1- plt)/ plt in the place of the Bayes factor for each test in CMS for
hypothesis testing directly. plt is the P-value in each position l for each
statistic t. Correspondingly, the ‘de-correlated composite of multiple
signals’ at position l then is calculated as

DCMSl ¼
Xn
t¼1

log 1�plt
plt

� �
Pn

i¼1 ritj j
where rit is the genome-wide correlation coefficient between the test
statistic of the ith and the tth used method. n represents the total number
of used methods.
The weight factor, 1=

Pn
i¼1

ritj j suggested here, ranges from 1/n to 1. Consider a

situation with n= 3 different test statistics. If all of them are uncorrelated
(riaj= 0), the weight factor will be 1 and DCMS will just be the sum of the log
((1- plt)/ plt). If all of them are perfectly correlated (riaj= 1), the weight factor
will be 1/3 and the (1- plt)/ plt will be averaged. If, say, statistics of method 2 and
3 are highly correlated (for example, r2,3= 1), but uncorrelated to method
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1 (r1,2= r1,3= 0) the respective vector of weights will be (1 1/2 1/2), thus
the (1- plt)/ plt obtained with method 2 and 3 will get the same weight as the
(1- plt)/ plt obtained with method 1.

Simulation
We simulated three different scenarios: the neutral case with no selection at all,
a case in which two subpopulations were considered of which one was selected
and the other was not (like divergent selection), and a case in which two
subpopulations were considered and both were selected for the same allele (like
parallel selection). Overall, we expected to match the simulated scenarios to real
scenarios as closely as possible. The program msms (Ewing and Hermisson,
2010) was used to simulate population datasets under a neutral model (Neu,
Neu_1 and Neu_2 after fission) and a single locus selection model (noSel, Sel,
Sel_1 and Sel_2 after fission), respectively. Each simulation scenario represents
a 10Mb genomic fragment with a constant recombination rate (1cM/Mb). In
the selection model, a selected allele was positioned in the center of the
considered fragment (see Supplementary Information).
Table 1 summarizes different parameters applied in each simulated popula-

tions. The neutral population was modeled only with two parameters: the
sample size and marker distance. Then, we defined the ‘reference scenario’ for
the selected populations with the following parameters: the selection coefficient
was s= 0.02, data for analysis were sampled when the frequency of the selected
allele reached a predefined value P= 0.8, selection signature statistics then were
computed for sample size N= 50 gametes in each selected or unselected
subpopulations, and the average marker distance was d= 2.5 kb. Starting from
this reference setting, every parameter was varied over a range of values on a
linear or exponential scale listed in Table 1, while all other parameter/levels
were kept at the reference setting.
For the neutral, the divergent selection and the parallel selection case the

combinations Neu_1 vs Neu_2, Sel vs noSel, and Sel_1 vs Sel_2 were
considered for between-population analysis, respectively. As to the tests without
population comparisons, the Neu scenarios were used to acquire the empirical
distribution and the Sel scenarios were treated as observed population for scan
selection signature.
To calculate the weights in DCMS, the correlation matrix for all elementary

test statistics under the null hypothesis is required. In the simulation, this
correlation matrix was calculated from the data generated under the neutral
model. We found that the pairwise correlations between Tajima’s D, Fu and Li’s
D* and Fu and Li’s F* are all above 0.60 and the correlation between XPCLR
and FST is 0.10. To avoid the influence of the difference in genomic structure
between simulation and real data, we also computed the correlation in real data
removing all loci located at the top 5% quantile in any of the used statistics.
Similarly, the pairwise correlations between Tajima’s D, Fu and Li’s D* and Fu
and Li’s F* are also high and the correlation between XPCLR and FST is 0.23
(0.26) in the chicken data (Table 2).

Identifying potential selection signatures in simulation data
To obtain the empirical distributions of the eight elementary test statistics and
the novel combined statistic, one thousand calculations for each method were
run in which case neutral was assumed in the corresponding populations, and
the maximum observed value of each test statistic in each run was stored. The
value cutting off the upper 5 percent quantile of each statistic was used as an
empirical significance threshold value that corresponded to a 5% false positive
rate (FPR) in simulations.

