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Chromosomal rearrangements and karyotype evolution
in carnivores revealed by chromosome painting

W Niel, ] Wang!, W Su!, D Wang?, A Tanomtong>, PL Perelman*, AS Graphodatsky* and F Yang®

Chromosomal evolution in carnivores has been revisited extensively using cross-species chromosome painting. Painting probes
derived from flow-sorted chromosomes of the domestic dog, which has one of the most rearranged karyotypes in mammals and
the highest dipoid number (2n=78) in carnivores, are a powerful tool in detecting both evolutionary intra- and inter-
chromosomal rearrangements. However, only a few comparative maps have been established between dog and other non-Canidae
species. Here, we extended cross-species painting with dog probes to seven more species representing six carnivore families:
Eurasian lynx (Lynx lynx), the stone marten (Martes foina), the small Indian civet (Viverricula indica), the Asian palm civet
(Paradoxurus hermaphrodites), Javan mongoose (Hepestes javanicas), the raccoon (Procyon lotor) and the giant panda
(Ailuropoda melanoleuca). The numbers and positions of intra-chromosomal rearrangements were found to differ among these
carnivore species. A comparative map between human and stone marten, and a map among the Yangtze finless porpoise
(Neophocaena phocaenoides asiaeorientalis), stone marten and human were also established to facilitate outgroup comparison
and to integrate comparative maps between stone marten and other carnivores with such maps between human and other
species. These comparative maps give further insight into genome evolution and karyotype phylogenetic relationships among
carnivores, and will facilitate the transfer of gene mapping data from human, domestic dog and cat to other species.
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INTRODUCTION
Carnivores have sharply contrasting genome organizations, and are
among the best examples for studying the role of chromosomal
rearrangements in speciation. Previous G-banding comparisons in
Carnivora have demonstrated that the karyotypes of most carnivores
are highly conserved with exceptions in Ursidae and Canidae
(Wurster-Hill, 1973; Wurster-Hill and Gray, 1975; Wurster-Hill and
Centerwall, 1982; Dutrillaux and Couturier, 1983). Although the
phylogenetic relationships in Carnivora have undergone frequent
revisions (see Eizirik et al., 2010 and references therein), all available
molecular evidence supports the monophyly of Carnivora, which
consists of two monophyletic groups, Feliformia and Caniformia.
The suborder Feliformia now includes seven families: Felidae,
Hyaenidae, Viverridae, Herpestidae, Prionodontidae (Asian linsangs),
Eupleridae (Malagasy carnivores) and the monotypic Nandiniidae (the
African palm civet); the suborder Caniformia usually consists of
Canidae, Ursidae, Procyonidae, Mustelidae, Ailuridae, Mephitidae
(skunks), Otariidae, Odobenidae and Phocidae (Eizirik et al., 2010).
During the last two decades, chromosome-specific painting probes
have been made for nine carnivores: the domestic cat (Felis catus,
FCA) (Wienberg et al., 1997), the domestic dog (Canis familiaris,
CFA) (Breen et al, 1999a; Yang et al., 1999; Graphodatsky et al.,
2000a), the red fox (Vulpes vulpes, VVU) (Yang et al., 1999), the

Japanese raccoon dog (Nyctereutes procyonoides, NPR) (Nash et al.,
2001), the American mink (Mustela vision, MVI) (Graphodatsky et al.,
2002), the stone marten (Martes foina, MFO) (Nie et al., 2002), the
giant panda (Ailuropoda melanoleuca, AME) (Nash et al., 1998), the
striped skunk (Mephitis mephitis, MME) and the hooded skunk
(Mephitis macroura, MMA) (Perelman et al., 2008). A series of
comparative chromosome maps have been established among carni-
vores, and karyotypic phylogenetic relationships in different carnivore
groups have been revisited by chromosome painting (Nash et al., 1998,
2001, 2008; Graphodatsky et al., 2000a, 2001, 2002, 2008; Nie et al.,
2002; Tian et al., 2004; Perelman et al., 2005, 2008). Up to now, about
40 species representing most carnivore families have been studied by
cross-species chromosome painting. Such studies allow a genome-
wide view of inter-chromosomal rearrangements and the proposition
of putative ancestral karyotypes for the entire order and some families
(Nash et al., 1998, 2001, 2008; Graphodatsky et al., 2001, 2002, 2008;
Murphy et al., 2001a; Tian et al., 2004; Perelman et al., 2005, 2008).
Nevertheless, comparative molecular cytogenetic studies in Carnivora
so far have not taken account of both inter- and intra-chromosomal
rearrangements in phylogenetic analyses.

