Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Viral Transfer Technology
  • Published:

Murine dendritic cells infected with adenovirus vectors show signs of activation

Abstract

Dendritic cells (DC) are highly efficient antigen presenting cells being actively evaluated as vaccine components. A number of studies have shown adenovirus-mediated gene transfer to cultured DCs is feasible and that Ad-modified DCs are effective at inducing T cell immunity in vitro and establishing antitumor immunity in experimental tumor models in vivo. The current study evaluates the biologic effects of Ad infection on murine bone marrow-derived DCs (BMDC) in primary culture. Ad infection (MOI 200) of BMDC induced significant increases in IL12 p40 protein in culture supernatants (6 × that of uninfected BMDC and similar to that observed with addition of LPS and CD40 crosslinking antibody). Supernatants from Ad infected BMDCs induced appreciable increases in IFNγ from naive splenocytes in culture. Consistent with DC activation, FACs analysis showed BMDC infected with Ad vectors up-regulated the surface expression of B7-2, ICAM-1 and MHC II. Additional experiments evaluated the role of virus attachment, internalization and gene expression using IL-12 p40 production as a marker of DC activation. Neither heat-inactivated Ad nor peptides containing the RGD sequence (the primary component of Ad penton base which interacts with cell surface integrins) induced significant amounts of IL 12 p40. In contrast, psoralen/UV-inactivated Ad showed similar levels of IL12 p40 production compared with intact Ad. These data suggest this phenomenon is dependent on viral entry into the cell and/or translocation to the nucleus, and is independent of either viral gene or transgene expression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Austyn JM . New insights into the mobilization and phagocytic activity of dendritic cells J Exp Med 1996 183: 1287–1292

    Article  CAS  PubMed  Google Scholar 

  2. Banchereau J, Steinman RM . Dendritic cells and the control of immunity Nature 1998 392: 245–252

    Article  CAS  PubMed  Google Scholar 

  3. Gately MK, Wolitzky AG, Quinn PM, Chizzonite R . Regulation of human cytolytic lymphocyte responses by interleukin-12 Cell Immunol 1992 143: 127–142

    Article  CAS  PubMed  Google Scholar 

  4. Trinchieri G, Scott P . Interleukin-12: a proinflammatory cytokine with immunoregulatory functions Res Immunol 1995 146: 423–431

    Article  CAS  PubMed  Google Scholar 

  5. Trinchieri G . Interleukin-12: a cytokine produced by antigen-presenting cells with immunoregulatory functions in the generation of T-helper cells type 1 and cytotoxic lymphocytes Blood 1994 84: 4008–4027

    CAS  PubMed  Google Scholar 

  6. Macatonia SE et al. Dendritic cells produce IL-12 and direct the development of Th1 cells from naive CD4+ T cells J Immunol 1995 154: 5071–5079

    CAS  PubMed  Google Scholar 

  7. Chen L, Linsley PS, Hellstrom KE . Costimulation of T cells for tumor immunity Immunol Today 1993 4: 483–486

    Article  Google Scholar 

  8. Zitvogel L, Lotze MT . Role of interleukin-12 (IL12) as an anti-tumour agent: experimental biology and clinical application Res Immunol 1995 146: 628–638

    Article  CAS  PubMed  Google Scholar 

  9. Pardoll DM . Cancer vaccines Nature Med 1998 4: (5 Suppl.) 525–531

    Article  CAS  PubMed  Google Scholar 

  10. Zinkernagel RM . Immunology taught by viruses Science 1996 271: 173–178

    Article  CAS  PubMed  Google Scholar 

  11. Inaba K et al. Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor J Exp Med 1992 176: 1693–1702

    Article  CAS  PubMed  Google Scholar 

  12. Arthur JF et al. A comparison of gene transfer methods in human dendritic cells Cancer Gene Ther 1997 4: 17–25

    CAS  PubMed  Google Scholar 

  13. Di Nicola M et al. Gene transfer into human dendritic antigen-presenting cells by vaccinia virus and adenovirus vectors Cancer Gene Ther 1998 5: 350–356