To assess the power of eight elementary test statistics and the novel
combined statistic, one thousand replicates were simulated under the con-
sidered selection scenario. A selection signature was assumed to be detected, if
at least one SNP within a 500 kb window around the selected locus exceeded
the empirical significance threshold. This window size was determined by the
extent of linkage disequilibrium in the simulated dataset (Supplementary Figure
S1). The percentage of detected signatures among all replicates is reported as
empirical power. To visualize the control of FPR, half of the neutral replicates
were chosen to derive the empirical distribution as described above and the
remaining replicates were used to compute the FPR in accordance with the
process of power calculation. In addition, the signatures outside the 500 kb
window around the selected locus were also used to assess the control of FPR
and a random 500 kb window located in either side of selection scenario was
chosen to scan the unexpected selection signatures in each replicate. The
percentage of unexpected signatures among all replicates was defined as the
FPR of selection scenario.

Analysis of human HapMap data
In addition to the simulation results, we examined the potential of the different
approaches in human data at the well-known locus for the lactase enzyme LCT,
positioned at 135.78–135.83Mb on chromosome 2. For this, a total of 116 582
SNPs covering the whole chromosome 2 in ‘Maasai in Kinyawa, Kenya’ (MKK)
population (180 individuals), ‘Utah residents with Northern and Western
European ancestry from the CEPH collection’ (CEU) population (165
individuals) and ‘African ancestry in Southwest USA’ (ASW) population (83
individuals) were downloaded from the HapMap FTP server (ftp://ftp.ncbi.nlm.
nih.gov/hapmap/genotypes/2009-01_phaseIII/plink_format/) to validate the
feasibility and effectiveness of the novel combining strategy.
We examined all statistics with a similar windowing strategy as in the

simulation data. The ASW population was selected as the reference population
in between-population analysis. We later derived the P-value of each test from
the normal distribution after normalization. Correspondingly, the DCMS was
calculated in nonoverlapping sliding windows of 50 kb across the whole
chromosome as described above.

Analysis of chicken data
Further to the verification of DCMS on human HapMap data, we applied the
novel combining strategy to scan selection signatures in the chicken genome in
a sample of chickens differing in skin color. Genotypes obtained with the
Affymetrix chicken 600 k Axiom-SNP-array were used for a total of 139 chicken
individuals from seven different breeds, comprising 87 individuals (Araucana,
Italiener, Zwerg-Cochin and Shamo) with yellow skin color and 52 individuals
(Gallus Gallus Spadiceus, Rheinländer and Vorwerkhühner) with white skin
color. In the analysis, the yellow skin population was treated as observed
population and the white one was treated as reference population. This study
was carried out in strict accordance with the German Animal Welfare
regulations. The blood-taking protocol was approved by the Committee of
Animal Welfare at the Institute of Farm Animal Genetics of the Friedriech-
Loeffler-Institut. Blood sampling was also notified to the Lower Saxonian
authorities according to 1 8a para.1 of the German Animal Welfare Act. The
blood takings were registered at the Lower Saxony State Office for Consumer
Protection and Food Safety (Registration Number 33.9-42502-05-10A064).
Quality control of SNP data applied the following criteria: (i) individual call

rate 4 0.95; (ii) SNP call rate 40.99; (iii) SNPs in Hardy–Weinberg
equilibrium in each breed (P410e–6); (iv) SNP minor allele frequency 4
0.01; (v) only autosomal SNPs with known positions were used. After quality
control, we imputed the missing genotypes and inferred haplotypes using
BEAGLE (Browning and Browning, 2009). The final dataset consisted of
392 280 SNPs at 28 chromosomes with an average inter-marker spacing of
2.44 kb. We calculated all eight statistics and DCMS to examine the capability
of novel combining strategy for detecting selection signatures in the chicken
genome as described above.

