Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Efficient mobilization and recruitment of marrow-derived endothelial and hematopoietic stem cells by adenoviral vectors expressing angiogenic factors

Abstract

Adult bone marrow (BM) is a rich reservoir for endothelial and hematopoietic stem and progenitor cells that contribute to revascularization of injured and tumor tissue. Physiological stress results in the release of specific chemo-cytokines that promote mobilization of stem cells to the circulation and direct their incorporation into the target tissues. In order to dissect the mechanism and identify the cellular mediators that regulate stem cell recruitment, we have developed an in vivo murine model, in which the plasma levels of chemokines are elevated by introducing adenoviral vectors (Advectors) expressing such chemokines. Among the known stem cell-active chemokines, the angiogenic factor VEGF through interaction with its receptors, VEGFR2 and VEGFR1 expressed on endothelial and hematopoietic stem cells, promotes mobilization and recruitment of these cells into the neo-angiogenic sites, thereby accelerating the revascularization process. Based on these studies, it has become apparent that mobilization of stem cells is a dynamic process and requires sequential release of chemocytokines, expression of adhesion molecules and activation of proteases that facilitate egress of cells from the BM to the circulation. Chemokine-activation of metalloproteinases is essential for the release of bio-active cytokines, thereby enhancing stem cell mobilization potential. Advectors are ideal for delivery of chemocytokines since they allow for long-term robust expression facilitating in vivo proliferation and mobilization of large numbers of an otherwise rare population of stem cells. VEGF-mobilized endothelial and hematopoietic stem cells provide for an enriched source of adult pluripotent cells that can be used for revascularization, tissue regeneration or gene therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Reya T, Morrison SJ, Clarke MF, Weissman IL . Stem cells, cancer, and cancer stem cells Nature 2000 414: 105–111

    Google Scholar 

  2. Lyden D et al. Impaired recruitment of bone marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth Nat Med 2001 7: 1194–1201

    CAS  PubMed  Google Scholar 

  3. Blau HM, Brazelton TR, Weimann JM . The evolving concept of a stem cell: entity or function? Cell 2001 105: 829–841

    CAS  PubMed  Google Scholar 

  4. Orlic D et al. Bone marrow cells regenerate infarcted myocardium Nature 2001 410: 701–705

    CAS  PubMed  Google Scholar 

  5. Jackson KA et al. Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells J Clin Invest 2201 107: 1395–1402

    Google Scholar 

  6. Kocher AA et al. Neovascularization of ischemic myocardium by human bone marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function Nat Med 2001 7: 430–436

    CAS  PubMed  Google Scholar 

  7. Krause DS et al. Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell Cell 2001 105: 369–377

    CAS  PubMed  Google Scholar 

  8. Moore MA . Stem cell proliferation: ex vivo and in vivo observations Stem Cells 1997 1: 239–248

    Google Scholar 

  9. Lemischka IR, Raulet DH, Mulligan RC . Developmental potential and dynamic behavior of hematopoietic stem cells Cell 1986 45: 917–927

    CAS  PubMed  Google Scholar 

  10. Spangrude GJ, Heimfeld S, Weissman IL . Purification and characterization of mouse hematopoietic stem cells (published erratum appears in Science 1989; 244: 1030) Science 1988 241: 58–62

    CAS  PubMed  Google Scholar 

  11. Spangrude GJ et al. Mouse hematopoietic stem cells Blood 1991 78: 1395–1402

    CAS  PubMed  Google Scholar 

  12. Cheshier SH, Morrison SJ, Liao X, Weissman IL . In vivo proliferation and cell cycle kinetics of long-term self-renewing hematopoietic stem cells Proc Natl Acad Sci USA 1999 96: 3120–3125

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Miller JS et al. Single adult human CD34(+)/Lin-/CD38(-) progenitors give rise to natural killer cells, B-lineage cells, dendritic cells, and myeloid cells Blood 1999 93: 96–106

    CAS  PubMed  Google Scholar 

  14. Fennie C et al. CD34+ endothelial cell lines derived from murine yolk sac induce the proliferation and differentiation of yolk sac CD34+ hematopoietic progenitors Blood 1995 86: 4454–4467