    CAS  PubMed  Google Scholar 

  14. Dietz AB, Vuk-Pavlovic S . High efficiency adenovirus-mediated gene transfer to human dendritic cells Blood 1998 91: 392–398

    CAS  PubMed  Google Scholar 

  15. Bregni M et al. Adenovirus vectors for gene transduction into mobilized blood CD34+ cells Gene Therapy 1998 5: 465–472

    Article  CAS  PubMed  Google Scholar 

  16. Zhong L, Granelli-Piperno A, Choi Y, Steinman RM . Recombinant adenovirus is an efficient and non-perturbing genetic vector for human dendritic cells Eur J Immunol 1999 29: 964–972

    Article  CAS  PubMed  Google Scholar 

  17. Rea D et al. Adenoviruses activate human dendritic cells without polarization toward a T-helper type 1-inducing subset J Virol 1999 73: 10245–10253

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Butterfield LH et al. Generation of melanoma-specific cytotoxic T lymphocytes by dendritic cells transduced with a MART-1 adenovirus J Immunol 1998 161: 5607–5613

    CAS  PubMed  Google Scholar 

  19. Song W et al. Dendritic cells genetically modified with an adenovirus vector encoding the cDNA for a model antigen induce protective and therapeutic antitumor immunity J Exp Med 1997 186: 1247–1256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Brossart P et al. Virus-mediated delivery of antigenic epitopes into dendritic cells as a means to induce CTL J Immunol 1997 158: 3270–3276

    CAS  PubMed  Google Scholar 

  21. Gong J et al. Induction of antigen-specific antitumor immunity with adenovirus-transduced dendritic cells Gene Therapy 1997 4: 1023–1028

    Article  CAS  PubMed  Google Scholar 

  22. Ribas A et al. Genetic immunization for the melanoma antigen MART-1/Melan-A using recombinant adenovirus-transduced murine dendritic cells Cancer Res 1997 57: 2865–2869

    CAS  PubMed  Google Scholar 

  23. Wan Y et al. Dendritic cells transduced with an adenoviral vector encoding a model tumor-associated antigen for tumor vaccination Hum Gene Ther 1997 8: 1355–1363

    Article  CAS  PubMed  Google Scholar 

  24. Wan Y et al. Murine dendritic cells transduced with an adenoviral vector expressing a defined tumor antigen can overcome anti-adenovirus neutralizing immunity and induce effective tumor regression Int J Oncol 1999 14: 771–776

    CAS  PubMed  Google Scholar 

  25. Ishida T et al. Dendritic cells transduced with wild-type p53 gene elicit potent anti-tumour immune responses Clin Exp Immunol 1999 117: 244–251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kaplan JM et al. Induction of antitumor immunity with dendritic cells transduced with adenovirus vector-encoding endogenous tumor-associated antigens J Immunol 1999 163: 699–707

    CAS  PubMed  Google Scholar 

  27. Steinman RM et al. Antigen capture, processing, and presentation by dendritic cells: recent cell biological studies Hum Immunol 1999 60: 562–567

    Article  CAS  PubMed  Google Scholar 

  28. Klagge IM, Schneider-Schaulies S . Virus interactions with dendritic cells J Gen Virol 1999 80: 823–833

    Article  CAS  PubMed  Google Scholar 

  29. Reis e Sousa C, Sher A, Kaye P . The role of dendritic cells in the induction and regulation of immunity to microbial infection Curr Opin Immunol 1999 11: 392–399

    Article  CAS  PubMed  Google Scholar 

  30. Rescigno M et al. Dendritic cell maturation is required for initiation of the immune response J Leuk Biol 1997 61: 415–421

    Article  CAS  Google Scholar 

  31. Cella M et al. Ligation of CD40 on dendritic cells triggers production of high levels of interleukin-12 and enhances T cell stimulatory capacity: T–T help via APC activation J Exp Med 1996 184: 747–752

