Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Nonviral Transfer Technology
  • Published:

Intra-pinna anti-tumor vaccination with self-replicating infectious RNA or with DNA encoding a model tumor antigen and a cytokine

Abstract

To optimize polynucleotide vaccinations for protective antitumor immunity we used a self-replicating RNA vaccine in which Semliki Forest virus replicase drives RNA expression of the lacZ gene coding for β-galactosidase as model tumor-associated antigen (TAA). This was compared with replicase-deficient control RNA and with lacZ DNA plasmids with respect to gene expression in vitro and in vivo and for vaccination using the mouse ear pinna as an optimal immunization site. In vitro, the highest expression was observed with self-replicating RNA. Gene expression following pinna inoculation of either non-replicating DNA plasmids or self-replicating RNA was similar, lasting for 2–3 weeks. Higher antibody responses were obtained with RNA than with DNA. β-Gal peptide specific CTL memory responses to lacZ DNA or RNA lasted for more than 6 weeks while respective responses induced by lacZ-transfected tumor cells lasted for only 2 weeks. To achieve a protective response against lacZ tumor cells with self-replicating RNA about a 100-fold lower dose of polynucleotide was sufficient in comparison to DNA. The extent of protective antitumor immunity not only depended on the gene dose used for vaccination, but also on the aggressiveness of the lacZ- transfected tumor line used for challenge. In comparison to lacZ-transfected tumor cells as vaccines, polynucleotide vaccination also demonstrated superiority with regard to cross-protection. Protective antitumor immunity could be strongly increased upon co-inoculation of lacZ DNA with IL-2 DNA or IL-12 RNA. IL-2 DNA, but not IL-12 RNA, also augmented the CTL response while IL-12 RNA, but not IL-2 DNA, reduced the antibody response. These results demonstrate efficient protective antitumor immunity after intra-pinna lacZ TAA polynucleotide vaccination and show additional immunomodulatory effects by co-administration of cytokine polynucleotides.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Donnelly JJ, Ulmer JB, Shiver JW, Liu MA . DNA vaccines Annu Rev Immunol 1997 15: 617–648

    Article  CAS  PubMed  Google Scholar 

  2. Barry MA, Johnston SA . Biological features of genetic immunization Vaccine 1997 8: 788–791

    Article  Google Scholar 

  3. Hargest R, Williamson R . Prophylactic gene therapy for cancer Gene Therapy 1996 3: 97–102

    CAS  PubMed  Google Scholar 

  4. Moelling K . Naked DNA – the poor man's gene therapy? Editorial Gene Therapy 1998 5: 573–574

    Article  CAS  PubMed  Google Scholar 

  5. Whalen RG . DNA vaccines for infectious diseases, allergies and cancer. In: Eibl et al (eds) Symposium in Immunology VII 1998 pp 165–183

    Chapter  Google Scholar 

  6. Förg P, von Hoegen P, Dalemans W, Schirrmacher V . Superiority of the ear pinna over muscle tissue as site for DNA vaccination Gene Therapy 1998 5: 789–797

    Article  PubMed  Google Scholar 

  7. Liljeström, P, Garoff H . A new generation of animal cell expression vectors based on the Semliki Forest virus replicon Biotechnology 1991 9: 1356–1361

    Article  PubMed  Google Scholar 

  8. Meanger J, Peroulis I, Mills J . Modified Semliki Forest virus expression vector that facilitates cloning BioTechniques 1997 23: 432–436

    Article  CAS  PubMed  Google Scholar 

  9. Carbone FR, Bevan J . Class I-restricted progressing and presentation of exogenous cell-associated antigen in vivo J Exp Med 1990 171: 377–387

    Article  CAS  PubMed  Google Scholar 

  10. Khazaie K et al. Persistence of dormant tumor cells in the bone marrow of tumor cell vaccinated mice correlates with long-term immunological protection Proc Natl Acad Sci USA 1994 91: 7430–7434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Krüger A, Schirrmacher V, von Hoegen P . Scattered micrometastasis visualized at the single cell level: detection and re-isolation of lacZ labeled metastasized lymphoma cells Int J Cancer 1994 58: 275–284

    Article  PubMed  Google Scholar 

  12. Krüger A el al. Pattern and load of spontaneous liver metastasis dependent on host immune status studied with a lacZ-transduced lymphoma Blood 1994 84: 3166–3174

    PubMed  Google Scholar 

  13. Raz E . Gene Vaccination: Theory and Practice Springer: Berlin 1998 pp 1–180

  14. Conry RM, LoBuglio A, Curiel DT . Polynucleotide-mediated immunization therapy of cancer Semin Oncol 1996 23: 135–147

