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Epigenetics investigates heritable changes in gene expres-
sion that occur without changes in DNA sequence. Several
epigenetic mechanisms, including DNA methylation and
histone modifications, can change genome function under
exogenous influence. We review current evidence indicating
that epigenetic alterations mediate effects caused by
exposure to environmental toxicants. Results obtained from
animal models indicate that in utero or early-life environ-
mental exposures produce effects that can be inherited
transgenerationally and are accompanied by epigenetic
alterations. The search for human equivalents of the
epigenetic mechanisms identified in animal models is under
way. Recent investigations have identified a number of
environmental toxicants that cause altered methylation of
human repetitive elements or genes. Some exposures can
alter epigenetic states and the same and/or similar epigenetic

alterations can be found in patients with the disease of concern.
On the basis of current evidence, we propose possible models
for the interplay between environmental exposures and the
human epigenome. Several investigations have examined the
relationship between exposure to environmental chemicals
and epigenetics, and have identified toxicants that modify
epigenetic states. Whether environmental exposures have
transgenerational epigenetic effects in humans remains to
be elucidated. In spite of the current limitations, available
evidence supports the concept that epigenetics holds substan-
tial potential for furthering our understanding of the molecular
mechanisms of environmental toxicants, as well as for predicting
health-related risks due to conditions of environmental exposure
and individual susceptibility.
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Epigenetic mechanisms

Epigenetics is the study of heritable changes in gene
expression that occur without changes in DNA sequence
(Wolffe and Guschin, 2000). Epigenetic mechanisms are
flexible genomic parameters that can change genome
function under exogenous influence, and also provide a
mechanism that allows for the stable propagation of gene
activity states from one generation of cells to the next.
There are at least two kinds of epigenetic information
that can be inherited with chromosomes. The first is
DNA methylation, and the second involves changes in
chromatin proteins, usually due to modifications in
histone tails.

DNA methylation

DNAmethylation is a covalent modification, heritable by
somatic cells after cell division. 5-Methyl-cytosine repre-
sents 2–5% of all cytosines in mammalian genomes and
is found primarily on CpG dinucleotides (Millar et al.,
2003; Lister et al., 2009; Rossella et al., 2009).

Cytosine methylation of CpG dinucleotides is found in
close proximity to critically important cis elements
within promoters and is often associated with a
repressed chromatin state and inhibition of transcription
(Orphanides and Reinberg, 2002). DNA methylation also
has an important role in the maintenance of genome
integrity by transcriptional silencing of repetitive DNA
sequences and endogenous transposons (Bestor, 1998;
Hedges and Deininger, 2007).

Histone modifications

Histones can be modified by acetylation, methylation,
phosphorylation, glycosylation, sumoylation and ADP
ribosylation (Suganuma and Workman, 2008). The most
common modifications are acetylation and methylation
of lysine residues in the amino terminal of histone 3 (H3)
and histone 4 (H4). Increased acetylation induces
transcription activation, whereas decreased acetylation
usually induces transcription repression. Methylation of
histones is associated with either repression or activation
of transcription, depending on the lysine residue
position (Yan and Boyd, 2006).

Environmental health and genes: beyond
gene–environment interactions

According to the WHO (World Health Organization),
more than 13 million deaths annually are due to
environmental causes and as much as 24% of disease is
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caused by exposures that can be averted (Prüss-Üstün
and Corvalán, 2006). The list of environmental threats to
human health includes a large number of environmental
pollutants. For instance, in the third National Report on
Human Exposure to Environmental Chemicals by the
Center for Disease Control and Prevention, 148 different
environmental chemicals that can be detected in the
blood and urine were found in a sample of the US
population. The list of pollutants evaluated included
metals, phytoestrogens, polycyclic aromatic hydrocar-
bons, dioxin-like chemicals, polychlorinated biphenyls,
phthalates and several classes of pesticides (Department
of Health and Human Services Centers for Disease
Control and Prevention, 2005).

In Figure 1, we propose a categorization of how
environmental exposures, with particular interest in
environmental toxic chemicals, may interact with genetic
and epigenetic mechanisms. In particular, we are inter-
ested in contrasting genetic vs epigenetic mechanisms in
their possible interplays with environmental exposures.