    Article  CAS  PubMed  Google Scholar 

  32. Caux C et al. Activation of human dendritic cells through CD40 cross-linking J Exp Med 1994 180: 1263–1272

    Article  CAS  PubMed  Google Scholar 

  33. Koch F et al. High level IL-12 production by murine dendritic cells: upregulation via MHC class II and CD40 molecules and downregulation by IL-4 and IL-10 J Exp Med 1996 184: 741–746

    Article  CAS  PubMed  Google Scholar 

  34. Sousa CR et al. In vivo microbial stimulation induces rapid CD40 ligand-independent production of interleukin 12 by dendritic cells and their redistribution to T cell areas J Exp Med 1997 186: 1819–1829

    Article  PubMed Central  Google Scholar 

  35. Ridge JP, Di Rosa F, Matzinger P . A conditioned dendritic cell can be a temporal bridge between a CD4+ T-helper and a T-killer cell Nature 1998 393: 474–478

    Article  CAS  PubMed  Google Scholar 

  36. Cella M et al. Maturation, activation, and protection of dendritic cells induced by double-stranded RNA J Exp Med 1999 189: 821–829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Muruve DA, Barnes MJ, Stillman IE, Libermann TA . Adenoviral gene therapy leads to rapid induction of multiple chemokines and acute neutrophil-dependent hepatic injury in vivo Hum Gene Ther 1999 10: 965–976

    Article  CAS  PubMed  Google Scholar 

  38. Bruder JT, Kovesdi I . Adenovirus infection stimulates the Raf/MAPK signaling pathway and induces interleukin-8 expression J Virol 1997 71: 398–404

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Amin R et al. Replication-deficient adenovirus induces expression of interleukin-8 by airway epithelial cells in vitro Hum Gene Ther 1995 6: 145–153

    Article  CAS  PubMed  Google Scholar 

  40. Lieber A et al. The role of Kupffer cell activation and viral gene expression in early liver toxicity after infusion of recombinant adenovirus vectors J Virol 1997 71: 8798–8807

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Ma X et al. Production of interleukin-12 Res Immunol 1995 146: 432–438

    Article  CAS  PubMed  Google Scholar 

  42. Wickham TJ, Mathias P, Cheresh DA, Nemerow GR . Integrins alpha v beta 3 and alpha v beta 5 promote adenovirus internalization but not virus attachment Cell 1993 73: 309–319

    Article  CAS  PubMed  Google Scholar 

  43. Clark EA, Brugge JS . Integrins and signal transduction pathways: the road taken Science 1995 268: 233–239

    Article  CAS  PubMed  Google Scholar 

  44. Tillman BW et al. Maturation of dendritic cells accompanies high-efficiency gene transfer by a CD40-targeted adenoviral vector J Immunol 1999 162: 6378–6383

    CAS  PubMed  Google Scholar 

  45. Cotten M et al. Psoralen treatment of adenovirus particles eliminates virus replication and transcription while maintaining the endosomolytic activity of the virus capsid Virology 1994 205: 254–261

    Article  CAS  PubMed  Google Scholar 

  46. Labeur MS et al. Generation of tumor immunity by bone marrow-derived dendritic cells correlates with dendritic cell maturation stage J Immunol 1999 162: 168–175

    CAS  PubMed  Google Scholar 

  47. Masurier C et al. Immunophenotypical and functional heterogeneity of dendritic cells generated from murine bone marrow cultured with different cytokine combinations: implications for anti-tumoral cell therapy Immunology 1999 96: 569–577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mackey MF et al. Dendritic cells require maturation via CD40 to generate protective antitumor immunity J Immunol 1998 161: 2094–2098

    CAS  PubMed  Google Scholar 

  49. Winzler C et al. Maturation stages of mouse dendritic cells in growth factor-dependent long-term cultures J Exp Med 1997 185: 317–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kalinski P et al. Final maturation of dendritic cells is associated with impaired responsiveness to IFN-gamma and to bacterial IL-12 inducers: decreased ability of mature dendritic cells to produce IL-12 during the interaction with Th cells J Immunol 1999 162: 3231–3236