    CAS  PubMed  Google Scholar 

  15. Yin AH et al. AC133, a novel marker for human hematopoietic stem and progenitor cells Blood 1997 90: 5002–5012

    CAS  PubMed  Google Scholar 

  16. Miraglia S et al. A novel five-transmembrane hematopoietic stem cell antigen: isolation, characterization, and molecular cloning Blood 1997 90: 5013–5021

    CAS  PubMed  Google Scholar 

  17. Vormoor J et al. Immature human cord blood progenitors engraft and proliferate to high levels in severe combined immunodeficient mice Blood 1994 83: 2489–2497

    CAS  PubMed  Google Scholar 

  18. Peichev M et al. Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors Blood 2000 95: 952–958

    CAS  PubMed  Google Scholar 

  19. Rafii S et al. Characterization of hematopoietic cells arising on the textured surface of left ventricular assist devices Ann Thorac Surg 1995 60: 1627–1632

    CAS  PubMed  Google Scholar 

  20. Rafii S . Circulating endothelial precursors: mystery, reality, and promise J Clin Invest 2000 105: 17–19

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Shi Q et al. Evidence for circulating bone marrow-derived endothelial cells Blood 1998 92: 362–367

    CAS  PubMed  Google Scholar 

  22. Asahara T et al. Isolation of putative progenitor endothelial cells for angiogenesis Science 1997 275: 964–967

    CAS  PubMed  Google Scholar 

  23. Asahara TV et al. EGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells EMBO J 1999 18: 3964–3972

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Asahara T et al. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization Circ Res 1999 85: 221–228

    CAS  PubMed  Google Scholar 

  25. Takahashi T et al. Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization Nat Med 1999 5: 434–438

    CAS  PubMed  Google Scholar 

  26. Mackarehtschian K et al. Targeted disruption of the flk2/flt3 gene leads to deficiencies in primitive hematopoietic progenitors Immunity 1995 3: 147–161

    CAS  PubMed  Google Scholar 

  27. Lyman SD et al. Molecular cloning of a ligand for the flt3/flk-2 tyrosine kinase receptor: a proliferative factor for primitive hematopoietic cells Cell 1993 75: 1157–1167

    CAS  PubMed  Google Scholar 

  28. McKenna HJ et al. Effect of flt3 ligand on the ex vivo expansion of human CD34+ hematopoietic progenitor cells Blood 1995 86: 3413–3420

    CAS  PubMed  Google Scholar 

  29. Shapiro F et al. The effects of Flk-2/flt3 ligand as compared with c-kit ligand on short-term and long-term proliferation of CD34+ hematopoietic progenitors elicited from human fetal liver, umbilical cord blood, bone marrow, and mobilized peripheral blood J Hematother 1996 5: 655–662

    CAS  PubMed  Google Scholar 

  30. Zeigler FC et al. Cellular and molecular characterization of the role of the flk-2/flt-3 receptor tyrosine kinase in hematopoietic stem cells Blood 1994 84: 2422–2430

    CAS  PubMed  Google Scholar 

  31. Haylock DN et al. Increased recruitment of hematopoietic progenitor cells underlies the ex vivo expansion potential of FLT3 ligand Blood 1997 90: 2260–2272

    CAS  PubMed  Google Scholar 

  32. Papayannopoulou T et al. In vivo effects of Flt3/Flk2 ligand on mobilization of hematopoietic progenitors in primates and potent synergistic enhancement with granulocyte colony-stimulating factor Blood 1997 90: 620–629

    CAS  PubMed  Google Scholar 

  33. Banu N, Deng B, Lyman SD, Avraham H . Modulation of haematopoietic progenitor development by FLT-3 ligand Cytokine 1999 11: 679–688

    CAS  PubMed  Google Scholar 

  34. Matsunaga T, Kato T, Miyazaki H, Ogawa M . Thrombopoietin promotes the survival of murine hematopoietic long-term reconstituting cells: comparison with the effects of FLT3/FLK-2 ligand and interleukin-6 Blood 1998 92: 452–461