Gene–environment interactions

The interplay between the environment and human
genome has been traditionally presented under the
framework of gene–environment interactions (Figure 1,
path A; also indicated as genotype–environment or G�E
interaction) (Ishibe and Kelsey, 1997; Kraft and Hunter,
2005; Dempfle et al., 2008; Baccarelli, 2009; London and
Romieu, 2009). Under this model, diseases result from
interactions between the individual genetic make-up and
environmental factors. Geneticists have always held true
that the expression of a genetic trait in the phenotype is
highly variable, largely depending on the environment to
which the individual carrying the trait of concern is
subjected. For instance, in patients with phenylketonuria,
which is caused by mutations to a gene coding the liver
enzyme phenylalanine hydroxylase, the amino acid
phenylalanine does not get converted into tyrosine and
reaches high levels in the blood and other tissues

(Scriver, 2007). The elevated phenylalanine levels affect
brain development leading to mental retardation. How-
ever, a low-phenylalanine diet can keep the blood
phenylalanine levels low and avoid the severe effects
of phenylketonuria.

The same concept can be approached from the realm of
environmental health: some individuals have low risk of
developing a disease as a result of an environmental
exposure, whereas others are much more susceptible. For
example, individuals who carry genetic polymorphisms
that make their cells less capable of responding to
oxidative stress have been found in several investiga-
tions to be more susceptible to the cardiovascular and
respiratory effects of air pollution, which produces
health effects in humans, at least in part, through
oxidative stress generation (Park et al., 2006; Chahine
et al., 2007; Baccarelli et al., 2008a).

A purely DNA sequence-based approach (naked DNA
snapshot) is not sufficient to fully explain the risks of
common diseases, which are modulated by other
nongenetic or extragenetic mechanisms. In fact, growing
evidence shows that the molecular influences of the
environment extend well beyond the interaction with the
DNA sequence. Several investigations, as we will discuss
in the following sections, have shown that environmental
toxicants modify epigenetic states.

Gene–environment vs epigene–environment

In gene–environment interactions (Figure 1, path A), the
genetic polymorphisms that modify the effects of
environmental exposures are transmitted transgenera-
tionally according to Mendelian genetics, and the trait
determining effect modifications is generally assumed to
follow the same genetic model (dominant, codominant,
recessive) as that of the levels of expression or function of
the protein coded by the locus of concern. A second well-
established area of interplay (Figure 1, path B) includes
the direct effects of environmental exposures on the
genome, for example, DNA damage and/or mutations

Figure 1 Gene–environment vs epigene–environment interplay: a model of possible genetic and epigenetic paths linking environmental
exposures to health effects.

Environmental epigenetics
V Bollati and A Baccarelli

106

Heredity



induced by environmental exposures. In environmental
health, the recognition that exposures could produce
DNA mutations represented a major landmark for risk
assessment and prevention. Consequently, genotoxic
agents have been categorized according to their cap-
ability to alter DNA sequence and thus increase disease
risk (Siemiatycki et al., 2004). Such information has been
fundamental to determine environmental risks and
shape current regulatory efforts for exposure reduction.
In particular, potential carcinogenic agents have been
carefully tested in in vitro and in vivo models of
mutagenicity. In human subjects, some of these mole-
cular events may represent early events along the
pathways linking carcinogen exposure to cancer. For
example, in our own study on the population exposed
after the Seveso, Italy accident to high doses of dioxin
(Pesatori et al., 2008; Baccarelli et al., 2008b), a powerful
promoting carcinogen in animals, we showed an
increased number of t(14;18) translocations detectable
in phenotypically normal blood lymphocytes collected
from healthy subjects (Baccarelli et al., 2006). This effect
may represent an early expansion of lymphocyte clones
potentially related to the increased risk of non-Hodgkin’s
lymphoma among subjects exposed to high doses of
dioxin (Steenland et al., 2004). Environmentally induced
DNA mutations can have a transgenerational effect only
if occurring in the germ line. For instance, parental
exposure to ionizing radiation has been shown to
increase the frequency of germline mutations detectable
in the next generation (Charles, 2001), and confer a
predisposition to cancer (Dubrova et al., 2000).