    CAS  PubMed  Google Scholar 

  51. Sallusto F, Lanzavecchia A . Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha J Exp Med 1994 179: 1109–1118

    Article  CAS  PubMed  Google Scholar 

  52. Snijders A et al. Regulation of bioactive IL-12 production in lipopolysaccharide-stimulated human monocytes is determined by the expression of the p35 subunit J Immunol 1996 156: 1207–1212

    CAS  PubMed  Google Scholar 

  53. Snijders A, Kalinski P, Hilkens CM, Kapsenberg ML . High-level IL-12 production by human dendritic cells requires two signals Int Immunol 1998 10: 1593–1598

    Article  CAS  PubMed  Google Scholar 

  54. Skeen MJ, Miller MA, Shinnick TM, Ziegler HK . Regulation of murine macrophage IL-12 production. Activation of macrophages in vivo, restimulation in vitro, and modulation by other cytokines J Immunol 1996 156: 1196–1206

    CAS  PubMed  Google Scholar 

  55. Hilkens CM, Kalinski P, de Boer M, Kapsenberg ML . Human dendritic cells require exogenous interleukin-12-inducing factors to direct the development of naive T-helper cells toward the Th1 phenotype Blood 1997 90: 1920–1926

    CAS  PubMed  Google Scholar 

  56. Carson WE et al. Interleukin (IL) 15 is a novel cytokine that activates human natural killer cells via components of the IL-2 receptor J Exp Med 1994 180: 1395–1403

    Article  CAS  PubMed  Google Scholar 

  57. Rissoan MC et al. Reciprocal control of T helper cell and dendritic cell differentiation Science 1999 283: 1183–1186

    Article  CAS  PubMed  Google Scholar 

  58. Kapsenberg ML et al. The paradigm of type 1 and type 2 antigen-presenting cells. Implications for atopic allergy Exp Allergy 1999 29: (Suppl.2.) 33–36

    Article  Google Scholar 

  59. Kalinski P, Hilkens CM, Wierenga EA, Kapsenberg ML . T-cell priming by type-1 and type-2 polarized dendritic cells: the concept of a third signal Immunol Today 1999 20: 561–567

    Article  CAS  PubMed  Google Scholar 

  60. Robinson SP et al. Human peripheral blood contains two distinct lineages of dendritic cells Eur J Immunol 1999 29: 2769–2778

    Article  CAS  PubMed  Google Scholar 

  61. Vandenabeele S, Wu L . Dendritic cell origins: puzzles and paradoxes Immunol Cell Biol 1999 77: 411–419

    Article  CAS  PubMed  Google Scholar 

  62. Kato T, Yamane H, Nariuchi H . Differential effects of LPS and CD40 ligand stimulations on the induction of IL-12 production by dendritic cells and macrophages Cell Immunol 1997 181: 59–67

    Article  CAS  PubMed  Google Scholar 

  63. Rosenfeld MA et al. Adenovirus-mediated transfer of a recombinant alpha 1-antitrypsin gene to the lung epithelium in vivo Science 1991 252: 431–434

    Article  CAS  PubMed  Google Scholar 

  64. Hirschowitz EA et al. Adenovirus-mediated expression of melanoma antigen gp75 as immunotherapy for metastatic melanoma Gene Therapy 1998 5: 975–983

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to John Yannelli for his helpful discussion. These studies were supported by the Veterans Administration Career Development Award project No. 596–416905007–0001.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hirschowitz, E., Weaver, J., Hidalgo, G. et al. Murine dendritic cells infected with adenovirus vectors show signs of activation. Gene Ther 7, 1112–1120 (2000). https://doi.org/10.1038/sj.gt.3301210

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301210

Keywords

This article is cited by

Search

Quick links