Previous chromosome painting demonstrated that CFA, with the
highest diploid number (2n=78) and the most rearranged karyotype
in Carnivora, is an ideal reference species for high-resolution
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Figure 1 Examples of cross-species chromosome painting with human (HSA) and dog (CFA) chromosome-specific painting probes. (a) Hybridization of HSA
19 probe to metaphases of stone marten (MFO). (b) Hybridization of HSA 19 probe to metaphases of Yangtze finless porpoise (NPH). (c) Hybridization of
CFA 10 probe to metaphases of stone marten (MFO). (d) Hybridization of CFA 10 probe to metaphases of Asian palm civet (PHE). (e) Hybridization of CFA
27+35 probes to metaphases of giant panda (AME). (f) Hybridization of CFA 5 probe to metaphases of raccoon (PLO).

comparative genomic analysis of carnivores (Yang et al., 1999, 2000),
and that CFA painting probes could reveal cryptic inversions that
would have escaped detection using painting probes from species with
synteny-conserved genomes such as human (Homo sapiens, HSA) and
FCA (Yang et al., 2000). CFA painting probes have been widely used to
establish comparative chromosomal maps between CFA and other
canids (Yang et al, 1999; Graphodatsky et al, 2000a, 2001, 2008;
Nie et al., 2003). Nevertheless, only eight species from other families
were studied using CFA painting probes, including FCA (2n=38, Yang
et al., 2000), African lion (Panthera leo, PLE, 2n=38) and the clouded
leopard (Neofelis nebulosa, NNE, 2n=38) (Tian et al., 2004) in Felidae;
the spotted hyena (Crocuta crocuta, CCR, 2n=40) in Hyaenidae
(Perelman et al., 2005); the masked palm civet (Paguma larvata,
PLA, 2n=44) in Viverridae (Perelman et al., 2005); Malayan sun
bear (Helartos malayanus, HMA, 2n=74) (Tian et al., 2004) and the
spectacled bear (Tremarctos ornatus, TOR, 2n=50) (Yang and
Graphodatsky, 2004) in Ursidae; red panda (Ailurus fulgens, AFU,
2n=36) in Ailuridae (Tian et al, 2002) and MVI (2n=30) in
Mustelidae (Graphodatsky et al., 2000b). In addition, Nash et al.
(2008) also established comparative chromosome maps between NPR,
another species from the Canidae, and three carnivores (ringtails,
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Bassariscus astutus, BAS, 2n=38; Dwarf mongoose, Helogale parvula,
HPA, 2n=36; Malagasy civet, Fossa fossa, FFO, 2n=42). More
carnivores representing different families remain to be studied by
chromosome painting using CFA probes or probes from other
carnivore species with highly rearranged karyotypes.

Molecular phylogenetic studies placed Carnivora, together with
Eulipotyphla, Pholidota, Chiroptera, Perissodactyla and Cetartiodac-
tyla, in one superordinal clade called Laurasiatheria (Murphy et al.,
2001b). Within the Laurasiatheria, Pholidota, Perissodactyla and
Cetartiodactyla were considered to be sister clades of Carnivora, and
Pholidota was the closest living relatives of carnivores (Murphy et al.,
2001b). In some molecular phylogenetic studies of Carnivora, the
pangolins, whales and moles were selected as outgroups (Yu et al,
2004; Eizirik et al., 2010). Comparative chromosome maps between
HSA and 10 carnivores, including FCA (Rettenberger et al., 1995;
Wienberg et al., 1997; Yang et al., 2000), CFA (Breen ef al., 1999b; Yang
et al., 1999; Sargan et al., 2000), MVI (Hameister et al, 1997), the
harbor seal (Phoca vitulina, PVI, Fronicke et al., 1997), AME (Nash
et al., 1998), the domestic ferret (Mustela putorus furo, MPU, Cavagna
et al., 2000), CCR (Perelman et al., 2005), PLA (Perelman et al., 2005),
MME (Perelman et al., 2008) and the northern raccoon (Procyon lotor,
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Figure 2 (a) G-banded karyotype of stone marten (MFO) with the assignment of homologies to human (HSA), dog (CFA) and cat (FCA) chromosomes. *The

segment is not painted by any dog probes. (b) G-banded karyotype of rac
chromosomes. *The segment is not painted by any dog probes.

PLO, Perelman et al, 2008), and between HSA and at least one
representive of all other orders in Laurasiatheria (see Yang et al., 2006
and references therein) have been established; within Laurasiatheria
only two non-carnivore species, that is, the domestic pig (Sus scrofa,
2n=38) and Javan pangolin (Manis javanica, 2n=38) have been
studied with probes from carnivores (CFA and MFO) (Biltueva
et al., 2004; Yang et al., 2006). Although the Caniformia and Feliformia
could each act as an outgroup for the other branch owing to
Carnivora splitting into these two branches very early in the Carnivore
radiation (Nash et al., 2008), comparison of chromosomal rearrange-
ments between carnivores and outgroup species from other
Laurasiatheria orders will be helpful in determining the ancestral
state of chromosome rearrangements within Carnivora.