In principle, the effect-modification model should
apply to epigene–environment interactions and to
gene–environment interactions. Similar to the effect
modifications shown or postulated for genetic poly-
morphisms (Figure 1, path A), epigenetic differences
determining disease risk could make individuals less or
more vulnerable to environmental insults (Figure 1, path
C). However, to the best of our knowledge, a formal
concept of epigene–environment interaction has not yet
been developed and we are not aware of examples of
epigene–environment interactions in environmental
health or toxicology studies. In environmental studies,
the flexibility of epigenetic states has generated a growing
interest in evaluating the direct alterations that environ-
mental exposures may produce on epigenetic states
(Figure 1, path D), including changes in DNA methylation
and histone modifications. Investigations that evaluated
alterations in DNA methylation and histone modifications
in response to environmental chemical exposures were
reviewed by us in a recent article (Baccarelli and Bollati,
2009). In this review, we will discuss the biological basis
for potential interplays with epigenetic states that might be
activated in the presence of environmental exposures and
determine health-related effects. We will also discuss
whether available evidence suggests that epigenetics
provides biological mechanisms for transgenerational
environmental effects.

Epigenetic reprogramming in mammalian
development

In mammals, DNA methylation is essential for embryo-
genesis, during which methylation patterns change

dynamically to adapt embryos to be fit for further
differentiation (Reik et al., 2001). Two main waves of
genome-wide epigenetic reprogramming characterize
mammalian development that occurs at the zygote stage
and during primordial germ-cell formation (Shi and Wu,
2009).
The genome becomes demethylated during preim-

plantation to give rise to a totipotent zygote able to
generate any cell type. Active DNA demethylation
occurring in the paternal genome shortly after fertiliza-
tion is independent of DNA replication. In contrast, the
maternal genome remains highly methylated and under-
goes passive DNA demethylation after embryo develop-
ment (Mayer et al., 2000; Santos et al., 2002). After the first
cell cycle, the maternal allele passively loses methylation
through cell divisions up to the blastocyst stage (Shi and
Wu, 2009). When implantation occurs, DNA methylation
levels are then restored by de novo methylation that
triggers cell lineage differentiation (Sassone-Corsi, 2002).
The second reprogramming event also occurs during

embryogenesis, but only in the primordial germ cells in
which DNA methylation patterns are erased at all single
copy genes and some repetitive elements (Lees-Murdock
and Walsh, 2008).
Similar to the pattern of asymmetric DNA methylation

in parental genomes, histone H3K9 trimethylation and
dimethylation exhibit asymmetric modifications in the
parental pronuclei (Kurdistani et al., 2004; Santos et al.,
2005; Valls et al., 2005; Wang et al., 2007; Yoshida et al.,
2007).

The dilemma of epigenetic inheritance: can
epigenetic marks survive reprogramming?

The cycles of erasure/reprogramming that occur during
embryogenesis raise the question about how and how
frequently epigenetic marks are inherited transgenera-
tionally, and whether epigenetic inheritance occurs in
humans and in animal models (Whitelaw and Whitelaw,
2008). Animal experiments provide us with a few
examples suggesting that epigenetic marks that are
established during the life of an organism can be passed
on to the following generations (Probst et al., 2009). These
include epigenetic states of murine genes associated with
distinctive phenotypes, such as the agouti locus in the
viable yellow (Avy/a) mice (determining fur color
variation between yellow and dark brown), the Axin-
fused (Axinfu) allele (associated with a kinked tail)
(Morgan et al., 1999; Rakyan and Whitelaw, 2003) and
the CabpIAP gene, which was identified using a bioinfor-
matic approach and shows sequence homology to the rat
CDK5 activator-binding protein (Druker et al., 2004).
All these models derive their properties from meta-

stable epialleles, which are alleles that are variably
expressed because of epigenetic modifications that are
established very early during development (Rakyan
et al., 2002). In metastable epialleles, the epigenetic state
can be altered and the alteration shows transgenerational
inheritance. Metastable alleles are most often determined
by the presence of a retrotransposable element (or
retrotransposon). In particular, the murine metastable
epialleles Avy, AxinFu and CabpIAP are all associated with
contraoriented insertions of a retrotransposable intra-
cisternal A particle (IAP) sequence, a family of retro-
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virus-like genetic elements coding for virus-like particles
(Duhl et al., 1994; Vasicek et al., 1997; Druker et al., 2004).