    CAS  PubMed  Google Scholar 

  35. Solar GP et al. Role of c-mpl in early hematopoiesis Blood 1998 92: 4–10

    CAS  PubMed  Google Scholar 

  36. Kaushansky K . Thrombopoietin and the hematopoietic stem cell Blood 1998 92: 1–3

    CAS  PubMed  Google Scholar 

  37. Stoffel R et al. Permissive role of thrombopoietin and granulocyte colony-stimulating factor receptors in hematopoietic cell fate decisions in vivo Proc Natl Acad Sci USA 1999 96: 698–702

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Murone M, Carpenter DA, de Sauvage FJ . Hematopoietic deficiencies in c-mpl and TPO knockout mice Stem Cells 1998 16: 1–6

    CAS  PubMed  Google Scholar 

  39. Yonemura Y, Ku H, Lyman SD, Ogawa M . In vitro expansion of hematopoietic progenitors and maintenance of stem cells: comparison between FLT3/FLK-2 ligand and KIT ligand Blood 1997 89: 1915–1921

    CAS  PubMed  Google Scholar 

  40. Papayannopoulou T, Brice M, Broudy VC, Zsebo KM . Isolation of c-kit receptor-expressing cells from bone marrow, peripheral blood, and fetal liver: functional properties and composite antigenic profile Blood 1991 78: 1403–1412

    CAS  PubMed  Google Scholar 

  41. Luens KM et al. Thrombopoietin, kit ligand, and flk2/flt3 ligand together induce increased numbers of primitive hematopoietic progenitors from human CD34+Thy-1+Lin- cells with preserved ability to engraft SCID-hu bone Blood 1998 91: 1206–1215

    CAS  PubMed  Google Scholar 

  42. Moore KA, Ema H, Lemischka IR . In vitro maintenance of highly purified, transplantable hematopoietic stem cells Blood 1997 89: 4337–4347

    CAS  PubMed  Google Scholar 

  43. Ema H, Nakauchi H . Expansion of hematopoietic stem cells in the developing liver of a mouse embryo Blood 2000 95: 2284–2288

    CAS  PubMed  Google Scholar 

  44. Murray L et al. Optimization of retroviral gene transduction of mobilized primitive hematopoietic progenitors by using thrombopoietin, Flt3 and Kit ligands and RetroNectin culture Hum Gene Ther 1999 10: 1743–1752

    CAS  PubMed  Google Scholar 

  45. Brannan CI et al. Steel-Dickie mutation encodes a c-kit ligand lacking transmembrane and cytoplasmic domains Proc Natl Acad Sci USA 1991 88: 4671–4674

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Kurosawa K et al. Immobilized anti-KIT monoclonal antibody induces ligand-independent dimerization and activation of Steel factor receptor: biologic similarity with membrane-bound form of Steel factor rather than its soluble form Blood 1996 87: 2235–2243

    CAS  PubMed  Google Scholar 

  47. Rafii S et al. Regulation of hematopoiesis by microvascular endothelium Leuk Lymphoma 1997 27: 375–386

    CAS  PubMed  Google Scholar 

  48. Rafii S et al. Isolation and characterization of human bone marrow microvascular endothelial cells: hematopoietic progenitor cell adhesion Blood 1994 84: 10–19

    CAS  PubMed  Google Scholar 

  49. Mohle R et al. Regulation of transendothelial migration of hematopoietic progenitor cells Ann NY Acad Sci 1999 872: 176–186

    CAS  PubMed  Google Scholar 

  50. Papayannopoulou T, Craddock C . Homing and trafficking of hemopoietic progenitor cells Acta Haematol 1997 97: 97–104

    CAS  PubMed  Google Scholar 

  51. Hardy CL, Megason GC . Specificity of hematopoietic stem cell homing Hematol Oncol 1996 14: 17–27

    CAS  PubMed  Google Scholar 

  52. Vermeulen M, Le Pesteur F, Gagnerault MC, Mary JY, Sainteny F, Lepault F . Role of adhesion molecules in the homing and mobilization of murine hematopoietic stem and progenitor cells Blood 1998 92: 894–900