    CAS  PubMed  Google Scholar 

  15. Dubensky TW Jr, Polo JM, Liu MA . Live virus vaccines: something old, something new, something borrowed Nature Med 1998 4: 1357–1358

    Article  PubMed  Google Scholar 

  16. Conry RM et al. Characterization of a messenger RNA polynucleotide vaccine vector Cancer Res 1995 55: 1397–1400

    CAS  PubMed  Google Scholar 

  17. Qiu P, Ziegelhoffer P, Sun J, Yang NS . Gene gun delivery of mRNA in situ results in efficient transgene expression and genetic immunization Gene Therapy 1996 3: 262–268

    CAS  PubMed  Google Scholar 

  18. Hahn CS, Hahn YS, Braciale TJ, Rice CM . Infectious Sindbis virus transient expression vectors for studying antigen processing and presentation Proc Natl Acad Sci USA 1992 89: 2679–2683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mandl CW et al. In vitro synthesized infections RNA as an attenuated live vaccine in a flavivirus model Nature Med 1989 4: 1438–1440

    Article  Google Scholar 

  20. Ying H et al. Cancer therapy using a self-replicating RNA vaccine Nature Med 1999 5: 823–827

    Article  CAS  PubMed  Google Scholar 

  21. Leitner WW et al. Enhancement of tumor-specific immune response with plasmid DNA replicon vectors Cancer Res 2000 60: 51–55

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Leitner WW, Ying H, Restifo NP . DNA and RNA-based vaccines: principles, progress and prospects Vaccine 2000 18: 765–777

    Article  Google Scholar 

  23. Condon C et al. DNA-based immunization by in vivo transfection of dendritic cells Nature Med 1996 2: 1122–1128

    Article  CAS  PubMed  Google Scholar 

  24. Grohmann U et al. Dendritic cells, interleukin 12 and CD4+ lymphocytes in the initiation of class I-restricted reactivity to a tumor/self peptide Crit Rev Immunol 1998 18: 87–98

    Article  CAS  PubMed  Google Scholar 

  25. Casares S et al. Antigen presentation by dendritic cells after immunization with DNA encoding a major histocompatibility class II-restricted viral epitope J Exp Med 1997 186: 1481–1486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Progador A et al. Predominant role for directly transfected dendritic cells in antigen presentation to CD8+ T cells after gene gun immunization J Exp Med 1998 188: 1075–1082

    Article  Google Scholar 

  27. Akbari O et al. DNA vaccination: transfection and activation of dendritic cells as key events for immunity J Exp Med 1999 189: 169–177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lynch DH, Namen AE, Miller RE . In vivo evaluation of the effects of interleukins 2, 4 and 7 on enhancing the immunotherapeutic efficacy of anti-tumor cytotoxic T lymphocytes Eur J Immunol 1991 21: 2977–2985

    Article  CAS  PubMed  Google Scholar 

  29. Sparwasser T et al. Bacterial DNA and immuno-stimulatory CpG oligonucleotides trigger maturation and activation of murine dendritic cells Eur J Immunol 1998 28: 2045–2054

    Article  CAS  PubMed  Google Scholar 

  30. Boccaccio GL, Mor F, Steinmann L . Non-coding plasmid DNA induces IFN-γ in vivo and suppresses autoimmune encephalomyelitis Int Immunol 1999 11: 289–296

    Article  CAS  PubMed  Google Scholar 

  31. Kovacsovics-Bankowski M, Clark K, Benacerraf B, Rock KL . Efficient major histocompatibility complex I presentation of exogenous antigen upon phagocytosis by macrophages Proc Natl Acad Sci USA 1993 90: 4942–4944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bachmann MF et al. TAP1-independent loading of class I molecules by exogenous viral proteins Eur J Immunol 1995 25: 1739–1743

    Article  CAS  PubMed  Google Scholar 

  33. Albert ML, Sauter B, Bhardwaj N . Dendritic cells acquire antigen from apoptotic cells and induce class I restricted CTLs Nature 1998 392: 86–89

    Article  CAS  PubMed  Google Scholar 

  34. Lau LL, Jamieson BD, Somasundaran T, Ahmed R . Cytotoxic T cell memory without antigen Nature 1994 369: 648–652

    Article  CAS  PubMed  Google Scholar 

  35. Opferman IT, Ober BT, Ashton-Rickardt PG . Linear differentiation of cytotoxic effectors into memory T lymphocytes Science 1999 283: 1745–1748

    Article  CAS  PubMed  Google Scholar 

  36. Klinman DM et al. Contribution of cells at the site of DNA vaccination to the generation of antigen-specific immunity and memory J Immunol 1998 160: 2388–2392