Epigenetic inheritance and metastable alleles
in animal experiments: the viable yellow
agouti Avy mouse

The viable yellow agouti Avy allele is the most exten-
sively studied murine metastable epiallele. In viable
yellow (Avy/a) mice, transcription originating in an IAP
retrotransposon inserted upstream of the agouti gene (A)
causes ectopic expression of agouti protein, resulting in
yellow fur, obesity, diabetes and increased susceptibility
to tumors (Morgan et al., 1999). Avy mice show variable
expressivity because they are epigenetic mosaics for
activity of the retrotransposon: isogenic Avy mice have
coats that vary in a continuous spectrum from full
yellow, through variegated yellow/agouti, to full agouti
(pseudoagouti). The distribution of phenotypes among
offspring is related to the phenotype of the dam; when an
Avy dam has the agouti phenotype, her offspring is more
likely to be agouti. It has been shown that the offspring
color is not the result of a maternally contributed
environment, but rather genuinely inherited, and is
associated with transmission of a silenced Avy allele
through the female germ line (Morgan et al., 1999).

Is there enough evidence for epigenetic
inheritance in humans?

Determining whether equivalents of metastable epial-
leles exist and are frequent in humans poses substantial
challenges. There are just a few reports that have been
used to suggest inheritance of epigenetic states in
humans. For example, in several cases of familial
colorectal cancer, the mismatch repair genes MLH1 and
MSH2, which usually exhibit low or no methylation,
have been found to be silenced because of promoter
methylation, and this has been occasionally detected in
successive generations (Suter et al., 2004; Chan et al., 2006;
Hitchins et al., 2007). However, these were reports of
single families and it is has been argued that the
promoter methylation identified, even if detected in
multiple family members, could be explained by somatic
events that occurred after fertilization (Horsthemke,
2007). Whitelaw and Whitelaw (2008) have recently
remarked that, in the light of current evidence, the
notion that epigenetic marks can be directly inherited
across generations in humans remains contentious.

Environmental influences on epigenetic
states during early development in
animal models

Modifications to the environment during early develop-
ment can lead to permanent changes in the pattern of
epigenetic modifications (Fauque et al., 2007). Pregnant
female rats exposed during time of sex determination to
the endocrine disruptor vinclozolin have been shown
to exhibit in their male offspring transgenerational
disease state leading to spermatogenic defects, prostate
disease, kidney disease, immune system abnormalities,
hypercholesterolemia and an increased rate of tumor

development in the F1–F4 generation offspring (Anway
et al., 2005, 2006a, b; Anway and Skinner, 2006; Chang
et al., 2006). Both the F1 generation embryo and F2
generation germ line are directly exposed when an F0
generation pregnant mother is exposed. Therefore, only
the F3 generation can provide the first unequivocal signs
of transgenerational inheritance. The transgenerational
disease states in the vinclozolin F1–F4 generation
animals were found to be associated with a transgenera-
tional alteration in the epigenetic programming of the
male germ line (Anway et al., 2005).

A second example of an epigenetic toxicant is
represented by bisphenol A (BPA), a high-production-
volume chemical used in the manufacture of polycarbo-
nate plastic. In utero or neonatal exposure to BPA is
associated with higher body weight, increased breast and
prostate cancer, as well as altered reproductive function.
Dolinoy et al. (2007a) showed that maternal BPA
exposure shifted the coat color distribution of viable
yellow agouti (Avy) mouse offspring toward yellow by
decreasing CpG (cytosine-guanine dinucleotide) methy-
lation in the IAP sequence upstream of the Agouti gene
(Waterland, 2009). In addition, CpG methylation was
also decreased at the CabpIAP metastable locus. DNA
methylation at the Avy locus was similar in tissues from
the three germ layers, suggesting that BPA affected
epigenetic patterning during early stem-cell develop-
ment. Moreover, maternal dietary supplementation with
either methyl donors folic acid or the phytoestrogen
genistein blunted the DNA-hypomethylating effect of
BPA (Dolinoy et al., 2007a). However, as this investiga-
tion was conducted only up to the F2 generation, it did
not directly show inheritance of the epigenetic modifica-
tions induced by BPA exposure.