Functional annotation for chicken
On the basis of the detected selection signatures in the chicken data analysis,
further bioinformatics analyses were carried out to reveal the potential

Table 1 Parameter settings varied in the simulated selection

scenarios

Parameter Range of values

Selection coefficient s 0.005, 0.01, 0.02, 0.04, 0.08

Allele frequency P 0.2, 0.4, 0.6, 0.8, 1.0

Sample size N 10, 30, 50, 70, 90

Marker distance d 0.1, 0.5, 2.5, 12.5, 62.5 kb

Reference values are underlined.
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biological function of genes located in putatively selected regions. This analysis
involved all candidate genes/ESTs in a bracket of 250 k around the outlier
signals. The program BioMart (http://www.biomart.org/, Kasprzyk, 2011) was
used to search the candidate genes located in selected regions. In addition, an
enrichment analysis including cellular component, molecular function, bio-
logical process and the KEGG pathway, was performed for the list of genes
located in putatively selected regions using DAVID 6.7 (http://david.abcc.
ncifcrf.gov/).

RESULTS AND DISCUSSION

Simulation scenarios
Figure 1 summarizes the power of applied selection signature statistics
along with the novel combining strategies in different scenarios
varying (i) marker interval distance; (ii) frequency of the selected
allele; (iii) sample size; (iv) selection coefficient. Considering the
results obtained with the eight elementary selection signature statistics
in the differential selection scenario first, we find that there is a clear
separation between the considered statistics regarding the power in the
reference scenario. Three methods (XPEHH, |iHS| and CLR) have a
power 470%, while for all other methods the power is o20%.
Correspondingly, the FPR is approximately controlled at the targeted
level (5%) for all methods (Supplementary Figure S2). Furthermore,
the FPR of selection scenario can also reflect the control of FPR in this
study, even though the neutral loci located at either end of a fragment
may be influenced by the selected locus owing to linkage disequili-
brium in selection scenario (Supplementary Figure S3).
Figure 1a shows that the power of all methods increased with the

decrease of marker interval. With a marker interval d= 62.5 kb, which
is approximately the resolution obtained when genotyping mammals
with 50 k SNP arrays, all methods have low power o10% (Figure 1a).
Higher resolutions (note that in Figure 1a the scale of the x axis is
exponential) quickly lead to better results for the three ‘high power
methods’ (XPEHH, |iHS| and CLR), but in general, all methods show
an improved performance with resolution d= 0.1 kb, which is
approximately what is obtained in sequence data. These results suggest
that a denser panel of SNPs, as is assessed by re-sequencing data, is
essential for detecting selection signatures. It should be noted that the
power of Tajima’s D and FST comes close to the three top methods
with the highest marker density considered (Figure 1a). The low
reproducibility of the results reported in some of the first genome-
wide selection studies in farm animal data (Qanbari and Simianer
2014) based on medium density SNP arrays (~50 k SNPs) may be due
to the lack of power demonstrated here. To further investigate the low
power of all methods in the scenario with a marker interval 62.5 kb, a

special empirical significance threshold value was separately defined as
1 percent of the rank of all scores in all selection replicates for each
method, which is a widely used ‘outlier’ approach in real data analysis.
Correspondingly, we found that although the power of each method
was improved and ranged from 11 to 28%, the FPRs were also
increased and ranged from 40 to 93% (Supplementary Table S1). This
result suggested that we can detect selection signature using high
marker interval data, but at the expense of generating more
serious FPR.
Regarding the frequency of the selected allele (Figure 1b), |iHS|

appears to be the most powerful elementary selection signature
statistic to detect ongoing selection processes when the target allele
has an intermediate frequency (0.4 o P o 0.8). However, at fixation
(P= 1), |iHS| has limited power (~40%), while XPEHH and CLR have
98% power. The results are generally consistent with those of Sabeti
et al. (2007). Furthermore, our results suggest that most of used
methods, such as Tajima’s D and CLR, are most sensitive in detecting
fixed selection signatures (Figure 1b).
Regarding the impact of sample size (Figure 1c), it appears that a