Here, we established comparative chromosome maps between CFA
and seven species representing six families of Carnivora: MFO
(2n=38), PLO (2n=38), AME (2n=44), Eurasian lynx (Lynx lynx,
LLY, 2n=38), Javan mongoose (Herpestes javanicus, HJA, 2n=36), the
small Indian civet (Viverricula indica, VIN, 2n=36) and the Asian
palm civet (Paradoxurus hermaphroditus, PHE, 2n=42). We also
present here the results of chromosome painting studies between

coon (PLO) with the assignment of homologies to dog (CFA) and cat (FCA)

HSA and MFO, and among HSA, MFO and the Yangtze finless
porpoise (Neophocaena phocaenoides asiaeorientalis, NPH, 2n=44), a
freshwater Cetacea species from Cetartiodactyla. Combined with
previously published chromosomal painting data, our data provide
further evidence for inter- and intra-chromosomal rearrangements in
the genomes of different carnivores and insights into the phylogenetic
relationships of carnivores.

MATERIALS AND METHODS

Cell culture, chromosomal preparation and G-banding

Fibroblast cell lines derived from LLY (KCB 200020), MFO (KCB 92037), PLO
(KCB 200224), NPH (KCB 200820), PHE (KCB 200632), VIN (KCB 85022),
HJA (KCB 83003) and AME (KCB200405) were provided by Kunming Cell
Bank of the Chinese Academy of Sciences, Kunming, Yunnan, China. The cells
culture, chromosomal preparation and G-banding followed the methods as
described previously (Nie et al., 2002).

Fluorescence in situ hybridization

Chromosome-specific painting probes for CFA, MFO and HSA were prepared
by degenerate oligonucleotide-primed PCR (Telenius et al., 1992) amplification
of flow-sorted chromosomes as previously described (Yang et al., 1999;

s |6
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Figure 3 (a) G-banded karyotype of Yangtze finless porpoise (NPH) with the assignment of homologies to human (HSA), cat (FCA) and stone marten (MFO)

chromosomes. (b) C-banded karyotype of Yangtze finless porpoise (NPH).

Nie et al, 2002). Fluorescence in situ hybridization, detection, image
capture and processing were carried out following Yang et al. (2000) and Nie
et al. (2002).

Chromosome nomenclature

CFA chromosome nomenclature followed Yang et al. (1999), its correspondence
with Breen et al. (1999a) nomenclature has been reported by Sargan et al.
(2000). Chromosomes of PHE, AME and PLO were numbered according to the
G-banding karyotypes reported previously (Wurster-Hill and Gray, 1975; Nash
and O’Brien, 1987; Stanyon et al., 1993). The arrangement of LLY chromo-
somes referred to the widely accepted FCA chromosomal nomenclature
(Wurster-Hill and Centerwall, 1982). To facilitate the integration of cytogenetic
maps, the chromosomes of NPH were arranged according to the nomenclature
of the Atlantic bottlenose dolphin ( Tursiops truncatus) (Bielec et al., 1998) and
the long-finned pilot whale (Globicephala melas) (Kulemzina et al., 2009). The
chromosomes of other carnivores were arranged based on their relative length,
from the longest to the shortest.

Heredity

RESULTS

Hybridizing HSA probes onto MFO chromosomes

Chromosomal homologies between MFO and several Mustelidae
species have been established using MFO chromosome-specific
probes (Nie et al., 2002). To extend the homology link with HSA to
more carnivore species, the metaphase spreads of MFO were also
painted with HSA chromosome paints. Hybridization example of HSA
probes is shown in Figure la. Homologous HSA chromosomal
segments are summarized to the left of each MFO chromosome
(Figure 2a). The 22 HSA autosomal probes detected 32 homologous
chromosomal segments in the genome of MFO. Besides the conserved
syntenic segment associations characteristic for eutherian mammals
(that is, HSA 3/21, 4/8, 7/16, 10/12/22, 12/22, 14/15 and 16/19;
Murphy et al., 2001a; Yang et al., 2003), five more syntenic segment
associations (HSA 1/8, 2/13, 2/20, 3/19 and 18/22/12) were found in
the genome of MFO.
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Figure 4 G-banded karyotype of giant panda (AME) with the assignment of homologies to dog (CFA), cat (FCA) and human (HSA) chromosomes. HSA

painting data are cited from Nash et al. (1998).

Karyotype description of the Yangtze finless porpoise and
cross-species painting with HSA and MFO probes

The Yangtze finless porpoise (NPH) is the sole freshwater subspecies of
the finless porpoise. It has a 2n=44 karyotype, the same as most
Cetacea species (Arnason, 2006). There are 17 pairs of bi-armed and
four pairs of acrocentric autosomes. The X chromosome is metacentric;
the acrocentric Y is the smallest chromosome (Figure 3a). C-bands,
generated by over-denaturing metaphases with 70% formamide/30%
2x SSC (standard saline citrate) solution, were mainly localized at the
telomeric regions of chromosomes 1, 2, 5-7 and 14, while chromo-
somes 1—4, 18 and 21 displayed interstitial C-bands (Figure 3b).

