Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

On the mechanism whereby cationic lipids promote intracellular delivery of polynucleic acids

Abstract

The mechanism whereby cationic lipids destabilize cell membranes to facilitate the intracellular delivery of macromolecules such as plasmid DNA or antisense oligonucleotides is not well understood. Here, we show that cationic lipids can destabilize lipid bilayers by promoting the formation of nonbilayer lipid structures. In particular, we show that mixtures of cationic lipids and anionic phospholipids preferentially adopt the inverted hexagonal (HII) phase. Further, the presence of ‘helper’ lipids such as dioleoylphosphatidylethanolamine or cholesterol, lipids that enhance cationic lipid-mediated transfection of cells also facilitate the formation of the HII phase. It is suggested that the ability of cationic lipids to promote nonbilayer structures in combination with anionic phospholipids leads to disruption of the endosomal membrane following uptake of nucleic acid–cationic lipid complexes into cells, thus facilitating cytoplasmic release of the plasmid or oligonucleotide.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Mayhew E et al. Cellular uptake and protection against virus infection by polyinosinic-polycytidylic acid entrapped within phospholipid vesicles Mol Pharmacol 1977 13: 488–495

    CAS  PubMed  Google Scholar 

  2. Fawell S et al. Tat-mediated delivery of heterologous proteins into cells Proc Natl Acad Sci USA 1994 91: 664–668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wyman TB et al. Design, synthesis, and characterization of a cationic peptide that binds to nucleic acids and permeabilizes bilayers Biochemistry 1997 36: 3008–3017

    Article  CAS  PubMed  Google Scholar 

  4. Pardridge WM, Boado RJ . Enhanced cellular uptake of biotinylated antisense oligonucleotide or peptide mediated by avidin, a cationic protein FEBS Lett 1991 288: 30–32

    Article  CAS  PubMed  Google Scholar 

  5. Boussif O et al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine Proc Natl Acad Sci USA 1995 92: 7297–7301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Felgner PL et al. Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure Proc Natl Acad Sci USA 1987 84: 7413–7417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Malone RW, Felgner PL, Verma IM . Cationic liposome-mediated RNA transfection Proc Natl Acad Sci USA 1989 86: 6077–6081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bennett CF et al. Cationic lipids enhance cellular uptake and activity of phosphorothioate antisense oligonucleotides Mol Pharmacol 1992 41: 1023–1033

    CAS  PubMed  Google Scholar 

  9. Park YG, Nesterova M, Agrawal S, Cho-Chung YS . Dual blockade of cyclic AMP response element- (CRE) and AP-1-directed transcription by CRE-transcription factor decoy oligonucleotide. gene-specific inhibition of tumor growth J Biol Chem 1999 274: 1573–1580

    Article  CAS  PubMed  Google Scholar 

  10. Kariko K, Megyeri K, Xiao Q, Barnathan ES . Lipofectin-aided cell delivery of ribozyme targeted to human urokinase receptor mRNA FEBS Lett 1994 352: 41–44

    Article  CAS  PubMed  Google Scholar 

  11. Duzgunes N, Felgner PL . Intracellular delivery of nucleic acids and transcription factors by cationic liposomes Methods Enzymol 1993 221: 303–306

    Article  CAS  PubMed  Google Scholar 

  12. Stamatatos L, Leventis R, Zuckermann MJ, Silvius JR . Interactions of cationic lipid vesicles with negatively charged phospholipid vesicles and biological membranes Biochemistry 1988 27: 3917–3925

    Article  CAS  PubMed  Google Scholar 

  13. Zabner J et al. Cellular and molecular barriers to gene transfer by a cationic lipid J Biol Chem 1995 270: 18997–19007

    Article  CAS  PubMed  Google Scholar 

  14. Wrobel I, Collins D . Fusion of cationic liposomes with mammalian cells occurs after endocytosis Biochim Biophys Acta 1995 1235: 296–304

    Article  PubMed  Google Scholar 

  15. Zhou X, Huang L . DNA transfection mediated by cationic liposomes containing lipopolylysine: characterization and mechanism of action Biochim Biophys Acta 1994 1189: 195–203