    CAS  PubMed  Google Scholar 

  53. Butcher EC, Picker LJ . Lymphocyte homing and homeostasis Science 1996 272: 60–66

    CAS  PubMed  Google Scholar 

  54. Springer TA . Adhesion receptors of the immune system Nature 1990 346: 425–434

    CAS  PubMed  Google Scholar 

  55. Springer TA . Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm Cell 1994 76: 301–314

    CAS  PubMed  Google Scholar 

  56. Naiyer AJ et al. Stromal derived factor-1-induced chemokinesis of cord blood CD34(+) cells (long-term culture-initiating cells) through endothelial cells is mediated by E-selectin Blood 1999 94: 4011–4019

    CAS  PubMed  Google Scholar 

  57. Jo DY, Rafii S, Hamada T, Moore MA . Chemotaxis of primitive hematopoietic cells in response to stromal cell-derived factor-1 J Clin Invest 2000 105: 101–111

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Hamada T et al. Transendothelial migration of megakaryocytes in response to stromal cell-derived factor 1 (SDF-1) enhances platelet formation J Exp Med 1998 188: 539–548

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Mohle R, Moore MA, Nachman RL, Rafii S . Transendothelial migration of CD34+ and mature hematopoietic cells: an in vitro study using a human bone marrow endothelial cell line Blood 1997 89: 72–80

    CAS  PubMed  Google Scholar 

  60. Candal FJ et al. BMEC-1: a human bone marrow microvascular endothelial cell line with primary cell characteristics Microvasc Res 1996 52: 221–234

    CAS  PubMed  Google Scholar 

  61. Levesque JP, Simmons PJ . Cytokine regulation of proliferation and cell adhesion are correlated events in human CD34+ hemopoietic progenitors Blood 1996 88: 1168–1176

    CAS  PubMed  Google Scholar 

  62. Weber C, Alon R, Moser B, Springer TA . Sequential regulation of alpha 4 beta 1 and alpha 5 beta 1 integrin avidity by CC chemokines in monocytes: implications for transendothelial chemotaxis J Cell Biol 1996 134: 1063–1073

    CAS  PubMed  Google Scholar 

  63. Papayannopoulou T, Priestley GV, Nakamoto B . Anti-VLA4/VCAM-1-induced mobilization requires cooperative signaling through the kit/mkit ligand pathway Blood 1998 91: 2231–2239

    CAS  PubMed  Google Scholar 

  64. Papayannopoulou T et al. The VLA4/VCAM-1 adhesion pathway defines contrasting mechanisms of lodgement of transplanted murine hemopoietic progenitors between bone marrow and spleen Proc Natl Acad Sci USA 1995 92: 9647–9651

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Tavassoli M, Hardy CL . Molecular basis of homing of intravenously transplanted stem cells to the marrow Blood 1990 76: 1059–1070

    CAS  PubMed  Google Scholar 

  66. Aiuti A et al. The chemokine SDF-1 is a chemoattractant for human CD34+ hematopoietic progenitor cells and provides a new mechanism to explain the mobilization of CD34+ progenitors to peripheral blood J Exp Med 1997 185: 111–120

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Mohle R et al. The chemokine receptor CXCR-4 is expressed on CD34+ hematopoietic progenitors and leukemic cells and mediates transendothelial migration induced by stromal cell-derived factor-1 Blood 1998 91: 4523–4530

    CAS  PubMed  Google Scholar 

  68. Peled A et al. Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4 Science 1999 283: 845–851

    CAS  PubMed  Google Scholar 

  69. Kim CH, Broxmeyer HE . In vitro behavior of hematopoietic progenitor cells under the influence of chemoattractants: stromal cell-derived factor-1, steel factor, and the bone marrow environment Blood 1998 91: 100–110

    CAS  PubMed  Google Scholar 

  70. Imai K et al. Selective secretion of chemoattractants for haemopoietic progenitor cells by bone marrow endothelial cells: a possible role in homing of haemopoietic progenitor cells to bone marrow Br J Haematol 1999 106: 905–911

    CAS  PubMed  Google Scholar 

  71. Ma Q, Jones D, Springer TA . The chemokine receptor CXCR4 is required for the retention of B lineage and granulocytic precursors within the bone marrow microenvironment Immunity 1999 10: 463–471