rather limited value (N= 30 gametes, equivalent to 15 diploid
individuals) is sufficient to reach reasonable power with the three
‘high power methods’. In contrast, the performance of the other
statistics does not benefit from increased sample size (at least within
the considered and rather limited range). It should be noted that
nowadays in many farm animal application, much larger samples
(thousands of gametes) are available (Utsunomiya et al., 2013),
whereas the present study cannot provide any insight into the power
of the considered methods in such a setting. However, the range of
sample sizes discussed here reflects the amount of data usually
available in whole genome resequencing studies in farm animals
providing the most informative marker density (see Figure 1a).
In Figure 1d it is shown that the power of XPEHH and CLR

monotonically increases with an exponentially increasing selection
coefficient, while |iHS| has highest power with an intermediate
(s= 0.02) selection coefficient in this research, but the power erodes
both with stronger and weaker selection. Most of the other statistics
show a slight increase of power with growing selection coefficient, but
overall, the power of those statistics also stays at a low level. In general,
it is difficult to judge which of the simulated selection coefficients
reflects selection intensities of practical relevance in livestock popula-
tions, because a wide range of selection intensities is applied. Although
selection for some of the main production traits is very intense,
leading to up to 1 percent improvement through genetic progress per

Table 2 The absolute values of correlation coefficient of the eight statistical methods were under the null hypothesis (upper triangular) and

chicken data (lower triangular), respectively

XPEHH XPCLR |iHS| CLR Tajima D FuLi D FuLi F FST

XPEHH 0.04 0.03 0.00 0.05 0.03 0.04 0.05

XPCLR 0.03 (0.03) 0.01 0.00 0.01 0.01 0.01 0.10

|iHS| 0.13 (0.08) 0.01 (0.02) 0.02 0.05 0.07 0.04 0.01

CLR 0.03 (0.02) 0.00 (0.01) 0.01 (0.02) 0.03 0.03 0.03 0.00

Tajima D 0.16 (0.13) 0.05 (0.05) 0.18 (0.16) 0.17 (0.19) 0.61 0.75 0.02

FuLi D 0.03 (0.01) 0.03 (0.02) 0.17 (0.13) 0.12 (0.10) 0.07 (0.18) 0.97 0.01

FuLi F 0.11 (0.09) 0.01 (0.02) 0.04 (0.03) 0.20 (0.20) 0.82 (0.80) 0.63 (0.73) 0.01

FST 0.03 (0.03) 0.23 (0.26) 0.05 (0.07) 0.01 (0.02) 0.02 (0.03) 0.07 (0.04) 0.03 (0.01)

Abbreviations: CLR, composite likelihood ratio; iHS, integrated haplotype score; XPCLR, cross-population composite likelihood ratio; XPEHH, cross population extended haplotype homozogysity.
Note: the correlation coefficients in lower triangular were calculated using those statistic which deleted all loci located at the top 5% quantile in any of the used statistics. Correspondingly, the
scores out and in bracket represent the correlation coefficients in yellow skin population and white skin population, respectively. The absolute values of correlation coefficient of the eight statistical
methods in human population were displayed in Supplementary Table S6.
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year (Hill, 2010), selection for some functional traits, such as fertility
or disease resistance, is weak, but has operated over long periods, even
as ‘natural selection’ prior to the actual domestication event.
For all considered scenarios, the XPCLR test displayed a weak

power in comparison with the other used methods, including
population differentiation-based methods and frequency spectrum-
based methods (Figure 1). We speculate that this unexpected
performance may be caused by the following reasons: (i) the divergent
selection considered here is weaker than the completely divergent
selection, in which both alleles were separately selected in different
directions after fission, resulting in fixation of alternative alleles
in the divergently selected lines. (ii) The XPCLR test is so sensitive
that it tends to show high values in many positions, preventing the
derivation of a suitable empirical significant threshold. An example
can be seen in Figure 2, where XPCLR produces signals in the
selected position, but almost equally strong signals in other positions
as well.
Very similar results are obtained in the parallel selection scenario