    CAS  PubMed  Google Scholar 

  37. Sigal LJ, Crotty S, Andino R, Rock KL . Cytotoxic T cell immunity to virus-infected non-haematopoietic cells requires presentation of exogenous antigen Nature 1999 398: 77–80

    Article  CAS  PubMed  Google Scholar 

  38. Schirrmacher V, Zangemeister-Wittke U . γ-Irradiation suppresses T cell mediated protective immunity against a metastatic tumor in the afferent phase of the immune response but enhances it in the efferent phase if given before immune cell transfer Int J Oncol 1994 4: 335–346

    CAS  PubMed  Google Scholar 

  39. Schild HJ, Kyewski B, von Hoegen P, Schirrmacher V . CD4+ helper T cells are required for resistance to a highly metastatic murine tumor Eur J Immunol 1987 17: 1863–1866

    Article  CAS  PubMed  Google Scholar 

  40. Jurianz K, von Hoegen P, Schirrmacher V . Superiority of the ear pinna over a subcutaneous tumor inoculation site for induction of a TH1-type cytokine response Cancer Immunol Immunother 1998 45: 327–333

    Article  CAS  PubMed  Google Scholar 

  41. Schirrmacher V, Jurianz K, Griesbach A . Intra-pinna induction of specific antitumor immune T cell functions: effect of ear resection after antigen application Int J Oncol 1997 11: 227–233

    CAS  PubMed  Google Scholar 

  42. Ridge JP, Di Rosa F, Matzinger P . A conditioned dendritic cell can be a temporal bridge between a CD4 T-helper and a T-killer cell Nature 1998 393: 474–478

    Article  CAS  PubMed  Google Scholar 

  43. Ramarathinam L et al. Multiple lineages of tumors express a common tumor antigen, P1A, but they are not cross-protected J Immunol 1995 155: 5323–5329

    CAS  PubMed  Google Scholar 

  44. Tahara H, Lotze MT . Antitumor effects of interleukin 12 (IL-12): applications for the immunotherapy and gene therapy of cancer Gene Therapy 1995 2: 96–106

    CAS  PubMed  Google Scholar 

  45. Irvine KR, Rao JB, Rosenberg SA, Restifo NP . Cytokine enhancement of DNA immunization leads to effective treatment of established pulmonary metastases J Immunol 1996 156: 238–245

    CAS  PubMed  Google Scholar 

  46. Zhu N, Liggit D, Liu Y, Debs R . Systemic gene expression after intravenous DNA delivery into adult mice Science 1993 261: 209–211

    Article  CAS  PubMed  Google Scholar 

  47. Xiang Z, Ertl HC . Manipulation of the immune response to a plasmid-encoded viral antigen by coinoculation with plasmids expressing cytokines Immunity 1995 2: 129–135

    Article  CAS  PubMed  Google Scholar 

  48. Waisman A et al. Suppressive vaccination with DNA encoding a variable region gene of the T cell receptor prevents autoimmune encephalitis and activates Th2 immunity Nature Med 1996 2: 899–905

    Article  CAS  PubMed  Google Scholar 

  49. Prayaga SK, Ford MJ, Haynes JR . Manipulation of HIV-1 gp120-specific immune responses elicited via gene gun-based DNA immunization Vaccine 1997 15: 1349–1352

    Article  CAS  PubMed  Google Scholar 

  50. Von Hoegen P . Gene tag: just a way to follow tumor cells or induction of new antigens Cancer J 1995 8: 31

    Google Scholar 

  51. Abram SI, Hand PH, Tsang KY, Schlom J . Mutant ras epitopes as targets for cancer vaccines Semin Oncol 1996 23: 118–134

    Google Scholar 

  52. Theobald M et al. Targeting p53 as a general tumor antigen Proc Natl Acad Sci USA 1995 92: 11993–11997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Coulie P et al. A mutated intron sequence for an antigenic peptide recognized by cytolytic T lymphocytes on a human melanoma Proc Natl Acad Sci USA 1995 92: 7976–7980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ciernik FI, Berzofsky JA, Carbone DP . Induction of cytotoxic T lymphocytes and antitumor immunity with DNA vaccine expressing single T cell epitopes J Immunol 1996 156: 2369–2375

    CAS  PubMed  Google Scholar 

  55. Chen CH et al. Gene gun-mediated DNA vaccination induces antitumor immunity against human papillomavirus type 16 E7-expressing murine tumor metastases in the liver and lungs Gene Therapy 1999 6: 1972–1981

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schirrmacher, V., Förg, P., Dalemans, W. et al. Intra-pinna anti-tumor vaccination with self-replicating infectious RNA or with DNA encoding a model tumor antigen and a cytokine. Gene Ther 7, 1137–1147 (2000). https://doi.org/10.1038/sj.gt.3301220

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301220

Keywords

This article is cited by

Search

Quick links