CFA paint probes failed to work on the chromosomes of NPH after
several attempts. Thus, only probes from HSA and MFO were utilized
to paint its chromosomes. An example of hybridization of HSA probes
is shown in Figure 1b. Hybridization patterns of HSA painting probes
onto NPH chromosomes are consistent with previous data on the
long-finned pilot whale (2n=44, Kulemzina et al., 2009), except that
some homologous chromosome segments were disrupted by hetero-
chromatic blocks (Figure 3a). The 22 human autosomal probes
detected 40 homologous chromosomal segments in the NPH genome.

Six additional syntenic segment associations (that is, HSA 3/6, 5/19,
8/9, 10/15, 16/20 and 18/22/12) were present in the NPH genome
besides those conserved syntenic segment associations ancestral for
eutherian mammals. The 18 MFO autosomal probes detected 31
homologous chromosomal segments in the NPH genome
(Figure 3a). Painting probes from 10 MFO chromosomes (#5,
10-18) each painted one segment or one entire NPH chromosome,
while the other MFO chromosome probes each gave two or three
pairs of signals on NPH chromosomes. To facilitate comparison of
homologous chromosomal segments among species, the homologous
chromosomal segments of FCA were also indicated to the left of NPH
chromosomes based on a published comparative chromosome map
between MFO and FCA (Nie et al., 2002).

Hybridizing CFA probes onto chromosomes of seven carnivore
species

Chromosome painting probes from CFA were hybridized to meta-
phase spreads of MFO, PLO, AME, LLY, HJA, VIN and PHE. Each
CFA probe yielded 1 to 4 pairs of hybridization signals on the
metaphase spreads of these seven species. Hybridization examples

> |6
— | el
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Figure 5 (a) G-banded karyotype of Eurasian lynx (Lynx lynx) with the assignment of homologies with dog (CFA) and cat (FCA) chromosomes. (b) G-banded
karyotype of Javan mongoose (HJA) with the assignment of homologies with dog (CFA) and cat (FCA) chromosomes. *The segment is not painted by any dog

probes.

are shown in Figures lc—f. The hybridization patterns of 38 CFA
autosomal probes and the X probe were summarized onto G-banded
karyotypes of these seven species. Chromosomal correspondence with
FCA as inferred from the CFA-FCA comparative chromosomal map
(Yang et al., 2000) was also indicated beside the CFA segments on G-
banded karyotypes. In total, 38 CFA autosomal probes revealed 72, 69,
74, 69, 68, 68 and 67 homologous segments in the genomes of MFO
(Figure 2a), PLO (Figure 2b), AME (Figure 4), LLY (Figure 5a), HJA
(Figure 5b), VIN (Figure 6a) and PHE (Figure 6b), respectively.

DISCUSSION

Implications for the signature rearrangements of Carnivora and for
the putative ancestral carnivore karyotype

The establishment of comparative maps between CFA and the pig
(Biltueva et al., 2004), between MFO and Javan pangolin (Yang et al.,
2006), and between MFO and NPH (this study) provides a chance to
compare directly chromosome homology between species in Carni-
vora and species in other orders from the superordinal clade Laur-
asiatheria, especially species used as outgroups in carnivore molecular
phylogenetic studies. Of 18 MFO autosome paints, nine (MFO 10-18)
and six (MFO 11, 12, 14, 15, 17 and 18) paints each hybridized to
one segment or one chromosome in NPH (Figure 3a) and Javan
pangolin (Yang et al., 2006), respectively. One association (MFO 6+2)
seems to be common to NPH and Javan pangolin, but the results of
chromosome painting with HSA probes confirmed that segments
homologous to MFO 2 in this association were of different origins
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in NPH (homologous to HSA3) and Javan pangolin (homologous to
HSA19p).

In Carnivora, together with MFO, chromosome homologies
between human and 11 species have been established (Rettenberger
et al., 1995; Fronicke et al., 1997; Hameister et al., 1997; Wienberg et al.,
1997; Nash et al., 1998; Yang et al., 1999, 2000; Cavagna et al., 2000;
Sargan et al., 2000; Perelman et al., 2005, 2008; this study). Previous
comparison of maps between HSA and these carnivores suggested that
the HSA 2p/20, 18/22/12 and 19/3 associations could be specific
signatures for Carnivora (Murphy et al, 200la; Perelman et al,
2008). Except for the conserved syntenic segment associations char-
acteristic for eutherian mammals, we found no common associations
between carnivores and Javan pangolin, but one common association
(HSA 18/22/12) between carnivores and NPH. The HSA 18/22/12
association was also detected in the Atlantic bottlenose dolphin (T.
truncatus, Bielec et al., 1998) and the long-finned pilot whale (G. melas,
Kulemzina et al., 2009). Therefore, the HSA 18/22/12 association could
not be considered as a character specific for Carnivora; instead it could
be a cytogenetic character linking Carnivora and Cetartiodactyla.