when within-population methods were performed to detect selection
signature in the scenarios of Sel_1 and Sel_2, respectively (Figure 1,
Supplementary Figure S4). However, the two between-population
methods FST and XPEHH have little (XPEHH) or no (FST) power in
this case (Supplementary Figure S4). The results are consistent with

those reported by Voight et al. (2006): The loci with high within-
population method score in one population, but low in another
population are likely to have a high between-population method score,
which is similar with the scenarios of Sel_1 vs Neu_1 in this study. On
the contrary, the extreme within-population method scores in both
populations will contribute to the low between-population methods
scores, which correspond to the results in the parallel selection
scenario (Sel_1 as observed population, Sel_2 as reference population).
This phenomenon is demonstrated in Figure 3, where results for two
replicates (Neu_1 vs Sel_1, and Sel_1 vs Sel_2) of the simulated
selection scheme under reference assumptions are depicted. Note that
the loss power of those between-population methods only has a
little effect on the novel combining strategy (Figure 3, Supplementary
Figure S4).
Regarding the novel combining strategy, it is observed that almost

all considered scenarios DCMS has highest power as the locally most
powerful single test (Figure 1, Supplementary Figure S4). While the
empirical power of DCMS is 450% across the whole range of sample
sizes and selection coefficients considered, it is markedly reduced for
marker spacings 412.5 kb and allele frequencies o0.6. However, it
should be noted that DCMS even has high power (455%) in cases
where none of the elementary statistics has a power 438% (for
example, with selection coefficient 0.005 both in the divergent

Figure 1 Power of eight different selection signature test statistics and the novel combining strategy when varying four different parameters: (a) Marker
interval distance; (b) frequency of the selected allele; (c) sample size; (d) selection coefficient. The selected scenarios in simulation data were treated as
observed population in all methods and the neutral (or no selection) scenarios was treated as reference population when the between-population was
performed.
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selection case). Averaged across all scenarios, the empirical power of
DCMS is 3.5 percent higher compared with the power of the
respective best elementary selection signature statistic. While we see
a considerable dependency even of the high power elementary
statistics on the scenario (for example, iHS losing power towards
fixation and high selection coefficients, and CLR and XPEHH losing
power with low to intermediate allele frequencies), DCMS is more
robust in that it combines the strengths of all considered elementary
statistics.
A further aspect that deserves consideration is the positional

resolution of the selection signature statistic. Figure 4 shows the
power of the eight statistics in a scenario with maximum marker
density (d= 0.1 kb) reported for intervals of 50 kb. It becomes evident
that for most statistics, the highest power is concentrated around the
selected position, while especially for XPEHH and |iHS|, the region of

highest power is quite broad, indicating that the positional resolution
is limited. Note that the |iHS| statistic was examined up to a final
frequency of the selected allele at P= 0.8, because under fixation
(P= 1), this statistic has a massive loss of power (cf. Figure 1b).
Further analysis suggests that the resolutions of the methods based on
frequency spectrum are better than the methods based on haplotype
across the eight elementary statistics in most scenarios. Among the
three ‘high power statistics’, CLR has the best resolution. The spatial
resolution of DCMS is comparable with it and is even better in some
scenarios (Supplementary Table S2). In spite of this, we consider the
power of a method to be more important than its positional
resolution, because the successful detection of a region carrying a
selection signature is the primary task of selection signature analysis.
On the left margin of Figure 4, the clustering of the eight used
elementary statistics reflecting the correlation structure is shown.