    Article  CAS  PubMed  Google Scholar 

  16. El Ouahabi A et al. The role of endosome destabilizing activity in the gene transfer process mediated by cationic lipids FEBS Lett 1997 414: 187–192

    Article  CAS  PubMed  Google Scholar 

  17. Wattiaux R, Jadot M, Warnier-Pirotte MT, Wattiaux-De CS . Cationic lipids destabilize lysosomal membrane in vitro FEBS Lett 1997 417: 199–202

    Article  CAS  PubMed  Google Scholar 

  18. Bailey AL, Cullis PR . Membrane fusion with cationic liposomes: effects of target membrane lipid composition Biochemistry 1997 36: 1628–1634

    Article  CAS  PubMed  Google Scholar 

  19. Duzgunes N, Goldstein JA, Friend DS, Felgner PL . Fusion of liposomes containing a novel cationic lipid, N-[2,3-(dioleyloxy)propyl]-N,N,N-trimethylammonium: induction by multivalent anions and asymmetric fusion with acidic phospholipid vesicles Biochemistry 1989 28: 9179–9184

    Article  CAS  PubMed  Google Scholar 

  20. Xu Y, Szoka FC Jr . Mechanism of DNA release from cationic liposome/DNA complexes used in cell transfection Biochemistry 1996 35: 5616–5623

    Article  CAS  PubMed  Google Scholar 

  21. Zelphati O, Szoka FC Jr . Mechanism of oligonucleotide release from cationic liposomes Proc Natl Acad Sci USA 1996 93: 11493–11498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bhattacharya S, Mandal SS . Evidence of interlipidic ion-pairing in anion-induced DNA release from cationic amphiphile-DNA complexes. Mechanistic implications in transfection Biochemistry 1998 37: 7764–7777

    Article  CAS  PubMed  Google Scholar 

  23. Hafez IM, Ansell S, Cullis PR . Tunable pH-sensitive liposomes composed of mixtures of cationic and anionic lipids Biophys J 2000 79: 1438–1446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gao X, Huang L . A novel cationic liposome reagent for efficient transfection of mammalian cells Biochem Biophys Res Commun 1991 179: 280–285

    Article  CAS  PubMed  Google Scholar 

  25. Cullis PR, de Kruijff B . Lipid polymorphism and the functional roles of lipids in biological membranes Biochim Biophys Acta 1979 559: 399–420

    Article  CAS  PubMed  Google Scholar 

  26. Cullis PR, de Kruijff B . The polymorphic phase behaviour of phosphatidylethanolamines of natural and synthetic origin. A 31P NMR study Biochim Biophys Acta 1978 513: 31–42

    Article  CAS  PubMed  Google Scholar 

  27. Kobayashi T et al. A lipid associated with the antiphospholipid syndrome regulates endosome structure and function Nature 1998 392: 193–197

    Article  CAS  PubMed  Google Scholar 

  28. Cullis PR et al. Structural properties of lipids and their functional roles in biological membranes. In: Aloia RC (ed.). Membrane Fluidity in Biology Vol. 1: Academic Press: New York 1983 pp 39–81

  29. Felgner JH et al. Enhanced gene delivery and mechanism studies with a novel series of cationic lipid formulations J Biol Chem 1994 269: 2550–2561

    CAS  PubMed  Google Scholar 

  30. Farhood H, Serbina N, Huang L . The role of dioleoyl phosphatidylethanolamine in cationic liposome mediated gene transfer Biochim Biophys Acta 1995 1235: 289–295

    Article  PubMed  Google Scholar 

  31. Sternberg B, Hong K, Zheng W, Papahadjopoulos D . Ultrastructural characterization of cationic liposome–DNA complexes showing enhanced stability in serum and high transfection activity in vivo Biochim Biophys Acta 1998 1375: 23–35

    Article  CAS  PubMed  Google Scholar 

  32. Templeton NS et al. Improved DNA: liposome complexes for increased systemic delivery and gene expression Nat Biotechnol 1997 15: 647–652

    Article  CAS  PubMed  Google Scholar 

  33. Liu Y et al. Factors influencing the efficiency of cationic liposome-mediated intravenous gene delivery Nat Biotechnol 1997 15: 167–173