Reconstruction of ancestral karyotypes of different mammalian taxa
will be helpful in determining the mode and tempo of evolutionary
changes that have occurred in mammalian phylogenetic lineages
(Murphy et al., 2001a). Two types of ancestral carnivore karyotypes
(ACKs) with different diploid numbers (2n=42 and 2n=38) have
been proposed based on comparisons of R-banded karyotypes and
fluorescence in situ hybridization data (Dutrillaux and Couturier,



Comparative chromosomal maps between dog and carnivores

W Nie et al
23
a Small Indian civet (Viverricula indica,2n=36)
CFA FCA
& |16 - 138 - 3
T !25 v :|7‘F1 A |27 a3 ks R It
4G 9 B w0 |25 | & e Ll E)
g E 4 |2e c2 Z .' |12 B2% &3
!1332 !33 . 6 AL B |8 = 411 Alq
“Ia .9 el e "|1 . el
1 2 3 4 5 6
R » Ap ™ 6 |E3 %2 |
et Y T IAR T i
3q128mp§.m Azq'.|3‘*s2 c.!fge«:‘.‘po Aa‘as i
. ‘[22 - - !16 l13 . ad it ne| : 5
2
7 8 9 10 11 12 5
= .
¥ 5 “ 15 - 126 “ x| x
..| D1 - E1 g‘”oa -7 Dal |4 D2
& al” &2 7 @™ 230 I
13 14 15 16 17 X
b Asian palm civet (Paradoxurus hermaphroditus, 2n=42)
CFA FCA
Raid| -flz| sgm 2f10| B2l
1M | SR VW 11
2 - g
!i§ .B|:1 h & §i3 u:gg Cly
1 2 3 4 5
ewl . &l 2% WBT] & |24
= a2 34;:" |2-‘ B: 15 M 25 z |10M . | 26
T 14 q - D3
- Hid-3 INRLIE C8 Yl 1 1%
6 7 8 9 10
17
""li R THIETT T =~ &,
’,_“ ”:;‘ls D1 . :l:‘ P h I-_-s Alp 8 30 1191 D4 0N - hs F2
5
11 12 13 14 15
-
L\ . "
- | 4 . 15 XX
gsl D2 ‘-:"*!;s|“ ,;¢!§ |r: Sh, BB e |20|az 8
31 5
16 17 18 19 20 X Y

Figure 6 (a) G-banded karyotype of small Indian civet (VIN) with the assignm

ent of homologies to dog (CFA) and cat (FCA) chromosomes. *The segment is

not painted by any dog probes. (b) G-banded karyotype of Asian palm civet (PHE) with the assignment of homologies to dog (CFA) and cat (FCA)

chromosomes.

1983; Fronicke et al., 1997; Murphy et al., 2001a; Nash et al., 2008).
The majority of the ancestral chromosomes are identical in these two
types of ACKs. The difference between 2n=42 and 2n=38 putative
ancestral karyotypes concerns two chromosomes, homologous to FCA
Alp+Clq and Clp+F2. In the 2n=42 ACK, these two chromosomes
were supposed to be four single chromosomes homologous to cat
Alp, Clq, Clp and F2 (Dutrillaux and Couturier, 1983; Murphy et al.,
2001a), while they were retained as two whole chromosomes in the
2n=38 ACK (Fronicke et al., 1997; Nash et al., 2008). Recently,
Perelman et al. (2008) also questioned the ancestral state of four
ACK chromosomes, homologous to FCA A2p+C2, A3p+A3q,
Alp+Clq and Clp+F2, but it proved difficult to determine whether
fissions or fusions of these four chromosomes represented the ances-
tral state when analyzing the distribution of these four chromosomes
on different branches of the Carnivora tree.

Comparative maps between HSA and representatives of all the
orders in Laurasiatheria have been established (see Yang et al,
2006 and references therein). Comparing these maps with those
between carnivores, we found that no association was common to
species in Laurasiatheria if we excluded the putative ancestral syntenic
associations for eutherian mammals. Nevertheless, one fission event

occurring on the chromosome homologous to FCA A3p+A3q is
noteworthy. The FCA A3p+A3q homologues were present as two
chromosomes or chromosomal segments (that is, A3p and A3q) in
species from other orders such as the pig (Cetartiodactyla, Biltueva
et al., 2004), Javan pangolin (Pholidota, Yang et al., 2006) and NPH
(Cetartiodactyla, Figure 3a). Furthermore, FCA A3p and A3q were
also found to be homologous to two discrete chromosomal segments
in HSA (that is, a representative species of Euarchontoglires, Yang
et al., 1999, 2000). However, both fusion and fission states of FCA A3
were found in different carnivore families and even in species with
different diploid numbers in the same family (Figure 7). These
data taken together appear to support the idea that the fission state
(rather than the fusion state) of FCA A3p+A3q should be regarded as
the ancestral condition. In other words, chromosomal segments
homologous to FCA A3p and A3q could represent two separate
chromosomes in the ACK.