    CAS  PubMed  Google Scholar 

  72. Zou YR et al. Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development Nature 1998 393: 595–599

    CAS  PubMed  Google Scholar 

  73. Nagasawa T, Tachibana K, Kishimoto T . A novel CXC chemokine PBSF/SDF-1 and its receptor CXCR4: their functions in development, hematopoiesis and HIV infection Semin Immunol 1998 10: 179–185

    CAS  PubMed  Google Scholar 

  74. Tachibana K et al. The chemokine receptor CXCR4 is essential for vascularization of the gastrointestinal tract Nature 1998 393: 591–594

    CAS  PubMed  Google Scholar 

  75. Ma Q et al. Impaired B-lymphopoiesis, myelopoiesis, and derailed cerebellar neuron migration in CXCR4- and SDF-1-deficient mice Proc Natl Acad Sci USA 1998 95: 9448–9453

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Gupta SK et al. Chemokine receptors in human endothelial cells. Functional expression of CXCR4 and its transcriptional regulation by inflammatory cytokines J Biol Chem 1998 273: 4282–4287

    CAS  PubMed  Google Scholar 

  77. Bajetto A et al. Glial and neuronal cells express functional chemokine receptor CXCR4 and its natural ligand stromal cell-derived factor 1 J Neurochem 1999 73: 2348–2357

    CAS  PubMed  Google Scholar 

  78. Kawabata K et al. A cell-autonomous requirement for CXCR4 in long-term lymphoid and myeloid reconstitution Proc Natl Acad Sci USA 1999 96: 5663–5667

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Wiesmann A, Spangrude GJ . Marrow engraftment of hematopoietic stem and progenitor cells is independent of Galphai-coupled chemokine receptors Exp Hematol 1999 27: 946–955

    CAS  PubMed  Google Scholar 

  80. Leung DW et al. Vascular endothelial growth factor is a secreted angiogenic mitogen Science 1989 246: 1306–1309

    CAS  PubMed  Google Scholar 

  81. Flamme I, Breier G, Risau W . Vascular endothelial growth factor (VEGF) and VEGF receptor 2 (flk-1) are expressed during vasculogenesis and vascular differentiation in the quail embryo Dev Biol 1995 169: 699–712

    CAS  PubMed  Google Scholar 

  82. Ferrara N et al. Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene Nature 1996 380: 439–442

    CAS  PubMed  Google Scholar 

  83. Carmeliet P et al. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele Nature 1996 380: 435–439

    CAS  PubMed  Google Scholar 

  84. Sawano A et al. Flt-1 but not KDR/Flk-1 tyrosine kinase is a receptor for placenta growth factor, which is related to vascular endothelial growth factor Cell Growth Differ 1996 7: 213–221

    CAS  PubMed  Google Scholar 

  85. Moscatelli D, Presta M, Rifkin DB . Purification of a factor from human placenta that stimulates capillary endothelial cell protease production, DNA synthesis, and migration Proc Natl Acad Sci USA 1986 83: 2091–2095

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Maglione D et al. Two alternative mRNAs coding for the angiogenic factor, placenta growth factor (PlGF), are transcribed from a single gene of chromosome 14 Oncogene 1993 8: 925–931

    CAS  PubMed  Google Scholar 

  87. Olofsson B et al. Genomic organization of the mouse and human genes for vascular endothelial growth factor B (VEGF-B) and characterization of a second splice isoform J Biol Chem 1996 271: 19310–19317

    CAS  PubMed  Google Scholar 

  88. Chilov D et al. Genomic organization of human and mouse genes for vascular endothelial growth factor C J Biol Chem 1997 272: 25176–25183

    CAS  PubMed  Google Scholar 

  89. Laitinen M et al. Differential hormonal regulation of vascular endothelial growth factors VEGF, VEGF-B and VEGF-C messenger ribonucleic acid levels in cultured human granulosa-luteal cells Endocrinology 1997 138: 4748–4756

    CAS  PubMed  Google Scholar 

  90. Ogawa S et al. A novel type of vascular endothelial growth factor, VEGF-E (NZ-7, VEGF), preferentially utilizes KDR/Flk-1 receptor and carries a potent mitotic activity without heparin-binding domain J Biol Chem 1998 273: 31273–31282