    Article  CAS  PubMed  Google Scholar 

  34. Li S et al. Dynamic changes in the characteristics of cationic lipidic vectors after exposure to mouse serum: implications for intravenous lipofection Gene Therapy 1999 6: 585–594

    Article  CAS  PubMed  Google Scholar 

  35. Mok KW, Cullis PR . Structural and fusogenic properties of cationic liposomes in the presence of plasmid DNA Biophys J 1997 73: 2534–2545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Xu Y, Hui SW, Frederik P, Szoka FCJ . Physicochemical characterization and purification of cationic lipoplexes Biophys J 1999 77: 341–353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hope MJ, Walker DC, Cullis PR . Ca2+ and pH induced fusion of small unilamellar vesicles consisting of phosphatidylethanolamine and negatively charged phospholipids: a freeze fracture study Biochem Biophys Res Commun 1983 110: 15–22

    Article  CAS  PubMed  Google Scholar 

  38. Cullis PR, de Kruijff B . Polymorphic phase behaviour of lipid mixtures as detected by 31P NMR. Evidence that cholesterol may destabilize bilayer structure in membrane systems containing phosphatidylethanolamine Biochim Biophys Acta 1978 507: 207–218

    Article  CAS  PubMed  Google Scholar 

  39. Tilcock CP, Bally MB, Farren SB, Cullis PR . Influence of cholesterol on the structural preferences of dioleoylphosphatidylethanolamine-dioleoylphosphatidylcholine systems: a phosphorus-31 and deuterium nuclear magnetic resonance study Biochemistry 1982 21: 4596–4601

    Article  CAS  PubMed  Google Scholar 

  40. Gallay J, de Kruijff B . Correlation between molecular shape and hexagonal HII phase promoting ability of sterols FEBS Lett 1982 143: 133–136

    Article  CAS  PubMed  Google Scholar 

  41. Tate MW, Gruner SM . Temperature dependence of the structural dimensions of the inverted hexagonal (HII) phase of phosphatidylethanolamine-containing membranes Biochemistry 1989 28: 4245–4253

    Article  CAS  PubMed  Google Scholar 

  42. Hope MJ, Mui B, Ansell S, Ahkong QF . Cationic lipids, phosphatidylethanolamine and the intracellular delivery of polymeric, nucleic acid-based drugs Mol Membr Biol 1998 15: 1–14

    Article  CAS  PubMed  Google Scholar 

  43. Wheeler CJ et al. Converting an alcohol to an amine in a cationic lipid dramatically alters the co-lipid requirement, cellular transfection activity and the ultrastructure of DNA-cytofectin complexes Biochim Biophys Acta 1996 1280: 1–11

    Article  PubMed  Google Scholar 

  44. Remy JS, Sirlin C, Vierling P, Behr JP . Gene transfer with a series of lipophilic DNA-binding molecules Bioconjug Chem 1994 5: 647–654

    Article  CAS  PubMed  Google Scholar 

  45. Ellens H et al. Membrane fusion and inverted phases Biochemistry 1989 28: 3692–3703

    Article  CAS  PubMed  Google Scholar 

  46. Rilfors L, Eriksson PO, Arvidson G, Lindblom G . Relationship between three-dimensional arrays of ‘lipidic particles’ and bicontinuous cubic lipid phases Biochemistry 1986 25: 7702–7711

    Article  CAS  PubMed  Google Scholar 

  47. Siegel DP . The modified stalk mechanism of lamellar/inverted phase transitions and its implications for membrane fusion Biophys J 1999 76: 291–313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Roche Molecular Biochemicals . DOTAP liposomal transfection reagent. http://193.197.95.199

  49. Gruner SM, Cullis PR, Hope MJ, Tilcock CP . Lipid polymorphism: the molecular basis of nonbilayer phases Annu Rev Biophys Biophysic Chem 1985 14: 211–238

    Article  CAS  Google Scholar 

  50. Epand RM . Lipid polymorphism and protein-lipid interactions Biochim Biophys Acta 1998 1376: 353–368

    Article  CAS  PubMed  Google Scholar 

  51. Tilcock CP, Cullis PR . Lipid polymorphism Ann N Y Acad Sci 1987 492: 88–102

    Article  CAS  PubMed  Google Scholar 

  52. Radler JO, Koltover I, Salditt T, Safinya CR . Structure of DNA–cationic liposome complexes: DNA intercalation in multilamellar membranes in distinct interhelical packing regimes Science 1997 275: 810–814