Cryptic inversions in carnivores revealed by CFA painting probes
Using the CFA-FCA comparative chromosomal map (Yang et al,
2000) as the common reference and comparing the hybridization
patterns of CFA painting probes on the large blocks of synteny-
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Figure 7 Karyotype relationships of the order Carnivora. Tree topology for Carnivora is modified from Eizirik et al. (2010). Published chromosome painting
data for Felidae (Wienberg et al., 1997; Yang et al., 2000; Tian et al., 2004), Hyaenidae and Viverridae (Perelman et al., 2005), Herpestidae and
Eupleridae (Nash et al., 2008), Canidae (Breen et al., 1999b; Yang et al., 1999, 2000; Graphodatsky et al., 2000a, 2001, 2008; Nash et al., 2001; Nie
et al., 2003), Mephitidae (Perelman et al., 2008), Mustelidae (Hameister et al., 1997; Cavagna et al., 2000; Graphodatsky et al., 2000b, 2002; Nie et al.,
2002), Procyonidae (Nash et al., 2008; Perelman et al., 2008), Ailuridae (Nie et al., 2002; Tian et al., 2002), Phocidae (Fronicke et al., 1997), Ursidae
(Nash et al., 1998, 2001; Tian et al., 2004; Yang and Graphodatsky, 2004) and the data in this study were used for this figure. The ACK was from Murphy
et al. (2001a). Chromosome numbers in brackets on the tree correspond to ACK chromosomes. *Species in the branches have no chromosome painting data
or not confirmed by chromosome painting. CLE, Conepatus leuconotus; MAL, Mustela altaica; MFL, Martes flavigula, MME, Meles meles; MMO, Melogale
moschata; MNI, Mustela nivalis; MLU, Mustela lutreola; SGR, Spilogale gracilis.

conserved chromosomes (homologous FCA chromosomes or chro-
mosomal segments), we detected cryptic inversions, with varying
numbers and positions, in the genomes of MFO, PLO, AME, LLY,
HJA and VIN. However, no inversions were detected in the genome of
PHE. Combined analysis of the current data with the previously
published data allows an overview of the inversions that occurred in
carnivores belonging to different families (Table 1).

In Felidae, paints from CFA chromosomes 16 and 28 on chromo-
somes homologous to FCA B1 displayed the same painting pattern of
CFA 16/28/16/28 in LLY (Figure 5a), FCA (Yang et al., 2000), NNE
and PLE (Tian et al., 2004), but the arrangement of CFA chromo-
somes 16 and 28 homologous segments in other carnivores was CFA
16/28, suggesting a common inversion occurred in felids.

In Herpestidae, only HJA (this study) and Dwarf mongoose (HPA)
(Nash et al., 2008) have chromosome painting data. These two species
have the same diploid number (2n=36) and an identical chromoso-
mal homology pattern with FCA. An inversion was detected by CFA
and NPR painting probes respectively in chromosomal segments
homologous to FCA A2q in HJA (CFA 14/18/14/16, Figure 5b) and
HPA (NPR 1/11/1/18, Nash et al., 2008). Chromosome painting
results showed that CFA chromosomes 14, 18 and 16 corresponded
to NPR chromosomes 1p, 11p and 18, respectively (Graphodatsky
et al., 2001). The inversion detected by the CFA and NPR painting
probes in HJA and HPA appears to be the same. The same inversion
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was also detected in the same homology segment in Malagasy civet
(FFO) by NPR painting probes (NPR 1/11/1/18, Nash et al., 2008).
Previous molecular phylogenetic study indicated that Malagasy carni-
vores actually formed a separate feliform family Eupleridae, not
included in the Herpestidae and Viverridae (Yoder et al, 2003).
Therefore, the inversion detected in HJA, HPA and FFO could be a
common cytogenetic signature for the Herpestidae and Eupleridae.

In Viverridae, only one inversion (CFA 11/3/2/11/4/35) in VIN
chromosome 6 (equivalent to FCA Alq, Figure 6a) was detected by
CFA painting probes.

In Hyaenidae, three inversions (CFA 27/30/23/35, CFA 21/5/21/5/18
and CFA 5/9/5) were found in chromosomes homologous to FCA C2,
D1, El in CCR (2n=40) (Perelman et al., 2005).