Figure 2 Selection signature detected by DCMS in (a) Chromosome 2 in human HapMap data in the analysis of the CEU population vs the ASW population,
(b) Chromosome 24 in the comparison of yellow skin vs white skin populations. The y axis reflects the − log (P-values). The red dashed line in (a) marks the
location of the LCT gene in the human genome, and the red dashed line in (b) marks the location of the BCO2 gene in the chicken genome. The deep-
colored symbols represent the P-value of statistical scores for each statistic less than 1%.
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Comparing DCMS with other combining strategies
In a further step, we compared DCMS strategy to two previously
reported combining methods: CSS (Randhawa et al., 2014) and meta-
SS (Utsunomiya et al., 2013). As shown in Figure 5, the power of
DCMS is higher than any of them in most scenarios in our simulation
data, with the exception of the largest interval distance d= 62.5 kb and
the smallest allele frequency P= 0.2 considered, in which meta-SS and
CSS has some power whereas the competing methods have not. Across
all scenarios considered, DCMS, on average, has 21.32 (21.82) percent
more power than meta-SS (CSS). As described above, meta-SS and

CSS are based on the P-values and the test statistics of the elementary
tests, respectively. It should be noted that some of the underlying
assumptions of DCMS and meta-SS using P-values of the elementary
statistics are hardly met, as the P-values of some of the single tests are
not P-values in the classical statistical sense, but reflect quantile values
from the empirical distribution of test statistic values under selection.
In the meta-SS approach, Utsunomiya et al. (2013) assumed scan

statistics to be largely uncorrelated, although in their case study
Pearson correlations of Z-transformed P-values partly were in the
range of 0.5. In our case, different statistics are partly highly correlated

Figure 3 Observed values of the eight test statistics and the combining strategy in two replicates of the simulated reference scenario. The red dashed lines
indicate the position of the SNP under selection. In the left column, the statistic was calculated between the selected population and a no selection
population (Sel vs noSel), while in the right column, both populations were under selection (Sel_1 vs Sel_2). The deep colored symbols represent the top 1%
quantile of statistical scores for each statistic.
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as well. We also note that ‘one-sided upper tail P-values’ may increase
the FPR in real data analysis for those methods that can distinguish
selection directions correctly, for example, the positive scores in
XPEHH generally suggests that selection happened in the observed
population, otherwise with negative scores, selection happened in the
reference population. In addition, the uniform penalization for eight
single statistics may decrease the contribution of selection loci with
small P-values in the process of combination. Different from the
methods based on P-values, the CSS method combines the test
statistics directly through obtaining the inverse cumulative distribution
function for a normal distribution after ranking the statistics for each
used method (Randhawa et al., 2014). This method may enlarge or
reduce the true effect of selection for some methods, especially for the
methods with unknown distribution of the test statistic. In compar-
ison with the meta-SS, the novel combining strategy does not only
remove (partly) duplicated information through a weight factor, but
also decreases the influence from uniform penalization, which may be
the key point why the power of DCMS is better than meta-SS. A
potential cause for the limited power of the CSS method may lie in the
fact that information reflected by outstanding signals of an elementary
statistic (or, equivalently, extremely low P-values at this location) is
partly leveled out when using the ranks.
To evaluate the DCMS approach in comparison with the CMS

approach, we used data on the five elementary statistics reported in
Figure 2 of the study by Grossman et al. (2010) around the MATP
gene, a well-characterized region under positive selection in humans.
Totally, the data contain 702 loci and extend approximately 1Mb
genome region on chromosome 5. Correspondingly, the DCMS scores
were calculated in each locus and the distribution of normalized
DCMS without log transformation showed the similar trend as the
results of CMS (Supplementary Figure S5). Note that the selected
location around 51.78CM identified by DCMS is the same as the
location detected by CMS, and the corresponding DCMS score (26.06)
is even a little higher than the CMS score (22.93). It should be noted
that the DCMS strategy yields very similar results as CMS while
bypassing the complex demographic simulation process, which, as was
argued before, might be not applicable in species of unknown or too
complex demography, such as farm animals.