    Article  CAS  PubMed  Google Scholar 

  53. Gustafsson J, Arvidson G, Karlsson, Almgren M . Complexes between cationic liposomes and DNA visualized by cryo-TEM Biochim Biophys Acta 1995 1235: 305–312

    Article  PubMed  Google Scholar 

  54. Cullis PR, Hope MJ . The bilayer stabilizing role of sphingomyelin in the presence of cholesterol. A 31P NMR study Biochim Biophys Acta 1980 597: 533–542

    Article  CAS  PubMed  Google Scholar 

  55. Gordesky SE, Marinetti GV . The asymetric arrangement of phospholipids in the human erythrocyte membrane Biochem Biophys Res Commun 1973 50: 1027–1031

    Article  CAS  PubMed  Google Scholar 

  56. Behr JP, Demeneix B, Loeffler JP, Perez-Mutul J . Efficient gene transfer into mammalian primary endocrine cells with lipopolyamine-coated DNA Proc Natl Acad Sci USA 1989 86: 6982–6986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Marshall J et al. Cationic lipid structure and formulation considerations for optimal gene transfection of the lung J Drug Target 2000 7: 453–469

    Article  CAS  PubMed  Google Scholar 

  58. Rand RP, Sengupta S . Cardiolipin forms hexagonal structures with divalent cations Biochim Biophys Acta 1972 255: 484–492

    Article  CAS  PubMed  Google Scholar 

  59. Cullis PR, Verkleij AJ, Ververgaert PH . Polymorphic phase behaviour of cardiolipin as detected by 31P NMR and freeze–fracture techniques. Effects of calcium, dibucaine and chlorpromazine Biochim Biophys Acta 1978 513: 11–20

    Article  CAS  PubMed  Google Scholar 

  60. Cullis PR, Verkleij AJ . Modulation of membrane structure by Ca2+ and dibucaine as detected by 31P NMR Biochim Biophys Acta 1979 552: 546–551

    Article  CAS  PubMed  Google Scholar 

  61. Lam AM, Cullis PR . Calcium enhances the transfection potency of plasmid DNA–cationic liposome complexes Biochim Biophys Acta 2000 1463: 279–290

    Article  CAS  PubMed  Google Scholar 

  62. Legendre JY, Szoka FCJ . Cyclic amphipathic peptide–DNA complexes mediate high-efficiency transfection of adherent mammalian cells Proc Natl Acad Sci USA 1993 90: 893–897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. de Kruijff B, Cullis PR . The influence of poly(L-lysine) on phospholipid polymorphism. Evidence that electrostatic polypeptide–phospholipid interactions can modulate bilayer/non-bilayer transitions Biochim Biophys Acta 1980 601: 235–240

    Article  CAS  PubMed  Google Scholar 

  64. Berlose JP et al. Conformational and associative behaviours of the third helix of antennapedia homeodomain in membrane-mimetic environments Eur J Biochem 1996 242: 372–386

    Article  CAS  PubMed  Google Scholar 

  65. Fiske CH, Subbarow Y . The colorimetric determination of phosphorus J Biol Chem 1925 66: 375–379

    CAS  Google Scholar 

  66. Ferrari ME et al. Analytical methods for the characterization of cationic lipid–nucleic acid complexes Hum Gene Ther 1998 9: 341–351

    Article  CAS  PubMed  Google Scholar 

  67. Bligh EG, Dyer WJ . A rapid method of total lipid extraction and purification Can J Biochem Physiol 1959 37: 911–917

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Medical Research Council of Canada. IMH acknowledges support from the Science Council of British Columbia in the form of a GREAT award.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hafez, I., Maurer, N. & Cullis, P. On the mechanism whereby cationic lipids promote intracellular delivery of polynucleic acids. Gene Ther 8, 1188–1196 (2001). https://doi.org/10.1038/sj.gt.3301506

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301506

Keywords

This article is cited by

Search

Quick links