In Ursidae, the pattern of CFA paints 1, 2 and 5 on the homologues
to FCA E2 was the same (CFA 1/5/2) in AME (Figure 4), TOR (Yang
and Graphodatsky, 2004) and HMA (Tian et al., 2004), while the
painting pattern of CFA paints 1, 2 and 5 on the equivalents of FCA E2
in other carnivores was CFA 1/2/5. Although chromosome equivalents
of FCA E2 in TOR and HMA had a different centromere position, this
inversion has been proposed as one common character for Ursidae
(Tian et al., 2004). Another two inversions (CFA 35/4/11/2/3 and CFA
19/33/36/28) were found in the genomes of AME (chromosome 3,
equivalent to FCA Alq, Figure 4) and TOR (chromosome 6,
equivalent to FCA Clq, Yang and Graphodatsky, 2004).
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Table 1 Inversions revealed by dog paint probes in large chromosome segments of conserved synteny in different carnivores

Species (2n)

Homologous cat chromosomes or chromosome segments

References

Alg A2q B1 B2 B4 Clqg c2 D1 D3 El E2
Feliformia Felidae
FCA (38) O Yang et al. (2000)
PLE (38) O Tian et al. (2004)
NNE (38) O Tian et al. (2004)
LLY (38) O This study
Herpestidae
HJA (36) . This study
Viverridae
VIN (36) ] This study
Hyaenidae
CCR (40) v * [ Perelman et al. (2005)
Caniformia Ursidae
TOR (52) b e * Yang and Graphodatsky
(2004)
HMA (74) * Tian et al. (2004)
AME (44) < * This study
Ailuridae
AFU* (36) I § # X Tian et al. (2002)
Procyonidae
PLO (38) [ This study
Mustelidae
MVI (30) O © § A * v Graphodatsky et al.
(2000b)
MFO (38) | ® § A * v This study

Abbreviations: AFU, Ailurus fulgens; AME, Ailuropoda melanoleuca; CCR, Crocuta crocuta; FCA, Felis catus; HIA, Herpestes javanicu; HMA, Helartos malayanus; LLY, Lynx lynx; MFO, Martes foina;
MVI, Mustela vision; NNE, Neofelis nebulosa; PLE, Panthera leo; PLO, Procyon lotor; TOR, Tremarctos ornatus; VIN, Viverricula indica.

AFU*, inversions each was detected to occur between two chromosome segments (homologous to FCAA1p+C1q and FCAA2p+C2) in red panda. Different symbols indicated different inversions.
Identical inversion in different species was indicated by the same symbol. M, CFA 11/3/2/11/4/35; <, CFA 35/4/11/2/3; O, CFA 3/2/11/4/35; e, CFA 14/18/14/16; O, CFA 16/28/16/28/15/19/
32/13/3; [, CFA 16/28/16/15/19/32/13/3; (©), CFA 16/15/28/32/19/13/3; (), CFA 16/28/15/32/19/3/13/32; §, CFA 37/12/1/12/1; § , CFA 29/2/29/10/15/10; A, CFA 2/10/15/29/10/15/10; A,
CFA 2/10/29/10/15/10; +r, CFA 19/33/36/28; #, CFA 22/19/28/36/33/28; %, CFA 19/36/28/33; V, CFA 27/30/23/35; X, CFA 20/23/20/23/35/30/27; ¥, CFA 23/35/23/30/27; ¢, CFA 21/5/

21/5/18; [, CFA 26/7/26/7/1; [(, CFA 5/9/5; ¢, CFA 1/5/2.

In Ailuridae, four inversions (CFA 20/23/20/23/35/30/27, CFA 22/
19/28/19/36/33/28, CFA 16/28/16/15/19/32/13/3 and CFA 29/2/29/10/
15/10) were detected in chromosomes homologous to FCA A2p+C2,
Alp+Clq, Bl and B4 in AFU (2n=36) by CFA paints (Tian et al.,
2002).

In Procyonidae, the painting pattern generated by CFA chromo-
somes 1, 7 and 26 paints on PLO chromosome 12 (equivalent to FCA
D3) was CFA 26/7/26/7/1 (Figure 2b), which was different from the
pattern CFA 26/7/1 on the equivalent chromosomes of other carni-
vores, suggesting that an inversion occurred in PLO chromosome 12.

In Mustelidae, inversions were detected in six homologous chro-
mosomes or chromosomal segments (equivalents to FCA Alq, B1, B2,
B4, Clq and C2) in MFO (2n=38, Figure 2a) and MVI (2n=30,
Graphodatsky et al., 2000b) by CFA painting probes. Three common
inversions (CFA 37/12/1/12/1, CFA 19/36/28/33 and CFA 23/35/23/30/
27) were recognized in chromosomes of MFO and MVI homologous
to FCA B2, Clq and C2. These inversions could be common
cytogenetic signatures for the Mustelidae. In addition, the probe
from CFA chromosome 10 gave three signals on chromosomes
homologous to FCA B4 in MFO (Figure 1c) and MVI (Graphodatsky
et al., 2000b). This inversion seems to be a common character for
MFO and MVI. But another inversion revealed by the probe of CFA
chromosome 15 was also found on the same chromosome in MVI,
resulting in the different hybridization patterns on the homologues to
FCA B4 in MFO and MVIL.