Results obtained with human HapMap data
To further validate the DCMS approach, we applied this novel strategy
to detect the selection signatures on chromosome 2 in human HapMap
data to target the established selection sweep around the lactase gene
LCT. As an established sweep, the selection of the lactase gene was
usually explained as lactose tolerance (Bersaglieri et al., 2004). The
corresponding allele nearly has an allele frequency P= 0.8 among the
population with European descent, and there is evidence of a selection
signature spanning roughly 1Mb (Bersaglieri et al., 2004). As expected,
extreme scores of DCMS around the location of the LCT gene were
observed in this region in CEU population (Figure 2a), whereas the
ASW population did not show any extreme signal (Supplementary
Figure S6A). Although some of the elementary methods also detect the
selection signature in the CEU population correctly, the DCMS provides
the strongest signal (Figure 2a). Correspondingly, the − log(P-value) of
DCMS (11.97) around the location of LCT gene is greater than any of
used statistic, including the highest − log(P-value) of |iHS| (9.46). A very
similar result was also found in MKK population (Supplementary
Figure S6C), pastoral people in Kenya, whose traditional diet of milk is
rich in lactose (Wagh et al., 2012).

Results obtained with chicken data
The novel combining strategy was also applied to scan selection signatures
in two sets of chicken populations with different skin color. In the
chicken genome, a cis-regulatory mutation in BCO2 gene has played a
significant role in the evolution of skin color (Eriksson et al., 2008). This
gene has therefore been treated as a proof of principle displaying that
ZHp could identify selection signatures by Rubin et al., (2010). As an
established sweep, the region around BCO2 gene was also detected as
being under selection in both populations using the novel combining
strategy in this study (Figure 2b and Supplementary Figure S6B).
In general, the classical features of selection signatures should

contain two major elements: a long range haplotype and a high allele
frequency (Sabeti et al., 2002). In this potential selection region, the
mean value of pairwise r2 is 0.604 exceeding the mean value of 0.209
in whole genome as well as the mean value of 0.221 in most selection
regions. At the region of 6.10–6.20Mb, the heterozygosity in yellow
skin population (red) is almost 0 which suggests that the correspond-
ing alleles have been nearly fixed, on the contrary, the divergently
selected haplotype was observed in white skin population (green)
(Supplementary Figure S7C). Correspondingly, the divergent allele
frequency around BCO2 gene in two populations can be observed in
Supplementary Figure S7A and S7B, respectively. A further exploration
suggests that a total of seven SNPs fell into the BCO2 gene in our
research. Note that the corresponding haplotype of ‘CGCCGCG’ with
the frequency of 0.874 was observed in yellow skin population.
However, those SNPs were divided into three different haplotypes in
white skin population.
Through scanning selection signatures in chicken genome, a total of

18 396 windows in each population were combined by the DCMS
approach (Supplementary Table S3). After normalization, the empiri-
cal distributions of those statistical methods approximately follow a
normal distribution with a small skew (Supplementary Figure S8).
Correspondingly, the scores that reached to the significant level
(⩽0.05) were treated as outliers for further analysis. In pooled
populations of yellow skin chickens, 1013 outlier regions were detected
spanning over 50.65Mb of the genome. Similarly, 1013 outlying
windows covering 50.65Mb of the genome were found in white skin
pool (Supplementary Table S4). On basis of candidate selection
signatures identified by combining strategy, the genes close to the
putative outliers were explored using the available annotation of the

Figure 4 Heat map of the empirical power (in per cent) of eight different
selection signature test statistics and the novel combining strategy in 50 kb
intervals. The simulated scenario was s=0.02, N=50, d=0.1 kb and
P=1.0 (for |iHS|, P=0.8). The middle of this graph indicates the position of
the SNP under selection. The clustering of the test statistics is indicated on
the left margin for eight used methods.
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chicken genome (Annotation Release 102). The results of enrichment
analysis did not show any intuitive information on selection. However,
many of genes recognized under selection were observed in our list
(Supplementary Table S5). It is noteworthy that a series of genes
associated with pigmentation were summarized in Table 3, which
should be credited to the experimental populations with different skin
color in this study. Among them, another famous gene, the
melanocortin 1 receptor (MC1R), located between 18.287 and
18.288Mb on GGA11 was also identified under selection in this
research. Traditionally, MC1R is an important candidate gene relevant

to the regulation of coat and feather color in chicken and other
mammals. The complex function of this gene determines which type
of color is produced through gene switching and copy number
variation of MC1R variant alleles and some reports also suggest that
this gene may play a role in the regulation of skin color in chicken
(Guo et al., 2010; Dalziel et al., 2011). In addition to those two well-
known genes, a set of windows with extreme P-value coincide with a
cluster of genes involved in melanogenesis and pigmentation, includ-
ing the dopachrome tautomerase (DCT) gene and the tyrosinase
(TYR) gene located on GGA1, the osteopetrosis associated