Translating environmental epigenetic effects
from animal models to humans

Translating results obtained in mouse models to humans
is not straightforward. The agouti model cannot be
directly applied to humans, and neither is there a human
equivalent of kinked tails. One common characteristic of
the mouse models described above is that their meta-
stable alleles all include an IAP retrotransposon. IAP
sequences are endogenous retrovirus-like mobile ele-
ments, present at 1000 copies in the mouse genome.
These elements transpose in a replicative manner
through an RNA intermediate and its reverse transcrip-
tion, and their transposition should therefore be tightly
controlled by their transcription level (Dupressoir and
Heidmann, 1997). In humans, more than one-third of
DNA methylation occurs in retrotransposons (Kochanek
et al., 1993; Schmid, 1998), which represent a large
portion of the human genome (Bernstein et al., 2006).
Among these sequences, Alu and LINE-1 retrotrans-
posons are the most plentiful families representing
B30% of the human genome (Kazazian and Goodier,
2002; Grover et al., 2004; Babushok and Kazazian, 2007)
and are heavily methylated (Yang et al., 2004). Owing to
their high representation throughout the genome, Alu
and LINE-1 have been proposed as surrogate markers for
estimating the global DNA methylation level (Yang et al.,
2004; Weisenberger et al., 2005), but growing evidence
indicates that they could have specific and distinct
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cellular roles (Wallace et al., 2008). Hypomethylation of
repetitive elements favors their activity as retrotrans-
posable sequences and has been suggested to have
deleterious effects on cells, initially through insertional
mutations (Kazazian, 2004), and later by introducing
genome instability through deletions and genomic
rearrangements (Ostertag and Kazazian, 2001; Gilbert
et al., 2002; Wallace et al., 2008).

In healthy populations, inter-individual methylation
variations at Alu or LINE-1 elements from blood DNA
have also been associated with risk factors for cancer,
neurological and cardiovascular diseases (Bollati et al.,
2007; Rusiecki et al., 2008; Baccarelli and Bollati, 2009;
Baccarelli et al., 2009). In addition, the finding of an age-
associated decline in repetitive-element methylation in
normal tissues of aging individuals suggests a possible
role in various common human age-related diseases
(Bollati et al., 2009).

Epigenetics and environmental toxicants
in humans

Exposure to air pollution, particularly to particulate
matter (PM), has been associated with increased mor-
bidity and mortality from cardiorespiratory disease, as
well as with lung cancer risk (Samet et al., 2000; Brook
et al., 2004; Peters, 2005; Vineis and Husgafvel-Pursiai-
nen, 2005; Baccarelli et al., 2008c). In a human study, we
recently showed that promoter methylation of the iNOS
(inducible Nitric Oxide Synthase) gene was lower in
blood samples obtained from foundry workers with
well-characterized exposure to PM with aerodynamic
diameter o10 mm (PM10) (Tarantini et al., 2008). iNOS
demethylation is expected to increase the expression and
activity of the iNOS protein, which could in turn
contribute to inflammation and oxidative stress genera-
tion, which are primary mechanisms linking inhalation
of air pollutants to their acute health effects (Baccarelli
et al., 2007; Chahine et al., 2007; Alexeeff et al., 2008). In
the same study, long-term exposure to PM10 was
negatively associated with methylation in both Alu and
LINE-1 (Tarantini et al., 2008). In a recent investigation,
we showed that exposure to black carbon, a marker of
particles from vehicular traffic, was also associated with
decreased DNA methylation in LINE-1, measured in
1097 blood DNA samples obtained from the NAS
(Normative Aging Study), an investigation of elderly
men in the Boston area. As repetitive-element hypo-
methylation is believed to occur in patients with cancer
(Ehrlich, 2002) and cardiovascular disease (Castro et al.,
2003); such changes may reproduce epigenetic processes
related to disease development and represent mechan-
isms by which particulate air pollution affects human
health (Baccarelli et al., 2008c). Several in vitro studies
have established an association between DNA methyla-
tion and environmental metals, which are components of
PM, including nickel, cadmium, lead and particularly
arsenic (McVeigh et al., 2001; Bleich et al., 2006; Wright
and Baccarelli, 2007; Dolinoy et al., 2007b).