After comparing inversions occurring in species from different
families, we found an obviously identical inversion in a Feliformia
(VIN) and a Caniformia species (MFO) (Table 1). A probe from CFA
chromosome 11 painted two segments on VIN 6 and MFO 5
(equivalents to FCA Alq), resulting in the change of the CFA probes
hybridization pattern on chromosomes homologous to FCA Alq from
CFA 11/2/3/4/35 in other carnivores to CFA 11/3/2/11/4/35 in VIN
and MFO, and MFO 5 and VIN 6 showed similar G-bands (Figures 2a
and 6a). Nevertheless, it is difficult to say if this inversion is a common
character for Feliformia and Caniformia as it could have evolved
independently in these two different clades.

To sum up, inversions have been revealed in most carnivores
studied by CFA paints, and some could represent cytogenetic signa-
tures for a given carnivore species group, while others were specific for
a given species. For instance, one inversion on the homologues to FCA
A2q appears to be common to all species so far studied in the
Herpestidae and Eupleridae; one inversion on the homologues to
FCA BI1 seems to be specific for all studied Felidae species, one
inversion on the homologues to FCA E2 seems to be common to all
species studied in Ursidae, and three common inversions on the
homologues to FCA B2, Clq and C2 appear to be shared by two
Mustelidae species. Our findings suggest that inversions have had an
important role in the karyotype divergence of carnivores and, in
particular, in species with synteny-conserved karyotypes such as the
mustelids.

25

Heredity



Comparative chromosomal maps between dog and carnivores
W Nie et al

26

Mapping chromosome rearrangements onto the phylogenetic tree
of Carnivora

On the basis of the multiple nuclear gene sequences, Eizirik et al.
(2010) proposed a complete molecular phylogeny for 50 different
genera representing all carnivoran families and constructed a
molecular timescale for the evolution of Carnivora. Many species
with painting data were also included in this study. Mapping the
chromosome rearrangements identified by chromosomal painting
onto the relevant lineages of the phylogenetic tree proposed by Eizirik
et al. (2010) enabled us to trace the characteristic chromosomal
rearrangements and karyotypic evolution relationships in the major
phylogenetic lineages in the order Carnivora (Figure 7).

Here, we used the 2n=42 ACK as the starting point to map the
chromosome rearrangements that have occurred during the diver-
gence of Carnivora. In Feliformia, except for the African palm civet
(Nandinia binotata, NBI, Nandiniidae), the fission of ACK 1 (FCA
A2p+C2) was the common character for all the species studied. Two
fusions (ACK8+15 and 10+18) differentiated the karyotype of NBI
from that of other species in Feliformia. Three fusions (ACK 1p+9,
3+15 and 8+10) and one inversion (ACK2) characterized the Felidae
branch. One fission (ACK 7) supported the clade of Hyaeni-
dae+Herpestidae+Eupleridae. A further inversion (ACK9) linked
Herpestidae and Eupleridae. In Viverridae, different chromosome
rearrangements were found in species with different diploid numbers.

In Caniformia, > 40 fissions differentiated the karyotypes of species
in Canidae from the ACK. Sixteen fissions and one inversion were
common to all species studied in Ursidae. A further 16 fusions and 1
inversion occurred in AME. Two fusions and two fissions were
common to TOR and bears with 2n=74. A further 11 fusions and 1
inversion differentiated the karyotype of TOR from that of other
bears. Two common fusions (ACK8+15 and 10+18) were found in
species in Mustelidae, Procyonidae, Ailuridae and Phocidae. They
could be considered as common characters for species in the Arctoidea
excluding Ursidae. Mephitidae (skunks) are the third family of
Carnivora that was found to have highly rearranged karyotypes,
besides Canidae and Ursidae (Perelman et al., 2008). More than 10
rearrangements differentiated the karyotypes of species in Mephitidae
from the ACK. Species in Procyonidae have the same diploid number
and similar painting patterns with some species in Mustelidae,
supporting the idea that these two families have close relationships.
The karyotypic evolutionary relationships among species in Musteli-
dae have been detailed by Graphodatsky et al. (2002). Furthermore,
three common inversions were revealed in two species from the
Mustelidae in our study. Some specific chromosomal rearrangements
were found in species from the Phocidae and Ailuridae (Fronicke
etal., 1997; Nie et al., 2002; Tian et al., 2002). The role of chromosome
rearrangements in speciation remains controversial, but some land-
mark chromosomal rearrangements have been found at the major
nodes of the Carnivora phylogenetic tree.
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