Figure 5 Comparison of the novel combing strategy DCMS and alternative combining methods CSS (Randhawa et al., 2014) and meta-SS (Utsunomiya
et al., 2013) when varying four different parameters: (a) Marker interval distance; (b) frequency of the selected allele; (c) sample size; (d) selection
coefficient.

Table 3 A partial list of candidate genes revealed by DCMS analysesa

Chr. Gene b Position (kb)2 P-value Skin color Function/association (Reference)

1 DCT 145325;145275; 0.011;0.037; Y;W; Pathway: Melanogenesis, organism-specific biosystem, Pigmentation (Anno et al., 2010)
1 TYR 187125; 0.017; Y; Melanogenesis (Anno et al., 2010)
3 OSTM1 67325;65875; o0.001;0.047; Y;W; Pigmentation (Anno et al., 2010)
5 OTX2 51375; 0.003; W; The developing retinal pigment epithelium (Nishihara et al., 2012)
11 MC1R 18275;18275; o0.001;0.044; Y;W; The regulation of coat, skin and feather color (http://www.chickencolours.com/Pigment%20holes% 20Paint

%20Silkies.pdf)

12 MITF 15375;15425; 0.008;0.021; Y;W; Regulating the differentiation of pigment cells (Tsukiji et al., 2009)
20 ASIP 1425; o0.001; Y; Pigmentation in skin (yellow) and feather (Nadeau et al., 2008)
20 EDN3 11175; 0.003; Y; Promoting melanoblast proliferation (Dorshorst et al., 2011)
24 BCO2 6125;6125; o0.001;0.003; Y;W; The deposition of yellow carotenoids in the skin (Eriksson et al., 2008)

aAll related genes are close to potential selection regions. See Supplementary Table S4.
bThis column presents the middle position of selection regions, the bold and italics represent the genes without detailed annotation in chicken.
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transmembrane protein 1 (OSTM1) gene located on GGA3, the
orthodenticle homeobox 2 (OTX2) gene located on GGA5 and the
endothelin 3 (EDN3) gene located on GGA20.

CONCLUSIONS

In this study, we discussed the statistical properties of eight
different elementary selection signature statistics based on extensive
simulations. Most remarkable is the clear evidence for the useful-
ness of high density markers in selection signature analysis,
suggesting that whenever possible, such studies should be based
on sequence data—even at the cost of small sample size—whereas
results obtained with low to medium density SNP arrays appear to
be of limited reliability, explaining partly the limited reproducibility
of selection signature results reported in the literature (Qanbari and
Simianer 2014). Although all elementary statistics are shown to
have little power in some areas of the examined parameter space,
the suggested novel DCMS statistic uniformly has the locally
highest power and thus should be preferably considered. Compared
with other combining strategies, it has the advantage to be easily
computable even in populations with not sufficiently known
demography (compared with CMS), and to account for correlations
of the elementary test statistics, which were found to be too large to
be ignored. When applying DCMS, the detailed results of all
elementary statistics will be available, such that the overall decision
whether a selection signature is detected can be made on basis of
the DCMS statistic, while the nature of the signature, for example,
whether it was caused by within or between breed selection, can
be assessed through a closer inspection of the profiles of the
elementary statistics.
Selection signature analysis is a relatively novel and highly promis-

ing approach in livestock population genomics, an accurate and
comprehensive set of selection signatures will be the basis for a better
understanding of the forces driving artificial selection and will help to
design more efficient livestock breeding programs.
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