    CAS  PubMed  Google Scholar 

  91. Neufeld G, Cohen T, Gengrinovitch S, Poltorak Z . Vascular endothelial growth factor (VEGF) and its receptors FASEB J 1999 13: 9–22

    CAS  PubMed  Google Scholar 

  92. Neufeld G et al. Similarities and differences between the vascular endothelial growth factor (VEGF) splice variants Cancer Metastasis Rev 1996 15: 153–158

    CAS  PubMed  Google Scholar 

  93. Poltorak Z et al. VEGF145, a secreted vascular endothelial growth factor isoform that binds to extracellular matrix J Biol Chem 1997 272: 7151–7158

    CAS  PubMed  Google Scholar 

  94. Gitay-Goren H et al. Selective binding of VEGF121 to one of the three vascular endothelial growth factor receptors of vascular endothelial cells J Biol Chem 1996 271: 5519–5523

    CAS  PubMed  Google Scholar 

  95. Terman BI et al. Identification of the KDR tyrosine kinase as a receptor for vascular endothelial cell growth factor Biochem Biophys Res Commun 1992 187: 1579–1586

    CAS  PubMed  Google Scholar 

  96. Ortega N et al. Systemic activation of the vascular endothelial growth factor receptor KDR/flk-1 selectively triggers endothelial cells with an angiogenic phenotype Am J Pathol 1997 151: 1215–1224

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Shalaby F et al. Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice Nature 1995 376: 62–66

    CAS  PubMed  Google Scholar 

  98. Matthews W et al. A receptor tyrosine kinase cDNA isolated from a population of enriched primitive hematopoietic cells and exhibiting close genetic linkage to c-kit Proc Natl Acad Sci USA 1991 88: 9026–9030

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Fong GH, Rossant J, Gertsenstein M, Breitman ML . Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium Nature 1995 376: 66–70

    CAS  PubMed  Google Scholar 

  100. Clauss M et al. The vascular endothelial growth factor receptor Flt-1 mediates biological activities. Implications for a functional role of placenta growth factor in monocyte activation and chemotaxis J Biol Chem 1996 271: 17629–17634

    CAS  PubMed  Google Scholar 

  101. Ratajczak MZ et al. Role of vascular endothelial growth factor (VEGF) and placenta-derived growth factor (PlGF) in regulating human haemopoietic cell growth Br J Haematol 1998 103: 969–979

    CAS  PubMed  Google Scholar 

  102. Ziegler BL et al. KDR receptor: a key marker defining hematopoietic stem cells Science 1999 285: 1553–1558

    CAS  PubMed  Google Scholar 

  103. Hashiyama M et al. Predominant expression of a receptor tyrosine kinase, TIE, in hematopoietic stem cells and B cells Blood 1996 87: 93–101

    CAS  PubMed  Google Scholar 

  104. Davis S et al. Isolation of angiopoietin-1, a ligand for the TIE2 receptor, by secretion-trap expression cloning Cell 1996 87: 1161–1169

    CAS  PubMed  Google Scholar 

  105. Suri C et al. Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis Cell 1996 87: 1171–1180

    CAS  PubMed  Google Scholar 

  106. Holash J et al. Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF Science 1999 284: 1994–1998

    CAS  PubMed  Google Scholar 

  107. Koblizek TI et al. Angiopoietin-1 induces sprouting angiogenesis in vitro Curr Biol 1998 8: 529–532

    CAS  PubMed  Google Scholar 

  108. Witzenbichler B et al. Chemotactic properties of angiopoietin-1 and -2, ligands for the endothelial-specific receptor tyrosine kinase Tie2 J Biol Chem 1998 273: 18514–18521

    CAS  PubMed  Google Scholar 

  109. Thurston G et al. Leakage-resistant blood vessels in mice transgenically overexpressing angiopoietin-1 Science 1999 286: 2511–2514

    CAS  PubMed  Google Scholar 

  110. Hamaguchi I et al. In vitro hematopoietic and endothelial cell development from cells expressing TEK receptor in murine aorta-gonad-mesonephros region Blood 1999 93: 1549–1556

    CAS  PubMed  Google Scholar 

  111. Huang XL, Takakura N, Suda T . In vitro effects of angiopoietins and VEGF on hematopoietic and endothelial cells Biochem Biophys Res Commun 1999 264: 133–138