In addition, in an animal study, Yauk et al. (2008)
showed that sperm DNA of mice exposed to steel plant
air was hypermethylated compared with control animals
and this change persisted even after removal from
environmental exposure. This finding calls for further

research to determine whether air pollutants produce
DNA methylation changes that are transmitted trans-
generationally.
In our laboratory, we also investigated whether DNA

methylation changes are induced by low-benzene ex-
posure in peripheral blood DNA of gasoline station
attendants and traffic police officers. High-level exposure
to benzene has been associated with increased risk of
acute myelogenous leukemia (Snyder, 2002). In our
study, airborne benzene exposure was associated with
a significant reduction in LINE-1 and Alu methylation.
Airborne benzene was also associated with hypermethy-
lation in p15 and hypomethylation of the MAGE-1
cancer-antigen gene (Bollati et al., 2007). These findings
show that low-level benzene exposure may induce
altered DNA methylation reproducing the aberrant
epigenetic patterns found in malignant cells, which in
most reports have been found to exhibit repetitive-
element hypomethylation as well as either hypermethy-
lation or hypomethylation of specific genes, depending
on the gene function. In addition, benzene-associated
demethylation of repetitive elements may help explain
the epidemiological data linking benzene exposure to
increased risk of multiple myeloma (Costantini et al.,
2008; Kirkeleit et al., 2008), which also exhibits reduced
methylation in Alu and LINE-1 repetitive elements
(Bollati et al., 2007).
Other exposures that are associated with increased risk

of hematopoietic malignancies, such as persistent organic
pollutants, have been associated with changes in
repetitive-element DNA methylation. Rusiecki et al.
(2008) evaluated the relationship between plasma persis-
tent organic pollutant concentrations and blood global
DNA methylation, estimated in Alu repeated elements,
and in 70 Greenlandic Inuit, a population presenting
some of the highest reported levels of persistent organic
pollutants worldwide. In this study, a significant inverse
linear relationship was found for DDT, DDE, b-BHC,
oxychlordane, a-chlordane, mirex, several PCBs and the
sum of all persistent organic pollutants (Rusiecki et al.,
2008). As most of the exposures investigated increase
oxidative stress in human tissues, it is possible that the
production of reactive oxygen species represents a
unifying process to account for most of these findings
across different chemicals (Wright and Baccarelli, 2007;
Baccarelli and Bollati, 2009). Oxidative DNA damage can
interfere with the ability of methyltransferases to interact
with DNA (Valinluck et al., 2004), thus resulting in a
generalized altered methylation of cytosine residues at
CpG sites (Turker and Bestor, 1997).

Final remarks

In the last few years, several investigations have
examined the relationship between exposure to environ-
mental chemicals and epigenetics, and identified several
toxicants that modify epigenetic marks. Most of the
studies conducted so far have been focused on DNA
methylation, whereas only a few recent investigations
have studied the effects of environmental chemicals on
histone modifications (Baccarelli and Bollati, 2009). In
animal models, environmental effects that might involve
epigenetic mechanisms have been shown to be trans-
mitted transgenerationally. Whether the transgenera-
tional epigenetic effects of environmental exposures are
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present in humans, or whether epigenetic inheritance
exists at all in humans, remains to be elucidated.

Nonetheless, growing evidence indicates that epi-
genetics holds substantial potential for developing
biological markers to predict which exposures would
put exposed subjects at risk and which individuals will
be more susceptible to develop disease. In human
studies, this will require the use of laboratory methods
with enhanced precision, sensitivity and coverage, so
that epigenetic changes can be detected as early as
possible and well ahead of disease diagnosis. For several
exposures, it has been proven that chemicals can alter
epigenetic marks and that the same or similar epigenetic
alterations can be found in patients with the disease of
concern and/or in diseased tissues. Future prospective
investigations are required to determine whether ex-
posed subjects develop epigenetic alterations over time
and, in turn, whether such alterations increase the risk of
disease.
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