    CAS  PubMed  Google Scholar 

  112. Bergers G et al. Effects of angiogenesis inhibitors on multistage carcinogenesis in mice Science 1999 284: 808–812

    CAS  PubMed  Google Scholar 

  113. Hanahan D, Folkman J . Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis Cell 1996 86: 353–364

    CAS  PubMed  Google Scholar 

  114. Coffin JD, Harrison J, Schwartz S, Heimark R . Angioblast differentiation and morphogenesis of the vascular endothelium in the mouse embryo Dev Biol 1991 148: 51–62

    CAS  PubMed  Google Scholar 

  115. Robert B, St John PL, Hyink DP, Abrahamson DR . Evidence that embryonic kidney cells expressing flk-1 are intrinsic, vasculogenic angioblasts Am J Physiol 1996 271: F744–F753

    CAS  PubMed  Google Scholar 

  116. Caprioli A et al. Blood-borne seeding by hematopoietic and endothelial precursors from the allantois Proc Natl Acad Sci USA 1998 95: 1641–1646

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Rollins BJ . Chemokines Blood 1997 90: 909–928

    CAS  PubMed  Google Scholar 

  118. Luster AD . Chemokines – chemotactic cytokines that mediate inflammation N Engl J Med 1998 338: 436–445

    CAS  PubMed  Google Scholar 

  119. Frey BM et al. High-efficiency gene transfer into ex vivo expanded human hematopoietic progenitors and precursor cells by adenovirus vectors Blood 1998 91: 2781–2792

    CAS  PubMed  Google Scholar 

  120. Worgall S, Wolff G, Falck-Pedersen E, Crystal RG . Innate immune mechanisms dominate elimination of adenoviral vectors following in vivo administration Hum Gene Ther 1997 8: 37–44

    CAS  PubMed  Google Scholar 

  121. De Matteo RP et al. Immunologic barriers to hepatic adenoviral gene therapy for transplantation Transplantation 1997 63: 315–319

    CAS  Google Scholar 

  122. Huard J et al. The route of administration is a major determinant of the transduction efficiency of rat tissues by adenoviral recombinants Gene Therapy 1995 2: 107–115

    CAS  PubMed  Google Scholar 

  123. Frey BM et al. Adenovector-mediated expression of human thrombopoietin cDNA in immune-compromised mice: insights into the pathophysiology of osteomyelofibrosis J Immunol 1998 160: 691–699

    CAS  PubMed  Google Scholar 

  124. Ohwada A, Rafii S, Moore MA, Crystal RG . In vivo adenovirus vector-mediated transfer of the human thrombopoietin cDNA maintains platelet levels during radiation-and chemotherapy-induced bone marrow suppression Blood 1996 88: 778–784

    CAS  PubMed  Google Scholar 

  125. Hattori K et al. Vascular endothelial growth factor and angiopoietin-1 stimulate postnatal hematopoiesis by recruitment of vasculogenic and hematopoietic stem cells J Exp Med 2001 193: 1005–1014

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Gill M et al. Vascular trauma induces rapid but transient mobilization of VEGFR2(+)AC133(+) endothelial precursor cells Circ Res 2001 88: 167–174

    CAS  PubMed  Google Scholar 

  127. Hattori K et al. Plasma elevation of stromal cell-derived factor-1 induces mobilization of mature and immature hematopoietic progenitor and stem cells Blood 2001 97: 3354–3360

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

S Rafii is supported by National Heart, Lung, and Blood Institute (NHLBI) grants R01s HL-58707, HL-61849, HL-66592, HL-67839, Translational Research Award from The Leukemia and Lymphoma Society, Research Scholar Grant from the American Cancer Society (RSG-01-091-01) and the Lupin Foundation.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rafii, S., Heissig, B. & Hattori, K. Efficient mobilization and recruitment of marrow-derived endothelial and hematopoietic stem cells by adenoviral vectors expressing angiogenic factors. Gene Ther 9, 631–641 (2002). https://doi.org/10.1038/sj.gt.3301723

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301723

Keywords

This article is cited by

Search

Quick links